Instructions: You must show supporting work to receive full and partial credits. No text book, notes, formula sheets allowed.
$\mathbf{1}$ (10pts) (a) Find the directional derivative of function $z=f(x, y)=x^{2} y$ at the point $(1,2)$ in the direction of the vector $\langle-3,4\rangle$.
(b) Find the direction at $(1,2)$ at which the function decreases the most rapidly.
(c) Find the largest rate of change of the function at the point $(1,2)$.

2(6pts) Consider the composition function $z=f(x(t), y(t))$. If $x(t)=t+t^{2}, y(t)=t^{4}$ and $f_{x}(2,1)=$ $-2, f_{y}(2,1)=3$, what is $\frac{d z}{d t}$ at $t=1 ?$
$\mathbf{3}(\mathbf{6} \mathbf{p t s})$ Find the tangent plane of the ellipsoid $x^{2}+y^{2}+2 z^{2}=7$ at the point $(2,-1,1)$.
$4(12 \mathrm{pts})$ Find all critical points of $f(x, y)=x^{4}+y^{4}-4 x y$ and use the second derivative test to classify the points.
$\mathbf{5}(\mathbf{1 5 p t s})$ The temperature of a metal plate is given by $T(x, y)=\frac{300}{1+(x-1)^{2}+y^{2}}$, for points (x, y) on the circular plate defined by $x^{2}+y^{2} \leq 4$. Use Lagrange multiplier method to find the maximum and minimum temperatures on the edge of the plate.
$\mathbf{6}(\mathbf{1 2 p t s})$ Evaluate the integral $\int_{0}^{1} \int_{\sqrt{y}}^{1} \cos x^{3} d x d y$ by changing the order of integration.
$\mathbf{7}(\mathbf{1 5 p t s})$ (a) Sketch the solid over which the iterated triple integral $\int_{0}^{2} \int_{0}^{\frac{6-3 z}{2}} \int_{0}^{6-2 y-3 z} f(x, y, z) d x d y d z$ is set.
(b) Change the order of the iterated integral to $d z d y d x$.
$\mathbf{8 (1 0 p t s)}$ Set up an iterated integral in polar coordinate for the area of a region outside the unit circle, $x^{2}+y^{2}=1$, and insider another, $x^{2}+y^{2}=2 y$. (Needed special fact: $\sin \frac{\pi}{6}=\frac{1}{2}, \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$. Do not evaluate the integral.)
$\mathbf{9}(\mathbf{1 4 p t s})$ A solid Q is bounded these surfaces: $z=1-x^{2}, z=0, y=0, y+z=2$. Find the total mass if $\rho(x, y, z)=x^{2}$ is the density function. (Suggestion: Set up the triple integral in the order of $d y d z d x$.)

2 Bonus Points: The gradient of a function is: (a) a number, (b) a vector, (c) a curve on the surface, (d) all above.

