Name:

Score: _____

Instructions: You must show supporting work to receive full and partial credits. No text book, notes, formula sheets allowed.

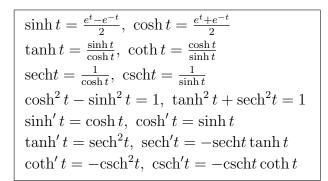
- **1(10pts)** Three points in the space are given: P(0,1,2), Q(1,2,3), R(-1,-1,1).
 - (a) Find the angle between the vectors \vec{PQ}, \vec{PR} .

(b) Find the projection of vector \vec{PR} on \vec{PQ} : $\vec{proj}_{\vec{PQ}}\vec{PR}$.

2(6pts) Find the equation of the plane that goes through the point (1,0,-2) and is parallel to another plane: x + 2y + 3z + 4 = 0.

3(6pts) Sketch the surface of the equation $x + y^2 + 2z^2 - 1 = 0$, showing a few appropriate traces.

- **4(18pts)** Three points in the space are given: P(0,1,2), Q(2,0,1), R(-1,-1,1).
 - (a) Find the equation of the plane containing the points.


- (b) Find the area of the triangle with these points as its vertexes.
- (c) Find the parametric equations of the line through point P and perpendicular to the plane.

5(7pts) The velocity of a moving particle is given as $\vec{v}(t) = \langle t, 2t, e^{2t} \rangle$. Find its position $\vec{r}(t)$ if $\vec{r}(0) = \langle 0, 1, 1 \rangle$.

- 6(14pts) Find the limit if exists, or show it does not exist by the 2-path rule.
 - (a) $\lim_{(x,y)\to(0,0)} \frac{\cos(xy)}{1+x^2+y^2}$
 - (b) $\lim_{(x,y)\to(0,0)} \frac{xy}{2x^2+y^3}$

7(15pts) Consider the curve given by $\vec{r}(t) = \langle t, \cosh t \rangle$.

(a) Find the unit tangent vector $\vec{T}(t)$.

(b) Find the unit principal normal vector $\vec{N}(t)$.

(c) Find the curvature.

8(6pts) Find the distance from the point (1,1,2) to the line which goes through (1,0,1) and (3,2,-1).

9(18pts)	At an instance the following are given for a particle in motion: The acceleration $\vec{a} = (0, 3, 4)$, the velocity $\vec{v} = (-1, 0, 1)$. Find the following: (<i>Hint</i> : use the relation $\vec{a} = a_T \vec{T} + a_N \vec{N}$.) (a) The speed $\frac{ds}{dt}$ at the instance.
	(b) The tangential component of the acceleration a_T at the instance.
	(c) The normal component of the acceleration a_N at the instance.
	(d) The trajectory's curvature κ at the instance.
	(d) The principal normal unit vector \vec{N} at the instance.
	(e) The binormal unit vector \vec{B} at the instance.