Name:
$\overline{\text { Instructions: You must show supporting work to receive full and partial credits. No text book, notes, }}$ formula sheets allowed.
$\mathbf{1}(\mathbf{1 0 p t s})$ Three points in the space are given: $P(0,1,2), Q(1,2,3), R(-1,-1,1)$.
(a) Find the angle between the vectors $\overrightarrow{P Q}, \overrightarrow{P R}$.
2.8
(b) Find the projection of vector $\overrightarrow{P R}$ on $\overrightarrow{P Q}: \operatorname{proj}_{\overrightarrow{P Q}} \overrightarrow{P R}$.
$\frac{-4}{3}\langle 1,1,1\rangle$
$\mathbf{2 (6 p t s})$ Find the equation of the plane that goes through the point $(1,0,-2)$ and is parallel to another plane: $x+2 y+3 z+4=0$.
$x+2 y+3 z+5=0$
$\mathbf{3}(\mathbf{6 p t s})$ Sketch the surface of the equation $x+y^{2}+2 z^{2}-1=0$, showing a few appropriate traces.

Elliptical paraboloid, vertex at $(1,0,0)$, open to the negative x-axis, with x-trace being ellipses: $y^{2}+2 z^{2}=1-x$ for $x \leq 1$.
$4(18 \mathbf{p t s})$ Three points in the space are given: $P(0,1,2), Q(2,0,1), R(-1,-1,1)$.
(a) Find the equation of the plane containing the points.
$-x+3 y-5 z+7=0$
(b) Find the area of the triangle with these points as its vertexes.
$\frac{\sqrt{35}}{2}$
(c) Find the parametric equations of the line through point P and perpendicular to the plane.
$x=-t, y=1+3 t, z=2-5 t$.
$\mathbf{5 (7 \mathbf { p t s })}$ The velocity of a moving particle is given as $\vec{v}(t)=\left\langle t, 2 t, e^{2 t}\right\rangle$. Find its position $\vec{r}(t)$ if $\vec{r}(0)=\langle 0,1,1\rangle$.

$$
\vec{r}(t)=\left\langle\frac{1}{2} t^{2}, t^{2}+1, \frac{1}{2}\left(e^{2 t}+1\right)\right\rangle .
$$

$\mathbf{6}(14 \mathrm{pts})$ Find the limit if exists, or show it does not exist by the 2-path rule.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{\cos (x y)}{1+x^{2}+y^{2}}=0$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{2 x^{2}+y^{3}}$

Does not exist. On path $x=0$, the path limit is 0 . On $y=x$, the path limit is $1 / 2$. So the 2 -path rule applies.

7(15pts) Consider the curve given by $\vec{r}(t)=\langle t, \cosh t\rangle$.
(a) Find the unit tangent vector $\vec{T}(t)$.

Use the formulas. $\vec{T}(t)=(\operatorname{sech} t, \tanh t)$
$\sinh t=\frac{e^{t}-e^{-t}}{2}, \cosh t=\frac{e^{t}+e^{-t}}{2}$
$\tanh t=\frac{\sinh t}{\cosh t}, \quad \operatorname{coth} t=\frac{\cosh t}{\sinh t}$
$\operatorname{sech} t=\frac{1}{\cosh t}, \quad \operatorname{csch} t=\frac{1}{\sinh t}$
$\cosh ^{2} t-\sinh ^{2} t=1, \tanh ^{2} t+\operatorname{sech}^{2} t=1$
$\sinh ^{\prime} t=\cosh t, \cosh ^{\prime} t=\sinh t$
$\tanh ^{\prime} t=\operatorname{sech}^{2} t, \operatorname{sech}^{\prime} t=-\operatorname{sech} t \tanh t$ $\operatorname{coth}^{\prime} t=-\operatorname{csch}^{2} t, \operatorname{csch}^{\prime} t=-\operatorname{csch} t \operatorname{coth} t$
(b) Find the unit principal normal vector $\vec{N}(t)$.
$\vec{N}(t)=(-\tanh t, \operatorname{sech} t)$
(c) Find the curvature.

Use either $\kappa=\frac{\left\|\vec{T}^{\prime}(t)\right\|}{\left\|\vec{r}^{\prime}(t)\right\|}$ or $\kappa=\frac{\left\|\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right\|}{\left\|\vec{r}^{\prime}(t)\right\|^{3}}$ to get $\kappa=\operatorname{sech}^{2} t$
$\mathbf{8 (6 p t s})$ Find the distance from the point $(1,1,2)$ to the line which goes through $(1,0,1)$ and $(3,2,-1)$.

Let $P=(1,0,1), Q=(3,2,-1), R=(1,1,2)$. Then $d=\frac{\|\overrightarrow{P Q} \times \overrightarrow{P R}\|}{\|P \vec{Q}\|}=\sqrt{2}$
$\mathbf{9}(18 \mathrm{pts})$ At an instance the following are given for a particle in motion: The acceleration $\vec{a}=(0,3,4)$, the velocity $\vec{v}=(-1,0,1)$. Find the following: (Hint: use the relation $\vec{a}=a_{T} \vec{T}+a_{N} \vec{N}$.)
(a) The speed $\frac{d s}{d t}$ at the instance.
$\|\vec{v}\|=\sqrt{2}$
(b) The tangential component of the acceleration a_{T} at the instance.
$\vec{T}=\vec{v} /\|\vec{v}\|=\frac{1}{\sqrt{2}}(-1,0,1) \cdot a_{T}=\vec{a} \cdot \vec{T}=\frac{4}{\sqrt{2}}$
(c) The normal component of the acceleration a_{N} at the instance.
$\|\vec{a}\|=5 . \quad a_{N}=\sqrt{\|\vec{a}\|^{2}-a_{T}^{2}}=\sqrt{17}$
(d) The trajectory's curvature κ at the instance.

Use either $\kappa=\frac{\left\|\vec{r}^{\prime} \times \vec{r}^{\prime}\right\|}{\left\|\vec{r}^{\prime}\right\|^{3}}=\frac{\|\vec{\sigma} \times \vec{a}\|}{\|\vec{v}\|^{3}}=\frac{\sqrt{17}}{2}$, or use $\kappa=a_{N} /(d s / d t)^{2}$.
(d) The principal normal unit vector \vec{N} at the instance.
$\vec{N}=\frac{1}{a_{N}}\left(\vec{a}-a_{T} \vec{T}\right)=\frac{1}{\sqrt{17}}(2,3,2)$
(e) The binormal unit vector \vec{B} at the instance.
$\vec{B}=\vec{T} \times \vec{N}=\frac{1}{\sqrt{34}}(-3,4,-3)$

2 Bonus Points: Calculus was invented in: (a) The 17th century. (b) The 18th century. (c) The 19th century. (d) The 20th century.

