[^0]1. (4) Find the critical points and use the second derivative test to determine their type as local maximum, local minimum, saddle for the function $z=f(x, y)=x^{3}-3 x y+y^{3}$.
Solve $f_{x}=3 x^{2}-3 y=0, f_{y}=-3 x+3 y^{2}=0$ for critical points to get $y=x^{2}$ and $-x+x^{4}=x\left(-1+x^{3}\right)=0$, which give rise to two c.pts: $(0,0),(1,1)$. To use the 2 nd derivative test, $f_{x x}=6 x, f_{x y}=-3, f_{y y}=6 y$, and the discriminant $D=f_{x x} f_{y y}-f_{x y}^{2}=36 x y-9$.

| c.pt | $(0,0)$ | $(1,1)$ |
| :---: | :---: | :---: |
| $D$ | - | + |
| $f_{x x}$ | $/$ | + |
| Classification | saddle | local min. |

2. (4) Use Lagrange multiplier method to find the extrema of the function $z=f(x, y)=x+2 y$ subject to the constraint $x^{2}+y^{2}=5$.
Let $g(x, y)=x^{2}+y^{2}$ and $g(x, y)=5$ be the constraint. Then solve

$$
\left\{\begin{array}{l}
\nabla f(x, y)=\lambda \nabla g(x, y) \\
g(x, y)=5
\end{array}\right.
$$

for constrained critical points. It results in these equations in components: $1=\lambda 2 x, 2=\lambda 2 y, x^{2}+y^{2}=5$. Eliminate $\lambda$ by taking the quotient of the first 2 equations to get $1 / 2=x / y$ or $y=2 x$. Couple it with the constraint to reduce the equations to $5=x^{2}+(2 x)^{2}=5 x^{2}$ and $x= \pm 1$. Back substitute to get the constrained c.pts: $(1,2),(-1,-2)$. Compare their $f$ values to conclude below

| c.c.pt | $(1,2)$ | $(-1,-2)$ |
| :---: | :---: | :---: |
| $f$ | 5 | -5 |
| Classification | constrained max. | constrained min. |

3. (4) Evaluate the iterated integral $\int_{0}^{1} \int_{2 x}^{2}(1+2 y) d y d x$.
$11 / 3$
4. (4) Sketch the region $R$ for the double integral $\int_{0}^{1} \int_{2 x}^{3-x^{2}} f(x, y) d y d x$.


Problem 4


Problem 5
5. (4) Sketch the region $R$ for the double integral $\int_{0}^{2} \int_{0}^{2 x} f(x, y) d y d x$ and reverse the order of the iterated integral.

$$
\int_{0}^{4} \int_{y / 2}^{2} f(x, y) d x d y
$$


[^0]:    Instructions: You must show supporting work to receive full and partial credits. No text book, notes, formula sheets allowed.

