1. (4) If $f_{x}(1,0)=-2, f_{y}(1,0)=1$, find the unit direction at which f increases most rapidly at $(1,0)$ and the maximal rate.

Gradient: $\nabla f(1,0)=\langle-2,1\rangle$. The unit directional vector of the gradient: $\vec{u}=\frac{\nabla f(1,0)}{\|\nabla f(1,0)\|}=\left\langle\frac{-2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right\rangle$. In this direction, the rate of change is maximal with the maximal rate $\|\nabla f(1,0)\|=\sqrt{5}$
2. (4) It is given that x can be solved as a function of y, z from the equation $2 x e^{x y}+x z^{2}+y z=3$ at the point $(1,0,-1)$. Use implicit differentiation to find $\frac{\partial x}{\partial z}(0,-1)$ at the point.

Let $F(x, y, z)=2 x e^{x y}+x z^{2}+y z$. Then $\frac{\partial x}{\partial z}(0,-1)=-\frac{F_{z}(1,0,-1)}{F_{x}(1,0,-1)}=-\frac{2 x z+y}{2 e^{x y}+2 x y e^{x y}+z^{2}}=\frac{2}{3}$
3. (4) Verify that $(1,1,2)$ is on the level surface $x y+x z-y z=1$. Find an equation of the tangent plane to the surface at the point.

Checked: $1(1)+1(2)-1(2)=1$. Let $f(x, y, z)=x y+x z-y z$. Then a normal vector to the surface and the tangent plane is $\nabla f(1,1,2)=\langle 3,-1,0\rangle$. The equation: $3(x-1)-1(y-1)+0(z-2)=0$ or $3 x-y-2=0$
4. (4) Find the directional derivative of $f(x, y)=x y^{2}$ at $(1,2)$ in the direction towards $(2,0)$.
$f_{x}(1,2)=4, f_{y}(1,2)=4 . \nabla f(1,2)=\langle 4,4\rangle$. Vector from $(1,2)$ towards $(2,0):\langle 2-1,0-2\rangle=\langle 1,-2\rangle$. The unit directional vector: $\vec{u}=\left\langle\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}\right\rangle$. Directional derivative

$$
D_{\vec{u}} f(1,2)=\nabla f(1,2) \cdot \vec{u}=-\frac{4}{\sqrt{5}}
$$

5. (4) Find all critical points of $f(x, y)=x^{2}+x y^{2}-2 y^{2}-6 x$.

Solve

$$
\left\{\begin{array}{l}
f_{x}(x, y)=2 x+y^{2}-6=0 \tag{1}\\
f_{y}(x, y)=2 x y-4 y=0
\end{array}\right.
$$

by first factorizing the second equation $2 y(x-2)=0$ which leads to two branches: $y=0$ and $x=2$. For $y=0$, the first equation gives $x=3$. For $x=2$, the first equation gives $y= \pm \sqrt{2}$. Critical points are: $(3,0),(2, \sqrt{2}),(2,-\sqrt{2})$

