Name: \qquad PIN(in any 4 digits):
Score:
Instructions: You must show supporting work to receive full and partial credits. No text book, notes, formula sheets allowed.

1. (4) Find the distance between the point $(1,1,1)$ and the plane $x+2 y+z=0$.
$4 / \sqrt{6}$
2. (4) Sketch the surface of the equation $4 x^{2}-y+z^{2}=1$, showing a few appropriate traces.
y-traces: ellipses for $y=k>-1$. Trace with $x=0$: parabala. Trace with $z=0$: parabola. Surface: elliptical parabaloid, open to the y-axis, with vertex at $(0,-1,0)$.
3. (4) Find the position function of a moving objection whose acceleration is $\vec{a}(t)=\langle t, 1, \sin 2 t\rangle$, and whose initial velocity and position are $\vec{v}(0)=\langle 0,1,0\rangle, \vec{r}(0)=\langle 1,1,1\rangle$, repectively.
$\vec{r}(t)=\left(\frac{t^{3}}{6}+1, \frac{t^{2}}{2}+t+1,-\frac{\sin 2 t}{4}+\frac{t}{2}+1\right)$
4. (4) Find the unit tangent vector, \vec{T}, of $\vec{r}(t)=\langle t, 2 \cos t, \sin t\rangle$ at the point $t=0$.
$\frac{(1,0,1)}{\sqrt{2}}$
5. (4) Find the curvature, κ, of the curve $\vec{r}(t)=\langle t, 2 \cos t, \sin t\rangle$ at the point $t=0$.

$$
\text { At } t=0, \kappa=\frac{\left\|\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right\|}{\left\|\vec{r}^{\prime}(t)\right\|^{3}}=1
$$

