\qquad
Instructions: You must show supporting work to receive full and partial credits. No text book, notes, formula sheets allowed.

1. (4) If $f_{x}(1,0)=-2, f_{y}(1,0)=1$, find the unit direction at which f increases most rapidly at $(1,0)$ and the maximal rate.
2. (4) It is given that x can be solved as a function of y, z from the equation $2 x e^{x y}+x z^{2}+y z=3$ at the point $(1,0,-1)$. Use implicit differentiation to find $\frac{\partial x}{\partial z}(0,-1)$ at the point.
3. (4) Verify that $(1,1,2)$ is on the level surface $x y+x z-y z=1$. Find an equation of the tangent plane to the surface at the point.
4. (4) Find the directional derivative of $f(x, y)=x y^{2}$ at $(1,2)$ in the direction towards $(2,0)$.
5. (4) Find all critical points of $f(x, y)=x^{2}+x y^{2}-2 y^{2}-6 x$.
