\qquad
Instructions: You must show supporting work to receive full and partial credits. No text book, notes, formula sheets allowed.

1. (4) Find the distance between the point $(1,1,1)$ and the plane $x+2 y+z=0$.
2. (4) Sketch the surface of the equation $4 x^{2}-y+z^{2}=1$, showing a few appropriate traces.
3. (4) Find the position function of a moving objection whose acceleration is $\vec{a}(t)=\langle t, 1, \sin 2 t\rangle$, and whose initial velocity and position are $\vec{v}(0)=\langle 0,1,0\rangle, \vec{r}(0)=\langle 1,1,1\rangle$, repectively.
4. (4) Find the unit tangent vector, \vec{T}, of $\vec{r}(t)=\langle t, 2 \cos t, \sin t\rangle$ at the point $t=0$.
5. (4) Find the curvature, κ, of the curve $\vec{r}(t)=\langle t, 2 \cos t, \sin t\rangle$ at the point $t=0$.
