		Math 208	Test II	March 27, 2003	
	Name:			Score:	
	Instructions: You must show supporting work to receive full and partial credits. No books or class notes.				
1(18	$\overline{\mathrm{pts}}$	Find the local maxima, m	inima, and saddle po	nts of the function	
			$f(x,y) = \frac{1}{3}(x+y)$	$y^3 + 4xy$.	
		Find the shortest distance from the origin to the plane $x + 2y + 3z = 14$. (<i>Hint</i> : using Lagrange Multiplier Method.)			
3(15	$\mathrm{pts})$	Sketch the region and change the order of integration to $dydx$ for $\int_0^9 \int_{-\sqrt{y}}^0 f(x,y)dxdy$.			
4(15	pts)	Use a polar coordinate setup to evaluate the integral $\iint_R \frac{1}{\sqrt{x^2+y^2}} dA$ where the			
		region R is the triangle bounded by $x = 0, x = 1, y = 0, y = x$. (Recall $\int \sec \theta d\theta = \ln \tan \theta + \sec \theta + C$.)			
5(20	pts)	Let G be the solid bounded by these surfaces $x = 0, z = 4, z = y, z = x^2$. Set up an			
		iterated triple integral for $\iiint_G f(x,y,z)dV$ in the order of $dydzdx$.			
6(16	$\overline{\mathrm{pts}}$	Sketch the region of integ	ration and change the	triple integral	
		$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{2-x^2-y^2}} (x+y) dz dy dx$			
		to an iterated triple integral in the spherical coordinates.(DO NOT EVALUATE.)			
nus(2	$\overline{\mathrm{pts}}$	Bo's office is on the	of Hall		
		The End			