
Name: _____

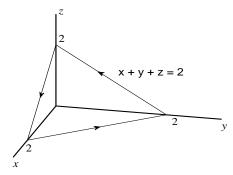
Score:

Instructions: You must show supporting work to receive full and partial credits. No text book, notes, formula sheets allowed.

1(12pts) Find the flux of the vector field $\vec{F}(x,y,z) = 2\vec{i} + \vec{j} + 3\vec{k}$ through the surface of (a) and (b), respectively as shown.

2(16pts) Let S be part of the paraboloid $z = 9 - x^2 - y^2$ inside the rectangle cylinder $0 \le x \le 1, \ 0 \le y \le 2$. Find the flux of the vector field $\vec{F}(x,y,z) = \langle x,y,2z \rangle$ through S which is oriented upward.

- **3(12pts)** Let $\vec{F} = \frac{-y}{x^2 + y^2} \vec{i} + \frac{x}{x^2 + y^2} \vec{j} + (x + y + z) \vec{k}$ and P be the point (1, 2, 3).
 - (a) Find the divergence of \vec{F} at point P.


(b) Find the curl of \vec{F} at point P.

- **4(12pts)** Suppose the curl of a vector \vec{F} at point Q(1,0,-1) is $\text{curl}\vec{F}(1,0,-1) = \langle 1,2,3 \rangle$.
 - (a) Find the unit direction, \vec{n} , at which the circulation density $\mathrm{circ}_{\vec{n}}\vec{F}$ of \vec{F} at point Q is maximal and find the maximum circulation density.

(b) Find the circulation density $\operatorname{circ}_{\vec{u}}\vec{F}$ of \vec{F} at point Q and in the direction of $\vec{u} = \langle 1, 1, 1 \rangle$.

5(14pts) Find the flux \vec{F} through the closed cylinder of radius 2, centered around the z-axis, with $1 \le z \le 3$, if $\vec{F} = \langle x + 3y \ln(2yz + 1), \ 2y + x^{\sin z}, \ 2z + e^{x^2} \rangle$. (Use Divergence Theorem.)

6(14pts) Let \vec{F} be a vector field whose curl is given as $\text{curl}\vec{F} = x\vec{i} + y\vec{j} + z\vec{k}$. Let C be the boundary of the plane x + y + z = 2 in the first octant as shown. Find the line integral $\oint_C \vec{F}(\vec{r}) \cdot d\vec{r}$. (Use Stoke's Theorem.)

