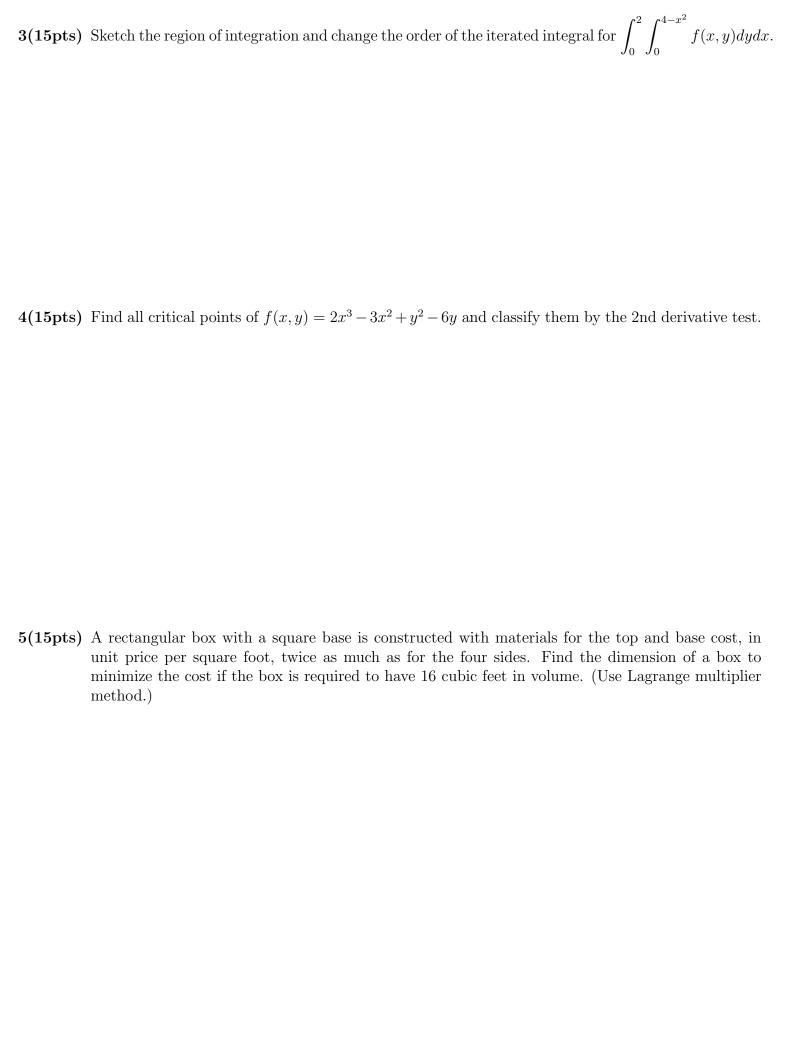
Instructions: You must show supporting work to receive full and partial credits. No text book, notes, formula sheets allowed.

1(20pts) (a) Find the directional derivative of function $z = x^2 + y$ at the point (1,0) in the direction of (2,1).

(b) Find the tangent plane of the function at the point (1,0,1).

2(20pts) (a) It is given that y can be solved as a function of x, z from the equation $2xe^{xy} + xz^2 + yz = 3$ at the point (1,0,-1). Use implicit differentiation to find $\frac{\partial y}{\partial z}(1,-1)$.

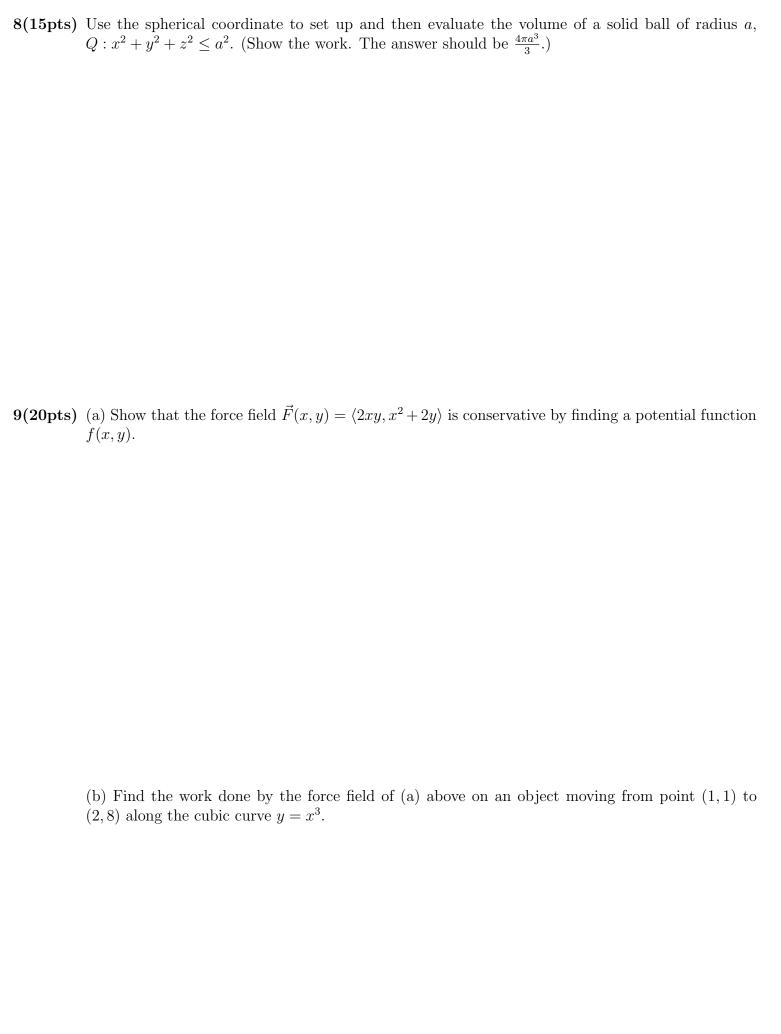
(b) Find the limit or show it does not exist for $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^3+y^3}$

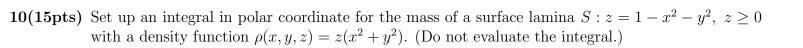


6(20pts)	At an instance the following are given for a particle in motion: its velocity $\vec{v} = \vec{r}' = (-1, 0, 1)$ and acceleration $\vec{a} = \vec{r}'' = (0, 3, 4)$. Find the following: (<i>Hint</i> : use the relation $\vec{a} = a_T \vec{T} + a_N \vec{N}$.) (a) The unit tangent vector \vec{T} at the instance.
	$d^2 c$
	(b) The tangential component of the acceleration $\frac{d^2s}{dt^2}$ at the instance.
	(a) The principal permed unit vector \vec{N} at the instance

(c) The principal normal unit vector N at the instance.

7(15pts) Set up an integral for the mass of a wire C which has the shape of a curve $y=x^3$ between $-2 \le x \le 2$ and has a density function given by $\rho(x,y)=x^2+y^2$. (Do not evaluate the integral.)





11(15pts) Let Q be the solid sphere $x^2 + y^2 + z^2 \le 9$. Use the Divergence Theorem to find the flux of a vector field $\vec{F} = \langle z + x, x + y, y + z \rangle$.

12(15pts) Let C be the triangle with vertexes (1,0,0),(0,2,0),(0,0,2) on the plane 2x+y+z=2, going counterclockwise when looking down. Use Stoke's Theorem to find the line integral $\oint_C \vec{F} \cdot d\vec{r}$ for the vector field $\vec{F} = \langle z, x+y \sin y, y \rangle$.