Math 208, Summer 2007, Exam 1 Show your work. Justify your conclusions.

- [4] 1. Find the center and radius of the sphere given by $x^2 4x + y^2 + z^2 + 2z = 1$.
 - **2**. Let P(1,1,2), Q(4,0,-1) and R(-2,3,1) be points in \mathbf{R}^3 .
- [3] a. Write \overrightarrow{RQ} in component form.
- [4] **b.** Write \overrightarrow{RQ} in the form (magnitude) × (direction).
- [4] **c**. Find the vector of magnitude 3 that points opposite \overrightarrow{PQ} .
- [3] **d.** Find a point $S \in \mathbf{R}^3$ such that $\overrightarrow{PQ} = \overrightarrow{RS}$.
 - **3**. Let $\vec{u} = \langle 1, 2, -1 \rangle$, $\vec{v} = \langle 3, 1, 0 \rangle$ and $\vec{w} = \langle -2, 2, 1 \rangle$.
- [4] **a.** Compute $|2\vec{w} 3\vec{v}|$.
- [4] **b**. Compute $\operatorname{proj}_{\vec{w}} \vec{v}$.
- [4] c. Compute the component of \vec{w} along \vec{u}
- [4] **d**. Compute the angle between $2\vec{v}$ and \vec{w} .
 - 4. Let \vec{u} , \vec{v} and \vec{w} be as in problem 3.
- [4] **a.** Compute $\vec{v} \times \vec{w}$.
- [4] **b**. Find a vector that is orthogonal to \vec{v} and \vec{w} .
- [4] **c**. Compute the area of the parallelogram formed by \vec{v} and \vec{w} .
- [4] **d**. Compute the volume of the parallelpiped formed by \vec{u} , \vec{v} and \vec{w} .