1 (16 pts) Evaluate the integrals (a) \[\int \frac{2x}{\sqrt{5 + 2x + x^2}} \, dx \]

(b) \[\int_1^4 \frac{x^3 - 1}{\sqrt{x}} \, dx \]
2(18pts) (a) Find the derivative of the function \(y = f(x) = x^3 + x + 1 \) and use it to show \(f \) is invertible.

(b) Show that the point \((1, 3)\) is on the graph of the function \(f \), and find an equation of the tangent line at the point \((3, 1)\) for the inverse function \(y = f^{-1}(x) \).

(c) An invertible function is as shown. Sketch the graph of its inverse.

3(16pts) (a) Derive and simplify \(\frac{d}{dx} \cot^{-1}x \) for which \(\cot^{-1}x \) is defined as the inverse of cotangent function \(\cot x = \frac{\cos x}{\sin x} \) from the interval of \((0, \pi)\) to \((-\infty, \infty)\). Note that \(\cot' x = -\csc^2 x \).

(b) Suppose a batch of bacteria initially has 100 cells. After 2 hours, the population has increase to 400. Assume that the population grows exponentially. What will the population be after 8 hours?
4(20pts) Evaluate the integrals by the method of integration by parts.

(a) $\int x \ln x \, dx$

(b) $\int x^2 \sin x \, dx$

5(10pts) Evaluate the integral $\int \frac{1}{(x-2)^2 \sqrt{x}} \, dx$, using the following formulas

$$\int \frac{1}{u^n \sqrt{a + bu}} \, du = \frac{-1}{a(n-1)} \frac{\sqrt{a + bu}}{u^{n-1}} - \frac{(2n-3)b}{2a(n-1)} \int \frac{1}{u^{n-1} \sqrt{a + bu}} \, du$$

$$\int \frac{1}{u \sqrt{a + bu}} \, du = \frac{1}{\sqrt{a}} \ln \left| \frac{\sqrt{a + bu} - \sqrt{a}}{\sqrt{a + bu} + \sqrt{a}} \right| + C$$

(Continue on Next Page ...)
Evaluate the trigonometric integrals

(a) \(\int \sin^3 x \, dx \)

(b) \(\int \tan x \sec^4 x \, dx \)

2 Bonus Points: An effective trigonometric substitution for the integral \(\int \sqrt{4 + x^2} \, dx \) should be \(x = \) _________.

(... The End)