Each part of each question is worth 6 points.

For full credit, show your work and report exact simplified answers.

1. Compute each integral or show that it diverges:

(a)
$$\int_0^\infty \frac{1}{1+x^2} \, dx$$

(b)
$$\int_3^\infty \frac{\ln x}{\sqrt{x}} \, dx$$

2. Compute each integral or show that it diverges:

(a)
$$\int_0^2 \frac{e^{-\sqrt{x}}}{\sqrt{x}} \, dx$$

(b)
$$\int_0^1 \frac{x}{2x^2 - 1} \, dx$$

 $3. \ \, \text{Use the tables to compute the following integrals:}$

(a)
$$\int x\sqrt{4-x^4}\,dx$$

(b)
$$\int \frac{\sqrt{1-x}}{x} \, dx$$

4. Determine if each of the following series converge or diverge.

(a)
$$\sum_{k=1}^{\infty} \frac{k^2}{2k^{3/2} + 1}$$

(b)
$$\sum_{k=0}^{\infty} \frac{2}{\sqrt{k^2 + 4}}$$

5. Compute $\sum_{k=1}^{\infty} \frac{4}{2^k}$ or show that the series diverges.

6. Use the first term in the series $\sum_{k=1}^{\infty} \frac{1}{k^2}$ and the integral-test remainder estimates to determine upper and lower bounds for the series sum.