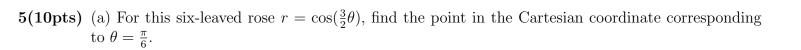
Name: _____

TA's Name: _____

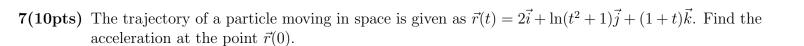
Instructions: You must show supporting work to receive full and partial credits. No text book, notes, formula sheets allowed.


1(15pts) Two points, P(1, 1, 1), Q(2, 2, 0), are given.

- (a) Find the mid-point between P and Q. (Suggestion: draw a picture, not necessarily to the scale, to show the mid-point.)
- (b) If $\vec{v} = <1,2,3>$, find the point R that is $2\vec{v}$ from the point P.
- (c) Find the angle between \vec{PQ} and \vec{v} .

2(10pts) (a) Find the equation in the polar coordinate for the curve by the equation $\sqrt{x^2 + y^2} + \frac{y}{x} = 1$.

(b) Find the equation for the curve $r = \sin \theta$ in the Cartesian coordinate.


$3(10 \mathrm{pts})$	You are given two points $P(1,1,1), Q(2,2,0)$. (a) Find a system of parametric equations for the line through the points P,Q .
	(b) Find the distance from a third point $R(1,2,3)$ to the line through P,Q . (Suggestion: draw a picture, not necessarily to the scale, to assist your solution.)
$4(10 \mathrm{pts})$	You are given three points $P(1,1,1), Q(2,2,0), R(3,0,1)$. (a) Find the area of the triangle with the vertexes P,Q,R .

(b) Find the slope of the tangent line to the curve at that point.

6(10pts) (a) Find the intersections of the circles r = 1 and $r = 2\cos\theta$.

(b) Sketch a graph of each circle, and find the area outside r = 1 but inside $r = 2\cos\theta$.

8(10pts) A force of 10 lb pulling an object at an angle of 45° with a plane. Find the work done to move it 5 feet on the plane.

9(15pts) A bomb was dropped from a bomber at an altitude of 1000 m when it travels at a ground speed of 180 m/sec. Find the distance ahead at which the bomb will hit the ground.

² Bonus Points: Calculus was invented in (a) the 16th century, (b) the 17th century, (c) the 18th century, (d) the 19th century. (... The End)