Name: _____

TA's Name:

Problem	1	2	3	4	5	Total
Score						

Instructions: You must show supporting work to receive full and partial credits. No text book, notes, formula sheets allowed.

1(20pts) Find $\frac{dy}{dx}$ for each of the functions. (Do not simplify wherever not necessary!)

(a)
$$y = \ln(e^x + \ln(e^x + 1))$$

(b)
$$y = \frac{\sqrt{x}\sin x - 100}{2x^{3/2} + 5x + 1}$$

- **2(20pts)** (a) The graph of a function f is given in Fig.2(a). In the same plate, sketch a reasonable function for its derivative f'.
 - (b) The graph of the derivative g' of a function g is given in Fig.2(b). In the same plate, sketch a reasonable function for g itself satisfying g(0) = 0.

3(20pts) (a) Use implicit differentiation to find $\frac{dy}{dx}$ if x and y satisfy the equation $e^{xy} + x^2 + y^2 = 2x$.

(b) Check that the point (1,0) is on the curve defined by the same equation $e^{xy} + x^2 + y^2 = 2x$. Then find an equation of the tangent line to the curve at the point.

4(20pts) (a)(10pts) Use the **definition** of derivative to find the derivative f'(2) analytically where $f(x) = \frac{2}{x+2}$. (Note: no partial points to any other methods.)

(b)(5pts) Estimate the derivative g'(3), given the following information:

	\boldsymbol{x}	2.8	2.9	3	3.1	3.2
Ì	g(x)	-5	-5.25	-5.3	-5.45	-5.55

(c)(5pts) If the tangent line at a point of a function y = f(x) is 2x - 3y = 1 and the point is (2, 1), what is f(2) and f'(2)?

5(20pts) (a) Find the value of g'(1) if $g(x) = x^2 f(3x)$ and f satisfies f(3) = -2, f'(3) = 2.

(b) If $h(x) = x^{29} + 1000x^2$, what is its 99th derivative $h^{(99)}$?

(d) The graph of the second derivative f'' of a function is given in the figure, sketch a reasonable graph for the first derivative f', and a reasonable graph for the function f itself. Superimpose both graphs in the same figure, and label them with f', f respectively.

