Name: _____

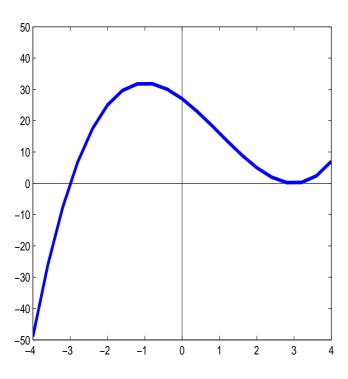
TA's Name: _____

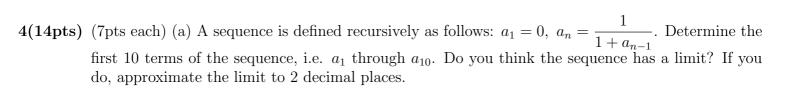
page	1	2	3	4	total
score					

Instructions: You must show supporting work to receive full and partial credits. No text book, notes, formula sheets allowed.

1(14pts) (7pts each) (a) Find the limit of

$$\lim_{x \to 1} \frac{x^2 + x - 2}{2x^2 - x - 1}$$

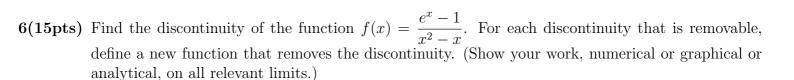

both graphically (copy your calculator graph blow) and numerically (using the sequence $1.1,\ 1.01,\ 1.001,\ 1.0001,\ 1.00001.)$


(b) Find the same limit **analytically**. (Numerical and graphical means are not accepted.)

2(14pts) (7pts each) (a) Estimate the slope of the function $y = f(x) = x^2 + 1$ at x = 2.

(b) Approximate the length of the curve $y = f(x) = x^2 + 1$ over the interval [0, 1], using 2 secant line segments.

3(15pts) (5pts each) The graph of a function y = g(x) is given below. Sketch the graphs of (a) g(2x), (b) g(x+1), (c) g(x)/3 + 10. (Label all graphs.)



(b) Use the idea of Squeeze Theorem to determine the limit $\lim_{x\to\infty} \frac{x+\sin x}{2x+1}$.

5(14pts) (7pts each) (a) Find the exact solutions of $2\sin^2 x - \sin x = 1$.

(b) Find the exact solution of $e^{2 \ln x} - 1 = 0$. (Comment: if π is part of the answer, an approximation such as 3.14... will not be accepted as an answer.)

7(14pts) (7pts each) Given the function $f(x) = \frac{x-4}{x-2\sqrt{x}}$.

(a) Find all the horizontal asymptotes. (Show your work on all relevant limits.)

(b) Find all the vertical asymptotes. (Show your work on all relevant limits.)