Math	106-Sec	25X	Spring	,11
watii	TOO-SEC	$\Delta U \Lambda$	Spring	

Exam 1

Score:	

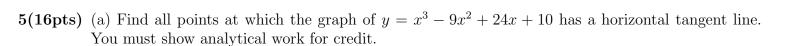
Name:		TA's Name:			
Instructions:	You must show supporting work as much	as possible to receive full and partial credits			
No text book, i	notes, formula sheets allowed.				

1(16pts) Use definition to find the derivative function f'(x) of $f(x) = \sqrt{x+1}$. (Any other method receives no credit, and show all work for credit.)

2(18pts) Find the derivatives of the following functions. (No need to simplify.)

(a)
$$f(x) = 3\sqrt{\cos x + x^2} - 5\tan(x^2)$$

(b)
$$g(x) = 3^{x^3+1} + \frac{x^3+1}{3}$$


 $3(18 \mathrm{pts})$ Find the limit and side limit analytically. Numerical or graphical work will not be credited.

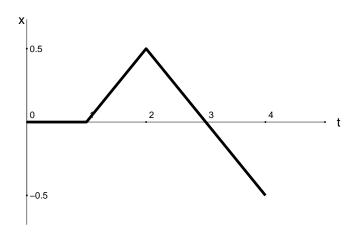
(a)
$$\lim_{x \to 0} \frac{2x}{\sqrt{x+4}-2}$$

(b)
$$\lim_{x \to 3^+} \frac{2-x}{x^3 - 3x^2}$$

4(16pts) (a) Find all horizontal and vertical asymptotes for the function $y = f(x) = \frac{2x^2 - x - 1 + 2}{x^2 + x + 2}$. (Show work to justify your answer.)

(b) Use long division to find the oblique asymptote of the curve $y = \frac{3x^3 + 2x^2 + x + 1}{x^2 + 1}$.

(b) For this parametric curve given by $x(t) = t^2$, $y = \sqrt{t+2}$, find the slope of its tangent line at the point corresponding to t = 2.


(c) For the problem of (b) above find an equation for the tangent line at the point corresponding to t = 2.

6(16pts) (a) A function f is given by the table below.

x							
f(x)	1.0	0.8	0.7	0.9	1.2	1.4	1.2

Estimate the derivative f'(0.2).

(b) The velocity v(t) of an object moving on a straight line is given by the graph below.

- (i) Find the time interval in which the object moves backward.
- (ii) Does the object speed up or speed down at t=2.5?
- (iii) Find the moment at which the object makes a U-turn.
- (iv) Sketch the graph for the acceleration function a(t) wherever exists.