1(20pts) (a) A function \(f \) is given at the those \(x \) values shown in the table.

<table>
<thead>
<tr>
<th>(x)</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
<th>1.1</th>
<th>1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>1.28</td>
<td>1.62</td>
<td>2</td>
<td>2.42</td>
<td>2.88</td>
</tr>
</tbody>
</table>

i. Use difference quotients to approximate the 1st derivative \(f'(1) \).

ii. Use the tangent line approximation to estimate \(f(0.95) \).

(b) On the graph \(f \)

i. Label the points where the derivatives are zero as \(A_1, A_2, \ldots \)
ii. Label the points where the derivatives do not exist as \(B_1, B_2, \ldots \)
iii. Label the points where the 2nd derivatives are zero as \(C_1, C_2, \ldots \)
iv. List all the intervals on which \(f \) is increasing.
v. List all the intervals on which \(f \) is concave up.

(c) Use the definition of derivative to show that \(\frac{d}{dx} \left(\frac{1}{x} \right) = -\frac{1}{x^2} \).
2(25 pts) (a) How many partitioning subintervals are needed over interval \([0, 2]\) in order to have an approximating Riemann sum within 0.01 of the exact definite integral \(\int_0^2 \frac{1}{\sqrt{8 - x^2}} \, dx \)?

(b) Approximate the integral \(\int_0^2 \frac{1}{\sqrt{8 - x^2}} \, dx \) by the right Riemann sum with the same partition number you found in (a).

(c) Use your answer in part (b) to estimate the average value of \(f(x) = \frac{1}{\sqrt{8 - x^2}} \) in the interval \([0, 2]\).

(d) Does the Trapezoidal Sum over estimate or under estimate the exact definite integral? Explain your answer with a graph.
3(30pts) Find the derivative of each function.

(a) $3e^{5x} + \sin x$

(b) $\frac{2}{x^2} + \sqrt{x^2 + 1}$

(c) $\frac{\sin(x + 100)}{x^3 + x + 1}$

(d) Find the second derivative $f''(x)$ of $f(x) = \cos(e^x)$.

(e) Find the exact value of $f'(\pi)$, if $f(x) = x^2 \sin x$.
4(25pts) (a) Use the left sum to estimate the definite integral $\int_{1}^{2} f(x)dx$ for the function given in the table

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>1.2</th>
<th>1.4</th>
<th>1.6</th>
<th>1.8</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(x)</td>
<td>1.28</td>
<td>1.62</td>
<td>2</td>
<td>2.42</td>
<td>2.88</td>
<td>3.40</td>
</tr>
</tbody>
</table>

(b) The derivative F' of a function is given in the graph. Assume $F(0) = 1$, use the Fundamental Theorem of Calculus to find these values of F:

(i) $F(0.5)$

(ii) $F(1)$

(iii) $F(2.5)$

(iv) $F(4)$

(c) Find the exact value of $\int_{0}^{e} (2x - 1)dx$, using the Fundamental Theorem of Calculus.

3 Bonus Points: True or false?

(a) You cannot integrate a function if it has a discontinuous jump even though it is continuous everywhere else.

(b) You can differentiate a function so long as it is continuous.

The End
1. (a) \(f'(1) = \frac{f(1.1) - f(1)}{0.1} = \frac{2.42 - 2}{0.1} = 4.2 \) (ii) \(f(0.95) = f(1) + f'(1)(0.95 - 1) = 2 + 4.2(-0.05) = 1.79 \) (approx. 1.81)

(b) \[\frac{d}{dx} \left(\frac{1}{x} \right) = \lim_{h \to 0} \frac{1 + x - x}{h} = \lim_{h \to 0} \frac{x - (x + h)}{h} = \lim_{h \to 0} \frac{-h}{h(x + h)} = \lim_{h \to 0} \frac{-1}{x(x + h)}(x) \]

2. (a) \(f(x) = \frac{1}{18 - x^2} \) ∃ \(\int_{0}^{2} f(x) \, dx \), Using sum of n-partition, required

(b) \(n = \frac{1}{f(2) - f(0) \cdot 2} = 29.29, \Rightarrow n = 30 \)

(c) \(\int_{0}^{2} \frac{1}{18 - x^2} \, dx = 0.79 \approx 0.795 \)

(d) \(\frac{1}{2} \int_{0}^{2} \frac{1}{18 - x^2} \, dx = \frac{0.79}{2} = 0.395 \)

3. (a) \((3e^{5x + \sin x})' = 3e^{5x + \sin x} \cdot (5 + \cos x) \)

(b) \(\frac{2}{x^2 + \sqrt{x + 1}}' = (2x^{-2} + (x^{-1})^{1/2})' = -2x^{-3} + \frac{1}{2}(x^{-1})^{3/2} = -\frac{3}{x^3} + \frac{x}{x^{3/2}} \)

(c) \((\sin(x + \cos x))' = \cos(x + \cos x) \cdot \frac{x + 1}{x^2 + x + 1} \)

(d) \(f(x) = (\cos(e^x))' = -\sin(e^x) \cdot e^x, f'' = -[\cos(e^x) \cdot e^2 + \sin(e^x) \cdot e^x] \)

(e) \(f(x) = x^2 \sin x, f'(x) = 2x \sin x + x^2 \cos x, f'(1) = 2 \pi \sin \pi + \pi^2 \cos \pi = -\pi^2 \)

4. (a) \(\int_{1}^{2} f(x) \, dx = (1.28 + 1.62 + 2 + 2.82 + 2.82)(6,2) = 10.04 \)

(b) (i) \(F(0.5) = F(0) + \int_{0}^{0.5} f(x) \, dx = 1 + \frac{1}{2}(-1)(1) = \frac{1}{2} \) (ii) \(F(1) = 1 \)

(iii) \(F(2.5) = 1 + \frac{1}{2}(-1)(1) = \frac{1}{2} \) (iv) \(F(4) = 2.5 + \frac{1}{2} \cdot \frac{1}{2} = \frac{17}{8} \)

(c) \(\int_{0}^{e} x \, dx = \frac{e^2}{2} \int_{0}^{e} e^x - e = e^e - e = e(e-1) \)

Bonus. (a) False (b) False