Name: _____

TA's Name:

page	1	2	3	4	total
score					

Instructions: You must show supporting work as much as possible to receive full and partial credits. No text book, notes, formula sheets allowed.

 $1(18 \mathrm{pts})$ Find the limits analytically. Numerical or graphical work will not be credited.

(a)
$$\lim_{x \to 1} \frac{2x - 2}{x^2 + x - 2}$$

(b)
$$\lim_{x \to +\infty} \frac{2x^{3/2} + x}{x\sqrt{x} + 2}$$

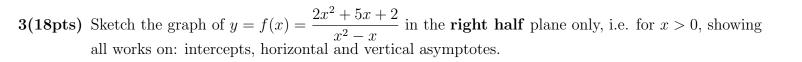
(c) Let
$$f(x) = \begin{cases} 3-x, & x < 2\\ 2, & x = 2. \end{cases}$$
 Find the side limit $\lim_{x \to 2^{-}} f(x)$.

2(14pts) (a)(4pts) A function f is given by the table below.

x	0	0.2	0.4	0.6	0.8	1.0	1.2
f(x)	1.1	0.9	0.8	1	1.3	1.4	1.2

Estimate the derivative f'(0.4).

(b)(10pts) Use definition to find the derivative function f'(x) of $f(x) = \frac{1}{x+1}$. (Any other method receives no credit.)



4(16pts) (a) (8pts) Find all points x at which the curve $y = x^3 - 12x + 1$ has a horizontal tangent line.

(b)(8pts) Use long division to find the oblique asymptote of the curve $y = \frac{2x^2 - 5x - 2}{x - 3}$.

5(8pts) (a) I	f(1) = 9	f'(2) = 4	and $q(x) =$	$(f(x)+1)^2$	find $q'(2)$.

(b) Determine at which point function $y = \frac{x^2 - 8x - 9}{x + 1}$ is not continuous. Determine if the discontinuity is removable or non-removable, and show your work.

- **6(8pts)** If the position of a particle is given as $x(t) = 2\sqrt{t} t + 2$ meters from a reference point with t in second.
 - (a) Find its speed at t = 4 sec.

(b) Find its acceleration at t = 4 sec.

7(18pts) Find the derivatives of the following functions. (No need to simplify.)

(a)
$$f(x) = (x^2 + \sqrt{x})\cos x - 4\sin(x^2)$$

(b)
$$g(x) = \frac{2e^x + x}{e^x + 1}$$

(c)
$$h(x) = 5e^{(2x+\sin x)^2}$$