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Dr. B. Deng’s Math439/839 Lecture Notes on Mathematical biology

Chapter One

Communication Theory Primer

Genetics revolution and communication revolution took off at the same time
last century. When the structure of DNA was discovered by James Watson
and Francis Crick it was recognized immediately that information theory
would play an important role in biology. It is only a recent realization
that Claude Shannon’s theory of communication may play a role in our
understanding of the origins of DNA code and organism reproduction. It
is mathematics that makes this connection possible. The purpose of this
chapter is to introduce some necessary tools for that undertaking.

1.1 PROBABILITY MATTERS

The following simple arithmetic rule is frequently used in this section.

Rule of Product Processes: If a process can be reduced to a sequence of
two processes for which process one has m possible outcomes and process two
has n possible outcomes for every outcome of process one, then the process
has m x n possible outcomes.

The diagram below gives an illustration of the rule.

Outcome 1:

Outcome 2:

Circles represent outcomes of individual processes. The number of edges
represents the total outcomes of the product process.

Example 1.1.1  There are three villages, A, B, C, for which A and B
are connected by 3 roads, B and C' are connected by 2 roads. By the rule

of product processes, there are 3 x 2 = 6 ways to go from A to C via B.
®

The following three examples will be used often later.

Example 1.1.2 Let S be the set of all sequences, s = s12 - - - si, of a fixed
length k, in n repeatable symbols: 1,2,...,n, i.e., s; € {1,2,...,n}. Then
the total number, |S|, of all sequences is n*. The process to construct a
sequence consists of picking the 1st element of the sequence, the 2nd, and so
on, each has n possible outcomes, more accurately in this case, choices. By
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the rule of product processes, there are n® many ways to construct such a

sequence, each producing a unique sequence. Such a sequence is also referred
to as a permutation of length k in n (repeatable) elements.

©

In the proceeding examples, process two is completely independent from
process one, in the sense that not only the number of process two’s outcomes
remains the same but also the outcomes as well. Next example has the same
number but not the same outcomes of process two.

Example 1.1.3 If the symbols in the example above are not allowed to
repeat in the sequences, then |S| = n(n —1)---(n —k+ 1) = n!/(n — k)!
because there are exactly one less choice to pick the next symbol down the
sequences. Such a sequence is a permutation of length &k in the n symbols.

©

Example 1.1.4 Let S be the set of all subsets each having k symbols of
the set {1,2,...,n} with n > k. (Elements of a set are distinct.) Each
permutation of length k gives rise to one set, disregarding the ordering, and
each set can generate exactly k! many permutations. That is, a permutation
can be generated by first selecting the set that has the correct elements
and then by arranging the elements in the desired order. Hence, by the
rule of product processes, |S| x k! = n(n —1)---(n — k + 1), and thus
S| = n(n —1)---(n —k + 1)/k!l. It is the number of ways to group k
elements from a set of n elements. It is denoted by

<n)_n(n—1)"'(”_k+1) ! (1.1)

k Jl RN

It is also referred to as the number of combinations of k elements from
n different elements. We note that they appear as the coefficients of the
binomial expansion.

©

Definition 1.1 An outcome of a process is called a sample. The set of all
samples is called the sample space of the process. Any subset of the sample
space is called an event.

Example 1.1.5 Consider the three village example, Example 1.1.1, from
above. The sample space of the process of going from A to C' via B has
6 ways. If 2 roads between A and B are paved and only 1 paved road
between B and C, then travelling by paved roads from A to C is an event,
by nonpaved-paved is another, which is also a sample because there is one
such a path, and so on. The number of all-paved events is 2 x 1 = 2.

©

Example 1.1.6 A communication transmitter emits symbols from the al-
phabet {1,2,...,n}, and each symbol takes 1 second to emit. The sample
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space of 1-second emission is just the set of the alphabet, S = {1,2,...,n}
and |S| = n. In contrast, the sample space of 3-second emission is S =

{515283 S = 1727 <eey OF TL}, and |S| = n3'
©

Definition 1.2 Let S = {S1,5%,...,5,} be the sample space of a process
and {p1,p2,...,pn} be a set of numbers satisfying conditions: (1)0 < pp <1
for all k, and (2) > ,_,px = 1. Then with the assignment P(Sk) = px,
pi 1s called the probability of sample S, and {p1,pa2,...,pn} is called the
probability distribution of S.

One way to assign probabilities to the outcomes of a process is through re-
peated experimentations. For example, we can approximate the probability
of tossing a coin with its head up as P(head) ~ [# of times head is up]/[# of trials].
If P(head) is getting closer to 0.5 as the number of trials increases, then we
can assign P(head) = P(tail) = 0.5 and make the assumption that the coin
is fair. If the approximation discernibly differs from the equiprobability,
then we can reasonably assume that the coin is loaded.

Another way is by sampling. For example, to assign probabilities to the
English alphabet in mathematical writings, we can first randomly check out
many books from a mathematics department’s library. We then count each
letter’s appearances in all books. The ratio of the number and the total
number of printed letters is an approximation of the probability of the letter.
This approximation is called a 1st order approximation of the probability
of the sample space. We denote it by P'. A 2nd order approximation of
the sample space is the same except that a string of two letters is a sample
and there are 262 = 676 many samples. An nth order approximation is
generalized similarly. In contrast, the Oth order approximation is exact as
defined below.

Definition 1.3 The Oth order approximation of the probability of a fi-

nite sample space S = {S1,S2,...,S,} is the equiprobability distribution,
denoted by P° = {1/n:k=1,2,...,n}.

Yet, a common practice in mathematical modelling is to assign the prob-
ability distribution based on assumptions made to the process. Such a as-
” [ 1

sumption is often characterized by words such as “completely random”, “uni-
formly distributed”, “independent event”, etc.

Definition 1.4 Let E be an event of a sample space S with a probability
distribution P. Then the probability of E, denoted by P(E), is the sum of
the probabilities of each outcome in the event. For E =), it sets P(E) = 0.

Example 1.1.7 Gregor Mendel was the first to demonstrate that heredity
is the result of gene transfer between generations. By cross-pollination of
pea plants of two colors, green (g) and yellow (Y'), he showed that each pea
has two copies of color gene and that the offspring receives one copy from



Gregor Mendel (1822-
1884), a monk-teacher-
researcher, is considered
the founding father of
modern genetics. Based
on many years of careful
breeding experiments on
cross-pollination of pea
plant and sophisticated
quantitative analysis by
statistics, Mendel devel-
oped several fundamen-
tal laws of inheritance.
He did not coin the word
gene but called it factor
instead.
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each parent. By the Rule of Product Processes, there are 2 x 2 = 4 color-
gene combinations (not necessarily distinct) for the offspring. For example,
if Yg and Yg are the parental gene pairs, then the sample space for the
first generation offspring gene pair is {YY,Yg, gg}. Since Y and g are equal
probable to appear in the offspring’s gene make up, the sample frequency
for the first offspring generation can be captured by the table below

x| Y g
Y [ YY Yy
g | 9y g9

with the top row representing the possible contribution from one parent
and the left column representing that from the other parent. That is, the
probability distribution is

p(YY)=1/4, p(Yg) = 1/2, p(gg9) = 1/4.

In this example, the yellow gene is dominant, and the green gene is recessive,
meaning that a pea is yellow if it has at least one copy of Y-gene and green
if both copies are green. Hence, given the Y g combination for parent peas,
the probability of having a green pea is P(green) = p(gg) = 1/4 and a yellow
pea is P(yellow) = p(YY) +p(Yg) = 3/4.

©

Example 1.1.8 Consider the process of rolling a fair dice with the equiprob-
ability P° : pr = 1/6. Then the probability of the event that the outcome
is a number no greater 4 is % + % + % + % = % ~ 0.6667 with the first % for

the outcome being 1, the second being 2, etc.
©)

This example has the following generalization to equiprobability distribu-
tion.

Theorem 1.5 Let S be a finite sample space with equiprobability distribu-
tion. Then for any event F,

Example 1.1.9 Consider the probability of at least two students in a
class of 25 who have the same birthday. First we line them up or assign
a seat to each or just give each a number from 1 to 25. There are 365
choices for each student’s birthday. So the sample space S is the set of all
sequences of length 25 in integers from 1 to 365. And |S| = 365%°. It is
easer to consider the complementary event E¢ that no two students share
the same birthday. So E° must be the set of all permutations of length 25,
and |E¢| = 365- 364 - --341. Consequently, |E| = 365%° — 365 - 364 - - - 341. If
no two students are related, no twins for example, then we can reasonably
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assume that the samples are equiprobable and conclude from Theorem 1.5
that

P(E)—'El—l—ﬁ(l— k) 0.5860
I s 365 R

It is counter-intuitive that the odd is this high. With a group of 50 people,
the odds goes up to a whopping 97%.

©

Exercises 1.1

1. Verify the combinatoric formula

()= (") ()

in two ways. One is to use the formula (1.1). The other is to use the
narrative meaning of the formula.

2. Start with Y'Y and gg color gene pairs for two pea plants. List in a table
all possible pairings for the first offspring generation. List in another
table all possible pairings of the second offspring generation. Find the
probabilities of yellow and green peas of the second offspring generation.
You should find the gg trait skips the first generation and reappears in
the second.

3. There are numerous connections between New Jersey and Manhattan
across the Hudson River, Brooklyn-Queens and Manhattan across the
East River, The Bronx and Manhattan across the Harlem River. Use a
map or search the Web to find the total number of connections between
New Jersey and Brooklyn via Manhattan. What is the probability to go
from New Jersey to Brooklyn via Manhattan by tunnel-bridge combina-
tion?

4. Prove Theorem 1.5.

1.2 COMMUNICATION CHANNEL

Every communication system is a stochastic process which generates se-
quences of samples from a sample space with a probability distribution.
However, information systems rather than general stochastic processes are
our primary consideration.

Definition 1.6 An information source is a sample space of a process,
I = {i1,i2,...,0m} with probability distribution Q. A sequence of samples is
a message. The sample space is called the source alphabet and a sample
1s called a source symbol or signal symbol.
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Figure 1.1 Schematic diagram of a communication system.

A communication system consists of essentially five parts:

1. An information source from which a message or a sequence of mes-
sages are produced to send to a receiver.

2. A transmitter which operates on the message in some way to produce
a signal suitable for transmission over a channel. It has a signal al-
phabet, identified as S = {1,2,...,n}. For each information source,
there is a bijective function f from I to a subset C' of the set S* of all
words (finite sequences of S). The elements of C' are called codewords
and (C, f) is called the encoding scheme of the source I.

3. A channel which is merely a medium used to transmit the signal from
transmitter to receiver.

4. A receiver which ordinarily performs the inverse operation of the en-
coding function f, reconstructing the message from the signal.

5. A destination which may be a person, a computer terminal for which
the message is intended.

Figure.1.1 gives a conceptual representation of a communication system.
Because it can be conceptualized, it can be generalized and applied to ab-
stract formulations. For examples, a channel may be a physical embodiment
such as a phone line, a coaxial cable, an optic fiber, a satellite, a nerve axon,
a bridge, or just the traffic such as electromagnetic waves, beams of light,
cars, etc. It may be just thought as some characteristics of its physical em-
bodiment, such as the amplitudes of electrical pulses, a band of frequencies,
the traffic volumes, etc. More abstractly, it can just be thought as a statisti-
cal process which subject its input to a time-consuming transformation and a
random-state alteration. Immediately relevant to biology, DNA replication,
cell division, sexual reproduction can indeed be thought as communication
channels.

Definition 1.7 The 1st order approximation of the source I,Q in terms
of the signal alphabet S via an encoding scheme (C, f) is called the signal
distribution of the source. Denote it by P = f(Q).
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Example 1.2.1 Morse code was invented by Samuel Morse and Alfred
Vail in 1835. It uses two states (on and off) composed into five symbols:
dit (for dot, -), dah (for dash, —), space between dits and dahs (A), space
between letters (/), space between words (LJ). Let 1 denote the “on” state
and 0 the “off” state. Then the standard encoding scheme is as follows.

Morse Code | Codewords
1
111
0
000
0000000

C~> |

For examples, the letter “S” is coded by three dots and the letter “O” by
three dashes. Thus the Morse code for the International Distress Signal
“S.0.5” is

./\./\./_/\_/\_/./\./\.
and its binary representation is
10101 000 11101110111 000 10101.

Morse code can be thought as a 5-alphabet channel or a binary channel.
The world’s first telegram was sent on May 24, 1844 by inventor Samuel
Morse. The message, ”What hath God wrought,” was transmitted from
Washington to Baltimore. In a crude way, the telegraph was a precursor to
the Internet in that it allowed rapid communication, for the first time, across
great distances. Western Union stopped its telegram service on January 27,

2006.
®

Example 1.2.2 Consider a quaternary source I = {a,b,c,d} with dis-
tribution Q = %, :1,7,%, é} Consider a binary channel with B = {0,1}
(specifically reserved for binary code and S = {1,2,...,n} for all others.)

® Let C' ={00,01,10,11} be the codewords and f(a) = 00, f(b) = 01, f(c) =
10, f(d) = 11 be the encoding function. Then because of the apparent
symmetry, the 1st order signal distribution P must be the equiproba-
bility distribution P°.

® Let C' = {1,10,100,1000}, an example of a comma code and f(a) =
1, f(b) = 10, f(c¢) = 100, f(d) = 1000. To find the signal distribution
P = {po,p1}, we proceed as follows.

Let N be the length of a typical source message which contains %N

many a, %N many b, etc. Then the length of the signal is
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with the numbers in parentheses being the full codeword lengthes. Of
the signal the number of 0 is

1 1 1 1
Lo = |= () 4+ =(2)+ = N
0= |50+ 3(1)+32)+ ()
with the numbers in parentheses being the codeword lengthes in Os only.

Hence pg = Lo/L = 3/5 and p; = 1 — py = 2/5 respectively.

In fact, for any signal distribution P there is an encoding scheme (C, f) so
that the signal distribution P = f(Q) is as close to P as possible. Following
this subject through we will enter the areas of data compression, encryption,
and transmission efficiency. We will pick up the subject of transmission
efficiency later but nothing else.

Since the subject of source-to-signal encoding is not the main concern of
this chapter, we will regard a source simply in terms of its signal (or channel)
alphabet S and its signal distribution P from now on. A word of caution:
the coded source is only part of the signal source with same distribution

P = f(Q).

Exercises 1.2

1. For a source of distribution @ = {1/9,2/9,1/3,2/9,1/9} in Morse code,
find the signal distribution P in the binary code, using the encoding
scheme from the main text.

2. Let I = {1,2,3,4},Q = {2/5,3/10,1/5,1/10} and (C, f) be an encod-
ing scheme with C' = {1,10,100,1000} and f(k) = ¢. Find the signal
distribution P.

1.3 ENTROPY

For an information source, it is intuitive that the less frequent a signal symbol
occurs, the more “information” the symbol carries because of its rarity. This
section is about how to measure information precisely. As it turns out we
need to start with an equivalent way to look at probabilities.

Definition 1.8 For a sample space S = {S1,5a,...,Sn} with probabilities
P = {p1,p2,...,pn}, the reciprocal q, = 1/py, is called the possibilities of
the sample event Sy.

The possibilities of sample Sy literally mean the number of possible alter-
natives each time when Sj, appears. More precisely, S is one of the 1/py
many possibilities and there are precisely 1/py — 1 many non-Sj, possibilities
that may appear.
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Example 1.3.1 Consider a “black box” containing 2 red marbles and 5
blue marbles. The probability to randomly pick a marble from the box that
is red is p, = 2/7. Respectively p, = 5/7. It means equivalently that every
time a red is picked, it is just one out of 1/p, = 3.5 many possibilities, and
there are 3.5 — 1 = 2.5 many blues which might have been picked.

©

For reasons of communication to be elaborated below, we will not use
pr nor gy directly to measure information. Instead, we turn to another
equivalent measurement of the possibilities as follows.
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Definition 1.9 Let S = {1,2,...,n} be a sample space with distribution
P ={p1,p2,...,pn}. The information of sample k is

1
I(k) =1g —
(k) .

in bit for unit, where 1g is the logarithmic function of base 2: lgx = log, x.

Remark.

1. The word “bit” comes from the phrase “binary digit”. In fact, let B =
{0,1} be the binary alphabet with equiprobability distribution p = py =
p1 = 1/2. Then each binary symbol contains g 1/p = 1 bit of information,
as anticipated.

2. The key reason to use bit rather than the number of possibilities to mea-
sure the symbol information is its property of additivity. Let s =
$182 -+ -8y be a binary sequence from a binary source with equiproba-
bility PY. Then the probability of the sequence according to Theorem 1.5
is 2% because it is one sample out of the sample space B := {s182--- sy, :
s = 0 or 1}. By definition, its information is I(s) = 1g1/(1/2™) = n bits.
This is consistent with our expectation that a binary sequence of length
n should contain n bits of information if each contains 1 bit.

3. For a signal alphabet S = {1,2,...,n} with distribution {p;}, in general,
since pl—k = 2l81/pe = 21(F) " [(k) can be interpreted as the “length” of a
binary sequence. Here is another way to interpret the measurement. To
make it simple let us assume lg 1 /py, is an integer. Now, if we exchange (as
in “currency”) each possibility of symbol k for one binary sequence of finite
length, then we will have 1/p; many sequences. Assume each sequence is
a composite metal stick with the Os and 1s representing alternating gold
bars and silver bars respectively and all in one uniform width. (Visualizing
any situation in terms of money helps most of us to find practical solutions
quicker.) We are picky. We want our sticks to satisfy these conditions:
(1) the gold bars and silver bars are equal in number after adding them
up from all the exchanged sticks, (2) all sticks are in equal length, (3) no
sticks of the same length are left behind that cannot be exchanged for one
possibility of k. The only way to meet our criteria is to cut the stick in
length I(k).

4. In other words, just like the dimension of mass is measured in gram for
example, the amount of information for each symbol is measured in bit
unit, which in turns can be thought as the minimum length of binary
sequences with equal symbol probabilities. For example, consider the
quaternary source S = {a,b, ¢, d} with equiprobability distribution p =
1/4. Each symbol has 4 = 1/(1/p) possibilities, the whole alphabet.
Exchanging the 4 possibilities for binary sequences of minimum length in
equiprobability distribution, {00, 01, 10, 11} are the only choices. The
minimum length 2 = lg4 is the symbol’s information.
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5. The mathematical sense of information has little to do with the word’s
literal sense. Junk mails contain lots of information but little meaning.
One person’s information is another person’s junk.

Example 1.3.2 A good 4” x 6” photo print has 800 horizontal pixels
and 1200 vertical pixels (i.e. 200 pixels per inch). Assume that each
pixel is capable to display 256 = 2% colors. Then there are a total of
28x800x1200 — 97,680,000 a1y possible pictures, including those abstract arts
someone will find it interesting. Hence each picture contains I = 7,680, 000
bit information. Let us compare it to a story of 1000 words. Webster’s
Third New International Dictionary has about 263,000 main entries. Assume
all the entries are equally probable. Then a story of 1,000 words contains
lg 263,000%:°°° = 18,005 bit information. In fact, a black-white picture of
the same resolution contains more information. 960,000 bits to be precise.

©

A picture is worth a thousand words. So there will be a lot of them
coming your way. Take another look at Fig.1.1. It has more features than
we discussed it in text. Most pictures of this book are this way.

Example 1.3.3 Consider Example 1.3.1 of red, blue marbles. Each red
marble has I(red) =1g1/p, = 1g7/2 = 1.8074 bits of information and each
blue marble has I(blue) =1g1/p, = 1g7/5 = 0.4854 bits of information. On
average, each marble contains

2.7 5.7
prl(red) + ppI(blue) = ? lg 5 + ? lg 5 = 0.8631 bits.

©

We now introduce the main concept of this section, the averaged informa-
tion of the source.

Definition 1.10 Let S = {1,2,...,n} be a sample space with distribution
P ={p1,p2,...,pn}. Then the entropy of the sample space is defined as the

average information per sample, denoted by H(S) or interchangeably H(P).
That s

H(S) = pel(Sk) =Y pelg(l/pk) = — > pelgpr.
k=1 k=1 k=1

Example 1.3.4 Consider a binary source of distribution p,1 — p for 0 <
p < 1. The entropy function is H(p) = plg(1/p) + (1 — p)lg(1/(1 — p)).
Notices that the graph of H reaches the maximum at the equiprobability
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p = 1/2 where as H(0) = H(1) = 0, for which the signal sequences are
either entirely Os and respectively entirely 1s, containing no information for
lack of variation.

©

In fact, the entropy always reaches its maximum, H,, = lgn, at equiproba-
bility distribution. Note thatlgn = Y";_; L1g(1/L). We have the following.

Theorem 1.11 For any probability distribution distribution P = {p1,p2,...,Dn},
we have

H(P) = pplgl/px < H,.
h=1

The equality holds if and only if pr, = 1/n for all k.

Proof. We give here a somewhat elementary proof. A generalized result and
a different proof by optimization will appear later. The proof is based on
this simple fact from calculus: lgz <z — 1 with equality at x = 1. Because
lgn can be rewritten as Y p lgn, we have the following

1 1
H(P) - H, = loe — —lon) = lo ——
(P) E pk(gpk gn) E pele o

S ED S CEVAE

k=1

Hence, H(P) < H,, follows and the equality holds if and only if 1/(npy) = 1,
the equiprobability condition. O

The equiprobability distribution PP is also referred to as the mean dis-
tribution because

L _pitpat---+pn
n n

for any distribution P of n symbol space.

Exercises 1.3

1. According to the standard of NTSC (National Television Standards Com-
mittee), the resolution of your TV is capable to display images at a res-
olution of 720 pixels wide and 525 scanlines. Assume that each pixel is
capable to display 256 = 28 colors. Find the total information a still
picture can have.

2. Let us assume on average your parents speak to you for 100 words a day.
Let us also assume that your parents use a vocabulary of 5,000 words
at home which must be an overestimate because they seem only use a
few words like “eat your breakfast”, “turn off the TV”. Anyway, there
are a total of 5,000100%365X18 pogsible talks when you reach 18, including
all that are random streams of words. (What is the difference? No one
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is listening anyway. They might just as well mumble randomly only to
increase the bits and to have your attention that way.) Nevertheless, find
the information of such a life long lecture can have. This may give you an
idea why kids like to watch TV and think their parents hopelessly boring.

3. Let @ = {1/4,1/4,1/4,1/4} be the distribution of an information source,
C = {1,10,100, 1000} be an encoding scheme to the binary system. Find
the signal distribution P and entropies H(Q), H(P).

4. Let H(p) = —plgp — (1 — p)lg(1 — p) be the entropy function for the a
binary system. (a) Use 'Hopital’s Rule to show H(0) = H(1) = 0. (b)
Use the First Derivative Test of optimization to show that it has a unique
critical point and it is the absolute maximum in [0, 1].

1.4 OPTIMAL MEAN RATE AND ALL-PURPOSE CHANNEL

An information source can be just one message, but usually is a type of
messages, such as all emails, or all picture files, etc., and each type follows
a particular industry encoding protocol. Thus in terms of its channel en-
coded signals, the source assumes a signal distribution. Certainly there is
no need to pay special attentions to particular sources all the times. In
such a situation, what may be important is the aggregated distribution of
all sources.

Definition 1.12 The aggregated distribution, denoted by P*, of a chan-
nel S = {1,2,...,n} is the Ist order approzimation of all sources signal
distributions.

The question of practical importance when you design a channel as an
engineer or buy an information service as a consumer is primarily about the
transmission rate in bit per second (bps). But the notion of transmission
rate can be ambiguous if it is not defined carefully. The first question should
be about the transmission rate in general for the aggregated distribution
P*. If you are an Internet gamer, what matters more in particular perhaps
is the rate for gaming whose source distribution may not be the aggregated
distribution P*.

Definition 1.13 Let 7, in second be the transmission time over a channel
S ={1,2,...,n} for symbol k, k =1,2,...,n. Then the average transmis-
ston time of a source P = {p1,pa,...,pn} is

T(P) = p1711 + paTo + - - + pp Ty in second per symbol.
And the transmission rate of the source is

rpy= A0 _ Xpelgl/pe oo

- T(P) > PrTk
Here H(P) is the entropy of the source in bit per symbol.




Connection Rate in Kbps
Dial-up 2.4 — 56
DSL 128 — 8-103
Cable 512 — 20-10°
Satellite —6-10%
Optic Fiber | 45-103- 150-103
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A source distribution P is a problem of a particular interest. But the
aggregated distribution P* is the interest of all sources, and that is a subject
of speculation and hypothesizing.

Definition 1.14 A channel S = {1,2,...,n} is called an all-purpose chan-
nel if the aggregated distribution P* is the equiprobability distribution P°, pj, =
1/n. Denoted by T,, = T(P°), H, = H(P"), and R, = R(P°) = H,/T,,
which is called the mean transmission rate or mean rate for short.

Example 1.4.1 Consider the Morse code again from Example 1.2.1. Let
Te denote the transmission time of a dit. Then a dah is conventionally 3
times as long as a dit (7— = 37,). Spacing between dits and dahs is the
length of one dit (7o = 7e). Spacing between letters in a word is the length
of 3 dits (7, = 37,). Spacing between words is 7 dits (1, = 77,). Treating
the Morse code as an all-purpose channel, the average transmission time per

symbol is
Te +T— +TaA + T/ + T °
T; = = / u:%[1+3+1+3+7}:37.

and the mean transmission rate is Hy = 1g5/(37,) = 0.5283 /7.

A few more important points to learn from this section.

First, entropy is maximized when a channel becomes all-purpose, allowing
the most diversity and variability in information through. If you are an
engineer assigned to design an Internet channel, your immediate concern is
not about a particular source, nor an obscure industry’s encoding protocol.
Instead, your priority is to give all sources an equal chance. As a result,
you have to assume the maximal entropy in equiprobability distribution for
the aggregated source and use the mean rate R, as the key performance
parameter. All Internet connections thus can be reasonably assumed to be
of all-purpose.

Secondly, the mean rate is an intrinsic property of a channel with which
different channels can be compared. A channel may use electromagnetic
waves or light pulses as signal carriers. As a consumer you cannot care less.
But assuming money is not an issue, you want an optic fiber connection
because it is the fastest on the market. The key point is that you want to
base your decision on what is the optimal solution to the transmission rate
problem. If a straw could transmit information faster, the Earth would look
like a giant wheat field. Realistically though it probably will be wired like
an optic fiber ball in a not so distant future.

Thirdly, the symbol rate T'(R) is only an indirect measure of a channel.
It plays a secondary role in communication theory. What makes a channel
is its capability to handel the randomness that information sources inherit.
Photons streaming down from the Sun does not make a channel no matter
how fast the Sun can pump them out nor how fast they can travel through
space.
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Example 1.4.2 In one episode of the scifi TV series, Star Trek: The Next
Generation, an alien species, Bynars, hijacked the spaceship The U.S.S. En-
terprise. Like our computers, the Bynars brain and therefore its civilization
are based on the binary system. Here is one reason why the binary system
may be sufficient. Let Let S = {1,2,...,n} be the signal alphabet of an all-
purpose channel and 71, 72, ..., 7, be the corresponding symbol transmission
times. We know from Sec.1.3 that each signal symbol takes lg n many binary
symbols to represent as a sequence. Thus, if we assume that its transmission
time scales accordingly that 7, = tlgn. Then the average time is T;, = tlgn
and the mean rate is R,, = H, /T, = 1/t = Rs, the same as the binary
system. Hence, there is no need for non-binary systems.

©

Had our brain works like the Bynars, the following result would be unnec-
essary.

Theorem 1.15 Let S = {1,2,...,n} be the signal alphabet of an all-purpose
channel and 11,7o,...,7, be the corresponding symbol transmission times.
Assume there is an increment At so that

Tk:T1+AT(k_1)7 fOTk:1,2,...,TL-

Then the mean transmission rate s

R, — 2lgn

2+ (a—1)(n—1)] (1.2)

where o = 1o /71 .

Proof. Use the identity Y ;_, k = n(n+1)/2 and the relation AT = 75 — 7.
Then

T’n, — 7216%1 k = E ;(Tl + AT(I{: - 1))
1 -1 2 —1 —1
=- {717'14-(7'2—7'1)(” )n] =7 + (o ) )
n 2
The formula of H,, follows. O

Optimal Mean Rate. All-purpose channels can be optimized. As shown
in Fig. 1.2(a) (chilmeanratel.m), each signal alphabet size n has its own
parameter range in « over which its mean rate is the maximum. (The
logarithmic plot for 71 R,, is used to give a better view to the separation of
the curves.)

Example 1.4.3 Consider a comma code 1,10,100,...,10---0 as a chan-
N——

n—1
nel. Assume each binary symbol 0,1 takes the same amount of time, 79,
to transmit. Then 7, = k7o for k = 1,2,...,n. Thus, A7 = 79 and

o =T9/71 = 2, giving the fastest mean rate when n = 4.
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Figure 1.2 Numerical illustration (a) for Theorem 1.15, (b) for Theorem 1.16.

©

A similar result relevant to DNA replication from next chapter is as fol-
lows.

Theorem 1.16 Let n be an even integer. Let S = {1,2,...,n} be the signal
alphabet of an all-purpose channel and 71,79, ..., 7, be the corresponding
symbol transmission times with Top—1 = 7o, denoted by Tok—12k. Assume
there is an increment AT so that

Tok—12k =T12 + AT(k = 1), fork=1,2,...,n/2.

Then the mean transmission rate 1is
B 41gn
A+ (a—1)(n—-2)]

R, (1.3)

where o = T3 4/T1 2.

Notice again from the comparison plot Fig.1.2(b) that Ry is the fastest
rate when a = 2.

Example 1.4.4 Consider a binary channel {0, 1} with the symbol trans-
mission times 79 = 1,7 = 2, in second per symbol respectively.

e If a source’s distribution is P = {%, %}, then its transmission rate is
r(p) = HP) _ (1/4)1e(1/(1/4)) + (3/4)1e(3/(3/4))
T(P) (1/4)(1) + (3/4)(2)
¢ By formula (3.1), the mean rate is
21g2

Ry == 28% _ 0.6667 b
2T ps

= 0.4636 bps

sincen=2,1=1,a=2.

35
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® For another source with @ = {0.6180,0.3820}, its transmission rate is

R(O) — H(Q) 0.6181g(1/0.618) + 0.3821g(1/0.382)
(@)= Q) 0.618(1) + 0.382(2)

= 0.6942 bps

©

It shows that a source can go through the channel at a faster or slower rate
than the mean rate. The rate 0.6942 bps is about the fastest this channel is
capable of, the subject of next two sections.

Exercises 1.4

1. Let Q = {1/4,1/4,1/4,1/4} be the distribution of an information source,
C ={1,10,100,1000} be an encoding scheme to the binary system. Find
the mean rates R(Q), R(P) when Q and B = {0, 1} are treated as different
channels.

2. Consider the Morse code of Example 1.4.1. Find the mean rate if the
timings of the symbols are changed to: 7 = 27,, 7T\ = T, 7/ = 27,
Ty = 3Te).

3. Prove Theorem 1.16.

4. Consider a comma code of 4 code words, 1,10,100,1000. Assume each
binary symbol takes the same amount of time to transmit, ¢tg. Find the
transmission rate R(P) of a source whose probability distribution is P =
{2/5,3/10,1/5,1/10}.

1.5 LAGRANGE MULTIPLIER METHOD

A ProToTYPIC EXAMPLE — GET OUT THE HOT SPOT

Consider an experiment consisting of an oval metal plate, a heat source under
the plate, and a bug on the plate. A thought experiment is sufficient so that
no actual animals are harmed. In one setup, Fig.1.3(a), the heat source is
place at the center of the plate, and the bug is placed at a point as shown.
Assume the heat source is too intense for comfort for the bug. Where will it
go? By inspection, you see the solution right away. The coolest spots are the
edge points through plate’s major axis, and the bug should go to whichever
is closer. However, the bug cannot see the “whole” picture. It has its own
way to solve the problem. Translating the bug’s solution into mathematics
gives rise to the Lagrange Multiplier Method. We break its solution into
two steps: the solution to reach plate’s edge, and the solution to go to the
coolest point on the edge.

LEVEL CURVE AND GRADIENT

Place the plate in the coordinate system as shown. Let (x0,y0) be the
bug’s current position as shown. Let T'(x,y) denote the temperature in °F
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(a) (b)

Figure 1.3 Thought experiment set-up.

-0T (Xo’ yo)

A

TXY) =Ty, 7.

Figure 1.4 Dashed arrow is a non-gradient vector.

at any point (x,y) in the plate. So the bug experiences a temperature of
T(xzo,y0) °F. The bug’s immediate concern is to move away from the heat
source as fast as possible. The direction it takes is denoted by —VT'(z0, yo)
and the opposite direction VT (g, yo) is called the gradient of T at the point.

To derive the gradient, let us give function T a specific form for illustration
purposes. For simplicity, we assume that T is distributed concentrically,
i.e., the temperature remains constant in any concentric circle around the
heat source (0,0), and the closer to the source, the higher the constant
temperature. Such curves are called isothermal curves for this situation and
level curves in general. Obviously, the bug will not go into its current
isothermal curve T'(x,y) = T(zg, yo), nor stay on it, walking in circle so to
speak. It must go to another level curve whose isothermal temperature is
immediately lower, T'(z,y) = k with k& < T(xo,y0). If we zoom in on the
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graphs, we see the answer quickly. At close-up, any smooth curve looks like
a line, see Fig.1.4, the tangent line by definition. In fact, all tangent lines
to level curves nearby are packed like parallel lines. Therefore, the shortest
path from the tangent line of the current level curve to the tangent line of
another level curve nearby is through the line perpendicular to these parallel
tangent lines. The perpendicular direction leading to higher values of T is
the gradient VT (zg, yo), and the opposite direction leading to lower values
of T is —VT(CC(), yo)

Next, we derive the direction analytically. Let y = y(x) represent the
level curve T'(x,y) = T(xo, yo) near (zo,yo), i-e., T(xz,y(x)) = T(xo,yo) for
all x near xg and y(z¢) = yo. Then %(mo) is the slope of the tangent line
Y=o+ %(mo)(a@ —x0). The slope is found by the Chain Rule and Implicity
Differentiation. Formally we have,

d d
%T(%y) = %T(xo,yo) =0
dy
dy
T —To(z,y)/Ty(,y)

d
% (w0) = ~Ta(w0, y0) /Ty (w0, o).

where T, (x,y) = 0T (x,y)/0x is the partial derivative of T with respect
to variable =, and similarly for T,(z,y). Since the gradient direction is
perpendicular to the tangent of the level curve, its slope, m, is the negative
reciprocal of the tangent slope,

1 Ty(xo, %)
dy/dx  Tu(xo,y0)’

for which T, (xo,y0) can be thought to be a run of the gradient line and
Ty(x0, o) its rise. Finally, we have

m =

Definition 1.17 Let F(z,y) be a differentiable function, the gradient of F
at (x,y) is the vector

VF(;v,y) — (Fm(xvy)va(‘T?y))

Important Properties of Gradient

1. Function value increases the fastest in the gradient direction.
2. Function value decreases the fastest in the opposite gradient direction.
3. The gradient is perpendicular to its level curve.
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CONSTRAINED OPTIMAL SOLUTIONS

Driven by instinct, the bug runs in the negative gradient direction to es-
cape the heat. This strategy will only lead it to the edge of the plate, see
Fig.1.3(a). Its next move is constrained by the boundary curve of the plate.
In one direction, heat increases to its highest on the y-axis. In the other,
heat decreases to the lowest on the x-axis. The critical clue for the bug as
to which direction to move next when reaching the boundary is the fact that
the isothermal curve is transversal to the boundary curve. At the minimum
temperature point, both the isothermal curve and the boundary curve are
tangent, and moving in either direction does not lower the heat further.

For the situation of Fig.1.3(a), we see the exact solution right away. We
are even able to derive the solution graphically in general such as Fig.1.3(b).
That is, when the first isothermal curve, radiating outwards from the source,
touches the boundary it gives rise to the constrained maximum temperature
point, and when the last curve to leave the boundary it gives rise to the
constrained minimum temperature point. The question we address below is
how to translate this picture into analytical terms.

To this end, let us derive the analytical method for the trivial case first.

To be specific, let % + y; = 1 be the boundary curve of the plate so that
(3,0) is the constrained coolest point that the bug comes to rest. We further

introduce a notation g(z,y) = %2 + y;. Thus the boundary can be thought
as the level curve of the function ¢: g(x,y) = 1, and the plate the region:
g(x,y) < 1. Therefore the condition for both level curves, T'(z,y) = T(3,0)
and g(z,y) = 1, to be tangent at (3,0) is to have the same gradient slope:

Ty(3a O) o gy(?’v O)

Tm(?),O) gm(?’vo)'

An equivalent condition is
T:(3,0) = Ag»(3,0), T,(3,0) = Agy(3,0),

where ) is a scaler parameter. In fact, if ¢,(3,0) # 0, A = 7,(3,0)/9.(3,0)
as one can readily check. Hence, the constrained optimal point (3,0) is a
solution to the equations

To(z,y) = Aga(@,y),  Ty(z,y) = Agy(z,9), g(z,y) =1 (1.4)
This problem has three unknowns z, y, A and three equations. For the trivial
case, it should have 4 solutions: 2 constrained maximums and 2 constrained
minimums. The Lagrange Multiplier Method is to solve these equations for
the extrema of function T'(z,y) subject to the constraint g(z,y) = 1.

Example 1.5.1 The heat source is located to a new point (0,1). Let

T(x,y) = % be the temperature. (It is easy to check that the

isothermal curves are concentric circles around the source (0,1).) The con-
strained extrema (z,y) satisfy equations (1.4), which in this particular case
are

2000z

S TN P VP

2
=gz (2,y) = A5%
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2000(y — 1) 2
A ey e ARG i
22 y?
= — _— = 1
Divide the first equation by the second to eliminate A,
r 4z
y—1 9y

This equation has 2 types of solutions: (1) z = 0, then y = £2. (2)
x # 0, then 1/(y — 1) = 4/(9y). Solving it gives y = —4/5 and = =
+3,/1 — y2/4 = +3/21/5. Last, run a comparison contest among the candi-
date points, we find that (0, 2) is the constrained maximum with 7" = 500°F,
(+3v/21/5,—4/5) are the constrained minimums with 7' = 80.5°F. Point
(0, —2) is a constrained local maximum with 7" = 100°F".

©

(GENERALIZATION — LAGRANGE MULTIPLIER METHOD

In general, let x = (z1,22,...,2,) denote an n-vector variable, f(x) be a
real-valued function. Then the n-vector

Vf(X) = (le(x)7f12(x)a .- '7frn(x))

is the gradient of f at x. In the gradient direction f increases most rapidly
and opposite the gradient f decreases most rapidly. In addition, the gradient
vector V f(xg) is perpendicular to the hypersurface (level surface) f(x) =
f(x0).

A constrained optimization problem is to find either the maximum value
or the minimum value of a function f(x) with x constrained to a level hyper-
surface g(x) = k for some function g and constant k. The following theorem
forms the basis of the Lagrange Multiplier Method.

Theorem 1.18 Suppose that both f and g have continuous first partial
derivatives. If either

® the mazimum value of f(x) subject to the constraint g(x) = 0 occurs at

xo; or
® the minimum value of f(x) subject to the constraint g(x) = 0 occurs at

Lo,
then V f(xzy) = AVg(xy) for some constant .

To find the candidate points x( for the constrained extrema, the method
calls to solve the system of equations

V£ (x) = AVg(x)
{ o= (15)

There are n + 1 variables (x,\) and n 4 1 equations since the vector equa-
tion for the gradients has n scalar equations. We expect to have non-unique
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solutions since they are candidates for both constrained maximum and con-
strained minimum.

Example 1.5.2 We now give an alternative proof to Theorem 1.11. It is
to solve the constrained optimization problem

Maximize: H(p) = —(p1lgp1 +p2lgpz + -+ pnlgpn)
Subject to: g(p) =p1+p2+---pn = 1.
By Lagrange Multiplier Method,
VH(p)=AVg(p)

g9(p)=1
In component, H,, = —(lgpy + 1) = Agp, = A\. Hence, p, = 27271 for all k.
Since 2721 is a constant for any \, the distribution must be the equiprob-
ability distribution pr = 1/n. Since there are distributions, for example
p=(1,0,...,0), at which H = 0, and since the equiprobability distribution
is the only constrained solution, it must be the constraint maximum because
its value is positive H = 1gn > 0.

©

Exercises 1.5 (Give numerical approximations if exact solutions are not
feasible.)

1. Consider the prototypic example from the main text. Suppose the heat

source is relocated to a new point (1,1) and T'(x,y) = 14—(:5——11)020-2(1;——1)5 is

the temperature function. Assume the same boundary g(x,y) = %2 + y; =
1 for the metal plate. Find both the hottest and coolest spots on the plate.

2. Find the minimum distance between the point (3,3) and the ellipse 22 /4+
y?/9=1.

3. The Lagrange Multiplier Method can be generalized to multiple con-
straints. For example, to find optimal values of a function f(x) subject
to two constraints g(x) = 0, h(x) = 0, we solve the following equations

Vf(x) = AVg(x) + pVh(x)
g9(x)=0
h(x)=0
for candidate extrema. Here \ and p are multipliers. Let an ellipse be
the intersection of the plane x +v -+ z = 4 and the paraboloid z = x2 + 2.
Find the point on the ellipse that is closest to the origin.

4. The Least Square Method: Let (1, 1), (x2,¥y2),- ., (Tn,yn) be a col-
lection of data points. Assume z is the independent variable and y is the
dependent variable, and we wish to fit the data to a function y = f(z)
from a class of functions. Each possible fitting function has a deviation
from each data point, di, = yr — f(x). Function f is a least square
fitting function if

n n

Zdi = Z[yk — f(2)]* = a minimum

k=1 =

1
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in the class. Here > d7 can be thought as the square of a distance between
the data points and the candidate function, and hence the name for the
method. For example, if we wish to fit the data to a function of the
linear class y = f(x) = b+ ma with b the y-intercept, m the slope to be
determined, we want to minimize the following function of b, m:
n n
F(b,m) = [y — f@r))* =Y _lys — (b+may))*.
k=1 k=1

Use the Lagrange Multiplier Method to show that the least square fit
satisfies

o TR Y T TR TYe MY ThYK DTk DYk
nywp— (Cwe)? ndap— ()
(Hint: Use the trivial constraint g(b,m) = 0.)

5. Let (1,1.5),(2,2.8),(3,4.5) be three data points. Use the formula above
to find the least square fit line y = b + mux.

1.6 OPTIMAL SOURCE RATE — CHANNEL CAPACITY

For a channel S, the mean rate R,, is a measure for all sources on average.
But a particular source P can go through the channel at a slower or faster
rate R(P) than the mean rate. Once an optimal channel is chosen with re-
spect to R,,, individual source can take advantage of the channel to transmit
at a rate as fast as possible.

Definition 1.19 The fastest source transmission rate over all possible sources
is called the channel capacity of the channel. Denote it by K = maxp R(P).

The channel capacity indeed exists and it is unique.

Theorem 1.20 The source transmission rate R(P) has a unique mazximum
K constrained to > pr, = 1. For the optimal source distribution, pk/ *is a

constant for all k, and K = —1gp1/m1 = —1gpr/m. In particular, p, =
Tk/Tl Z Tk/Tl _
k=1P =

Proof. We use the Lagrange Multiplier Method to maximize R(P) = H(P)/T(P)
subject to the constraint g(P) = Y7, pr = 1. This is to solve the joint
equations:

{ VR(P)= \Vg(P)
g(P)=1.

The first n component equations are

H,T—-HT,,

RPk T2

=Agp, =N, k=1,2,.
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Write out the partial derivatives for H = — > pilgpr and T =Y pp7 and
simplify, we have

—(gpy + )T — Hr, = A\T?, k=1,2,...,n.

Subtract the first equation (k = 1) from each of the remaining n—1 equations
to eliminate the multiplier A and to get a set of n — 1 new equations:

—(lgpr —lgp1)T — H(7 —71) =0
which solves to lg b = (H/T)(m1 — 7) = R(m1 — 7) and hence pp =
27(11=78)p, . Denote by
p=2% =2H/T equivalently H = T'lg (1.6)
we have
P = p " Tk py, for all k. (1.7)

Next we express the entropy H in terms of p and py, 7y:

H=-Y pelgpe = —Y_pel(r — ) g p+1gpi]
=1 st

=—[nlgp—> prmlgp+lgp]
k=1

=—[nlgp+lgpm]+Tlgp,
where we have used Y7 pr =1 and T = >} _, pp7. Since H = T'lgp
from (1.6), cancelling H from both sides of the equation above gives
lgpr +mlgp=0 = ,u:pl_l/ﬁ. (1.8)
From (1.7) it follows

pe=p" " pr = p;’“/ﬁ for all k.

Last solve the constraint equation
n
Fpr) = g(p) =Y pi/™ =1
k=1

for p;. Since f(p1) is strictly increasing in p; and f(0) =0 < 1 and f(1) =
n > 1, there is a unique solution p; € (0,1) so that f(p;) = 1 by the
Intermediate Value Theorem. From (1.6) and (1.8) we derive the channel
capacity

K=R=lgp=—lgpi/n = —lgpi/m
This completes the proof. O

Notice that if there is no time difference, i.e., 7, = 71 for all k, then
pr = p1, the equiprobability distribution and the capacity is the mean rate
K=H,.

Channels Cannot Be Optimized By Channel Capacity. A proof of
the following result is left as an exercise.
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Corollary 1.21 For a channel S = {1,2,...,n}, the channel capacity K
increases in the size of the alphabet n.

This means that optimal channel does not exist if the design criterion is
the channel capacity. A channel cannot be designed to chase the absolute
maximum rate for one individual source at the expense of all others, see
Exercise 4. Every economy produces one mega-rich individual like Bill Gates,
but each revolves around all ordinary individuals like you and me.

Example 1.6.1 Consider the Morse code from Example 1.4.1 for which
T /Te = 3,77/Te = 1,7//Te = 3,71/Te = 7,. The probability, ps, of the dit
for the channel capacity satisfies

Do+ D2+ pe+pS +pl = 1.

Solving it numerically (chimorsecapacity.m), we have p, = 0.4231 and
the channel capacity is K = 1.2410/7,. Recall that its mean rate is Rs =
0.5283 /7.

©

Example 1.6.2 Consider again the comma code channel of Example 1.4.3.
For n = 2, the capacity probability p; for symbol 1 satisfies

p1+pi =1

The solution

Vb —1

p1 =@ := 5 = 0.6180
is the Golden Ratio. In fact, since 1 — p; = p1g = p3,
p1_ L—m
1 b1

a standard way to define the Golden Ratio: the ratio of the long segment to
the whole is the ratio of the short segment to the long one. See a graphical
illustration below.

0 1
1 1 |

P P2

The channel capacity is K = —lgp;/7 = 0.6943 /7. A similarly calcula-
tion as Example 1.4.4 shows Ry = 0.6667/71 < K as expected. Alternatively,
the source rate function R(p) = —(plgp+ (1—p)lg(1—p))/(p+2(1 —p))/to

with tg = 1 is shown in the margin. It reaches the maximum at p = ®.
©

Exercises 1.6



LectureNotes05 June 19, 2008

26 CHAPTER 1

1. Consider the Morse code of Example 1.4.1. Find the channel capacity
if the timings of the symbols are changed to the following: 7_ = 27,,
TA = Te, T/ = 2Te, T = 3Te.

2. (Hint: Show p; decreases in n.)

3. Consider a comma code of 4 signal symbols, 1,10, 100, 1000. Assume each
binary bit takes an equal amount of time to transmit, ty. Numerically
approximate the channel capacity of the comma code.

4. Consider a comma code of infinitely many signal symbols, 1,10, 100, .. ..
Assume each binary bit takes equal amount of time to transmit, 5. Show
that the channel capacity is K = 1/t and the mean rate is Ro, = 0.
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Chapter Two

DNA Replication and Sexual Reproduction

All life forms are coded in 4 DNA bases. Why is it not in 2 or 6 bases?
Without exception, sexual reproduction takes 2 sexes. Why does not it take
3 or more? Since these are the ways Nature is, science alone is inadequate to
tackle these questions. There can be endless possibilities in the numbers of
replication bases and sexes that no amount of observation and experimenta-
tion can check out them all. Here is where mathematics may play a bigger
role. We will approach these questions by mathematical modelling. The im-
mediate results therefore lie between science and mathematics. The ultimate
goal of course is to gain new knowledge entirely through scientific methodol-
ogy, a task of future exploration, hence outside the scope of this book. The
theory presented is tentative. But the method used is a well-tested, and
useful tool for scientific exploration.

2.1 MATHEMATICAL MODELLING

It is unlikely that we will be able to reduce scientific discovery into an al-
gorithm. However there are some common aspects of this unique process.
Figure 2.1 gives a flow chart illustration about these commonalities.
Acquisition of new knowledge starts with observations and experiments
which may answer some old questions or lead to new questions. Sometime a
question may require further clarifications by keeping out secondary factors
of the problem, leading to an approximate question. For example, rather
than asking how tides form we should ask how Moon’s gravity influences
a body of water the size of Earth’s ocean. At any point of this process,
a conceptual model may appear to give an explanation to an observation
or experiment, or an answer to the questions. In such a case, the process
of discovery does not go down to the next level to form a mathematical
model. That is, the arrows leading to the Conceptual Model box from atop
also reciprocate. It can lead to new knowledge in the forms of scientific
principles, rules, laws. James Watson and Francis Crick’s discovery of the
DNA structure follows this path in two ways. First, mathematics plays
little role. Secondly, only after their discovery of DNA’s copying mechanism
did they realize they have also answered the question of how genetic traits
are passed between generations in addition to the structural question they
always had in mind from the beginning. Good models tend to give answers
before the questions are asked. The reciprocal arrows and the arrow from the
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Figure 2.1 Schematic diagram of mathematical modelling.

Conceptual Model box to the New Knowledge box are not shown because the
diagram is intended as a clean illustration of knowledge acquisition through
mathematics.

Asking the right questions and formulating useful conceptual models are
all important. For example, it was an ill-posted question to ask why does the
Sun revolve around Earth, or a wrong model to think that Earth is the center
of the universe. Whatever mathematics, however beautiful, is useless. The
process eventually cycled back to a brand new start. Such episodes do serve
useful purposes beside history. It is part of the process and often necessitates
the eventual arrival of correct models. Having a simple and correct concep-
tual model that embody all the essentials of a theory is extremely important
to new discoveries. Fundamental breakthroughs often require unconventional
thinking which usually cannot be put in the framework of existing models,
and therefore creating an original model of its own. Watson-Crick’s double
helix DNA model is one example. Here is another. At his teens, Einstein



LectureNotes05 June 19, 2008

DNA REPLICATION AND SEXUAL REPRODUCTION 29

often pondered the question that would he be able to catch a photon if he
could travel as fast as the light?. Out from his conceptual model that light
travels at the same speed to an observer inside a speeding train and to an
observer in a train station Einstein developed his theory of special relativity.
The equations used to capture his conceptual picture is the mathematical
model of the problem. His model became a physics law after it was verified
experimentally.

Unwilling to go to the next level to find a conceptual model often delays
a new discovery, and brings out disappointment to its would-be discover-
ers. Rosalind Franklin had the DNA structure right in her X-ray diffraction
(crystallography) image of DNA. She did not embrace Watson and Crick’s
approach of model-building, considered unconventional then. The rest was
history because three persons held two different views on modelling. In the
scheme of things it is paradoxically small and huge.

Let us now discuss in more details the passages (arrows) connecting the
boxes of the diagram.

1. Prioritize factors and consider only those immediately fundamental to
the question to obtain an approximation question.

2. Formulate a conceptual model for the observation/experiment, the ques-
tion, or the approximate question. Using existing models, such as fol-
lowing bodies, oscillating springs, cooling bodies, etc., may be consid-
ered routine, but doing it right is challenging nevertheless. Discovering
new ones can be the most original part of the process, and thus the
least describable. For this stage, you may find one of Einstein’s quotes
enlightening, “Imagination is more important than ....”

3. Identify the variables, both independent and dependent, and known pa-
rameters of the conceptual model, especially the dependent or otherwise
referred to as the unknown variables that are directly tied to the ques-
tions. Make necessary hypotheses on those aspects of the model that
are either unknown to existing laws or only approximates of such. In-
corporate them all to formulate a set of mathematical equations which
is considered as a representation of the conceptual model—the mathe-
matical model.

4. Solve the equations, in whichever ways possible: analytical, graphical,
numerical, to obtain solutions as provisional answers to the questions.

5. Interpret the solutions, make predictions for experiments. Unintended
questions and answers often appear in the process. Model conceptual-
ization sows the seed, solution interpretation reaps the fruit.

6. Check if the solutions are consistent with known properties of the prob-
lem (“Does it make sense?”), and check if the predictions as well as the
hypotheses are backed up by experiments.

7. If the model is validated, then new knowledge in the forms of theories,
scientific principles, operating rules, or physical laws, are obtained.
Theoretical foundation is also set for practical applications. In addition,
another cycle of knowledge acquisition starts anew.



Henrich Hertz (1857—
1894), a German physi-
cist, is credited to lay
the foundation to all
modern wireless commu-
nications and validate
James Clerk Maxwell’s
electromagnetic  theory
which in turn led to Ein-
stein’s special relativity.
The unit measurement
for radio wave frequency
was changed in 1960 to
“hertz” (Hz, 1 cycle per
second) in his honor.
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8. However, any mismatch between what is predicted and what is known
triggers another iterate of the process. Modification to the model
maybe required at any level. The original observation or experiment
may not be set up as intended. Or the question may be ill-posted,
or the conceptual model is utterly wrong. In such cases, we have to
start it over from scratch, avoiding the old mistake in the doing. In
another scenario, the question is correct, but the approximate question
is incomplete. Therefore the new iterate may require the incorporation
of some secondary factors that was kept out originally. In another,
it requires the reformulation of some hypotheses made in the stage of
model making, or recalibration of some parameter values. The possibil-
ities can be endless, not including the trivial kinds such as debugging
“dump algebraic mistakes” made during the solution process which we
don’t count into the iterative process of modelling.

The practice of mathematical modelling is both a science and an art. A
friend of mine attributes the following quote to Henrich Hertz. It summa-
rizes the art part of mathematical modelling well. It says, “Mathematical
modelling is to construct pictures so that the consequences of the pictures
are the pictures of the consequences.” It is extremely helpful to be able to
visualize in every aspects of the process. It is the most important to be able
to translate the visualizations in mathematics. Without mathematics there
would be no Einstein’s special relativity theory however elegant his concep-
tual model is. It won’t hurt to keep in mind this rule of thumb: “when all
are equal, the simplest explanation may well be the answer.” One possible
reason is that in the physical world things tend to stay in some minimized en-
ergy states which often are associated with simplicity and robustness. After
discovering the double helical structure of DNA, James Watson and Fran-
cis Crick made the prediction that DNA replication is semi-conservative,
that is, each strand serves as a template for one daughter double helix. They
took the simplest possibility of probable replications. When it was experi-
mentally verified, the whole cycle of knowledge acquisition they started was
nothing short of spectacular.

Because Nature tends to be a minimalist, we tend to perceive science and
mathematics truths beautiful. When James Watson and Francis Crick finally
put together their DNA model, they thought it had to be right because it was
so elegant. Physicists marvel at Einstein’s relativity theories the same way.
Aristotle’s Earth-centric model was beautiful before its eventual withering
because it was a bad model and its beauty was only artificial and transient.
Real beauty can only be found in true science and useful mathematics, which
often are governed by optimization principles.
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DNA Replication. Deoxyribonucleic
acid (DNA) molecule has the structure of a
helical ladder with nucleotide bases form-
ing the ladder rungs. The nucleotides are
paired: adenine (A) with thymine (7"), gua-
nine (G) with cytosine (C), called compli-
mentary bases. During replication, the
double helix is separated into two single
strands each is the base-complementary im-
age of the other. Each single strand is then
used as a template to complete its base-
complementary daughter strand. Comple-
mentary bases are replicated in opposite di-
rections of the separated strands one at a
time. This process is called by Watson and
Crick the semi-conservative replication
and the base pairing is called the Watson-
Crick base paring principle.

Hydrogen Bond. Although each nu-

hydrogen bond g X .
- H\ % cleotide as a whole is charge neutral,
8 NTH O E the electrons tend to be unevenly dis-
>~ N=C Cc—N .
3 / \ /N tributed. As a result some oxygen
?/’C\\ N—H N\\ //C_" and nitrogen atoms of one base bear
_Cx P W H_N\( —C\H partial negative charges to draw elec-
) H ) trons toward them, and some hydro-
Guanine Cytosine gen atoms of a complementary base
= bear a partial positive charge to be
% drown toward the oxygen and nitrogen
g Vil % s atoms, forming the hydrogen bonds.
] /N =C\ L_N\ The heat energy needed to separate the
E w .
—nN—C SNHEEN e hydrogen-oxygen bond is about half of
PN c/ \ C/
C— —
Sy \/N—H O/ EII; tk.le amount to separate the hydrogen-
I nitrogen bond (3 kcal/mol wv.s. 6
Adenine Thymine kcal/mol) .

2.2 DNA REPLICATION

The question of this section is why all life forms are coded in four bases
but not 2 or six bases? We will construct a mathematical model for this
problem, using the steps outlined in the previous section as a guide.

H
. . Living
Step 1. Approximate Question. organism +
Prioritizing important factors to a problem usually takes the form of making Orga?f:‘nﬂ +
reasonable assumption. In this case, we assume DNA replication is the most  Photon from
fundamental function to life. The city morgue has as much DNA information gfbitu:z 0

as when all its corps were alive. The difference between living and dead is motion
whether or not their DNA is replicated.

0
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Step 2. Conceptual Model.

We treat the DNA replication as signal transmission. Specifically, the genome
of an organism is thought as a message sequence coded in the nucleotides
bases, adenine (A), thymine (7'), guanine (G), and cytosine (C'), and the
instantaneous event at which a base is replicated along the 2 single strands
of the separated double helix is considered as the moment when the signal
symbol, which is thought to represent the base, is transmitted.

Step 3. Mathematical Model.

Since the question is about the number of bases, we must assume the pos-
sibility that DNA replication may be done in bases other than 4. More
precisely, a set of assumptions essential for replication as a communication
channel is put forth. They are an extension of known mechanisms of DNA
replication to base numbers other than 4. See the company text and diagram
for an illustration.

HYPOTHESES
1. DNA replication is an all-purpose channel.
2. There is an even number n of nucleotides bases with n > 2.
3. Replication is done one base a time on two separated strands of the
mother helix.
4. The bases can be paired as bag_1, bag, according to the number of their
hydrogen bonds, k + 1. They are complementary bases.
5. Replication occurs when a base bonds to its complementary base by
their hydrogen bonds.
6. The paring times of complementary bases are equal, i.e., Top_1 = Tok.
7. The pairwise paring times progress like the natural number with the
A-T pairing time as the progression unit, i.e., Top_1,2¢ = k7,2 for
k=1,2,...,n/2.
©

Remarks on Hypotheses. For Hypothesis 1, we almost get it for free. In
fact, upon the completion of replication, the number of bases are doubled,
half of which is from the mother helix and the other half is newly acquired.
Of the newly acquired, base A and base T have the same number, and so
do base C' and base G by Watson-Crick’s base pairing principle. So the
only unknown is whether or not the A-T pair and C-G pair are equally
probably. Of course we do not expect them to be so for a particular organism
just as we do not expect all our Internet traffics are equally distributed.
The assumption is about the aggregated distribution of all genomes. This
hypothesis simply assume that the DNA replication machinery is for all
possible base combinations—the maximal genomic diversity. Hypotheses
2-6 are straightforward extension of the known 4-base process.

Hypothesis 7 deserves an undivided attention. Intuitively, it seems rea-
sonable in light of Hypothesis 4. The more bonds there to pair the longer
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time it takes to do so. An indirect empirical finding strongly suggests this
assumption. In fact, we know that RNA transcription slows down in G-C
rich regions.! More precisely, the hypothesis is based on the hydrogen bond
structure of the bases. It is a biochemistry fact that the DNA backbone
bonds are covalent bounds. Measured in terms of bonding energy, covalent
bounds are about 20 times greater than hydrogen bonds. We also know that
for DNA bases, the bonding energy of the hydrogen-nitrogen, H---N, bond
is twice the amount of the hydrogen-oxygen, H---O, bond. One important
consequence of having low bonding energy is that the lower the energy the
longer the pairing time. Hence, the H---O bond takes the longest time to
pair. Its bonding time is taken as the “Oth” order approximation of the base
pairing time. The A-T pair has one H---O bond, so its base pairing time,
T1,2, is one H- - -O pairing time. Hence, the G-C pairing time is twice as long
for having two pairs of H---O bond. The assumption assume this pattern
to persist: the 3rd base pair has three H---O bonds and so on.

&

For this all-purpose model of DNA replication, the conditions of Theorem
1.16 are satisfied. Therefore, the mean rate solution to the model is given
by

R, — 41gn ,
T[4+ (a—1)(n—2)]
with o = 73 4/71,2. We know from the theorem that having four bases gives
the best mean replication rate for a = 2.

Step 4. Interpretation.

The model only gives a provisional solution to the 4-base replication problem.
It may advance our understanding on evolution in the following ways.

If the model is right, it will imply that life on Earth is where it should
be in time. This is because information entropy measures how diverse the
genomes in the pool of life is, and the mean transmission rate measures how
much of the maximal diversity can go through the time bottleneck set up
by the channel. Equivalently, the reciprocal of the mean rate, 1/R,,, mea-
sures the time needed to replicate one bit of the maximal diversity. At the
minimum replication time needed, each bit of the maximal diversity moves
through time the fastest, leading to the greatest mutation rate and conse-
quently the fastest adaptation rate. It also leads to the greatest consumption
(metabolism) rate, thus out competing and wiping out all non-quaternary
systems.

If the model is right, it will explain why DNA evolved away from a base-2
system if indeed life started with a protogenic form of base-2 replication in
the G, C bases. From Fig.1.2(b), Ry for the base pair A-T is Ry =1g2/74 1.
Thus, Ry(G,C) = 1g2/7q ¢ for the base pair G-C' is half as much since

1Uptain, S.M., C.M. Kane, and M.J. Chamberlin, Basic mechanisms of transcript
elongation and its regulation, Annu. Rev. Biochem. 66(1997), pp.117-172.
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Ta,c = 27a,1. However, Ry = 1.35/74 1 = 2.7R2(G, C). Hence, the mean
evolutionary year of the G-C' system in terms of the quaternary system’s
year is
R2 (G7 C)
4

x 3.5 billion years = 1.2963 billion years,

assuming life started some 3.5 billion years ago. That is, the evolutionary
clock would be set back by 2.2037 billion years in a G-C' coded world.

Beside the standard four bases of nucleotides, there are others such as
uracil (U) for RNA and inosine (I) occasionally found in DNA. If the model
is right, it will suggest the existence of these bases to be the result of Na-
ture’s relentless, memoryless, and so far unsuccessful attempts to better the
quaternary system.

Step 5. Modification.

The model presented above is susceptible to modifications due to its consid-
erable number of hypotheses. The most susceptible of all is Hypothesis 1.
An alternative is to consider the aggregated genome distribution P*. How-
ever, it is impossible to know P* exactly. It will be a long time before we
can sequence all known species genomes. Genomes of some long ago extinct
species may have lost forever. One exercise problem gets around this prob-
lem by suggesting that without the dynamical process of replication DNA
prefers a static state correlated to the hydrogen bounding energies of the
bases. Other modifications are also left to the Exercises.

Extension of this model to RNA transcription is also left to the Exercises.

Exercises 2.2

1. Compare the mean rates between the quaternary system and the binary
system in A-T" bases. Find the number of years that evolution would
be set back by the A-T system assuming life started 3.5 billion years
ago. Do the same for the base-6 system of the model.

2. Instead of the equiprobability hypothesis, assume (1) the aggregated
distribution P* is proportional to its hydrogen bonding energy, i.e.,
Dok—1,2k/D20—1,2¢ = Ei/Ee, where pap_1,2r denotes the probability of
the kth base pair, and Fj denotes the pairs total hydrogen bond energy;
(2) the base pair k has one H---N bond and k H---O bonds; and (3)
FEy..n = 2FEy...0. Write a numerical program to find the mean rate
R(P*) for the same base paring condition, Hypothesis 7. Show that
R4(P*) is still the optimal solution of mean rate.

3. Consider the same conditions of the previous exercise but assume the
pairing times progress with increment A7. Write a numerical program
to show that the interval in o = 734/71 2 for which the mean rate
R(P*) is maximal is approximately [1.825, 3].

4. For the previous 2 exercises, further assume the following:
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® The base pairing time 791,25 is the sum of the bonding times of
the base’s hydrogen bonds.

® The bonding time of a hydrogen bond H ---X is inversely pro-
portional to its bonding energy Ep..x and the proportionality
is the same for different hydrogen bonds, i.e., Ty..x/7y..y =
EH...y/EH..,X.

Show that the corresponding ratio 73.4/71,2 is 1.667. Numerically show
also that Ry (P*) is still the optimal solution. (More generally, the cor-
responding optimal interval in & = 73 4/7 2 is approximately [1.65,2.7].)
Is it the optimal solution as an all-purpose channel? (It will fall short
by 9.5%.)

5. Like DNA replication, RNA transcription can also be considered as a
communication channel. Do a research on RNA transcription. Identify
a phase of RNA transcription as a communication channel. Construct
an all-purpose channel model. Write a one-paragraph commentary on
the speculation that the DNA code originated from RNA replication.

2.3 REPLICATION CAPACITY

Nature may prefer the quaternary system because it can produce the best
evolutionary result for all species and on average, allowing the most species
diversity to pass through the time. The focus of this section is instead on
the individual genomic type which can naturally replicate at the channel
capacity, referred to as the replication capacity. Such a species makes
out the most that the replication mechanism offers, rushing through time
the most genomic information ahead of all others.

It is a straightforward application of Theorem 1.20 to find the replication
capacity, K, of the DNA replication model.

Recall that 7, = 7, 7, = ™, T, = T3, T, = T4; T1 = T2, T3 = T4;
and 7, . = a7, , with a = 2 for the model considered in the main text of
Sec.2.2 and 1.65 < a < 3 in Exercises 2.2. Then, the capacity generating
distribution p, = p,.,p, = p, satisfy:

1

Pe =095, 2(p. +05) =1, K=1gp—-
A

Fig.2.2(a) (ch2capacityrate.m) shows the graphs of pairwise probabilities
Pasrs Pore- Fig.2.2(b) (ch2ratecomparison.m) shows the normalized ca-
pacity 7, K as well as the normalized mean rate 7, ;. f24, all as functions
of the parameter o = 7 /7, , from [1.5,3]. Notice that the slower C,G
bases pair with each other at the moment of replication (larger o value), the
smaller the replication capacity becomes, and the less frequent the C-G pair
should be to achieve the capacity rate.

Organisms that shrive near volcanic vents on deep-ocean floor maybe rich
in C, G bases probably because of their thermal stability. The genome of
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Figure 2.2 (a) Comparison of the capacity-generating base dis-
tribution and the Human genome distribution. (b)
Comparison of the normalized replication capacity
and the diversity rate.

E. coli has a near equiprobability base distribution. The Human genome is
rich in A-T bases as shown below (with the 1% discrepancy duely duplicated
from the source).

Human genome base frequency!

Base pairs Percent
A+T 54
G+ C 38

undetermined 9

1Venter, J.C., et al., The sequence of the human
genome, Science, 291(2001), pp.1304-1351.

Shaped by their particular constraints, each replicates at a genomic rate not
necessarily at the mean. However some may replicate as much information as
possible either by chance or by evolutionary pressure. Human’s asymmetrical
base distribution is curiously near the capacity distribution as shown in
Fig.2.2(a). The apparent heterogeneities are qualitatively the same. In fact,
the p, . +,Po . graphs for the Human genome are produced by allocating
the undetermined percentage in proportion to the determined percentages.
That is,

0.54
—054+0.09% — 2% 05923
Payr O G038 ’
0.38
—0384+0.09x —2°  — 04172,
Peta OO 038

Given the fact that the C-G pair is structurally more stable, the A-T portion
of the undetermined is probably disproportionately larger, making the base
frequency even closer to the capacity-generating distribution.
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To summarize, both the mean rate and the capacity rate are about DNA
replication. The former is about the best average for all and the latter the
absolute best of one. According to the model, Nature’s quaternary repli-
cation system is the optimal solution to the first problem and the Human
genome is near the optimal solution to the second.

Exercises 2.2

1. Consider the binary C-G system. Find the replication capacity and its
corresponding base probability distribution.

2. Find the exact replication capacity distribution for the DNA replication
model when o =7, /7, , = 2.

3. If we use the DNA replication as a communication channel for which
information is coded by the base pairs A-T and G-C' rather than the
4 bases, and assume that the transmission times satisfy 7 . /7, , =
2, then what is the channel capacity distribution? Find the channel
capacity as well as the mean transmission rate.

4. Consider the replication system of even bases 2n. Assume the repli-
cation times satisfy 7op_1 = T = k712 for K = 1,2,...,n. Find the
replication capacity probability p; ». Show that lim, ..o p1,2 = 1/3.

2.4 SEXUAL REPRODUCTION

DNA replication is a stochastic process by which genomes mutate over time.
Mutation is recognized as a driving force of evolution. However, there is an-
other equally important but taken-for-granted factor—the time scale align-
ment between DNA replication and environmental changes, climate change
for one as a principle component. The former must operate at a fast time
scale and the latter at a slow time scale. Otherwise evolution would be
like pushing a marble through a syringe needle. Since these dynamical pro-
cesses are otherwise uncoordinated, DNA replication must generate more
mutations than evolution actually needs. Thus over time an organism will
accumulate too many unusable mutations to keep its DNA replication run-
ning indefinitely. Therefore, reproduction is the logical and, obviously, the
practical solution to this necessary problem of evolution—leave a working
copy behind to continue the DNA replication process.

Step 1. Question.

Asexual reproduction works perfectly well in Nature. Why sexual reproduc-
tion, and why sexual reproduction by 2 rather than 3 or more sexes? We
will again use mathematical modelling to quantify these questions.
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characterizes living. But living big B
requires cell division. There are homologous : II
two types of cell division: meiosis chromosomes replication S
for reproductive cells and mitosis AN L T
for non-reproductive cells, referred : II  : 5 II II ": :. II -
to as somatic cells. Reproductive
cells produce sperms in male ani- o B : o
mals or spores in male plants, and
ova in female animals and 777 in fe- Reproductive Cell Division [
male plants. They are respectively replication : I - I - I - I :
referred to as male gamete and & BB P E
female gamete. Mitosis produces N el e
genetically identical daughter cells. [ . O _over.‘v Z S male gamete
Meiosis produces genetically vary- II P II II " I ' female
ing gametes. Both are schemati- Bk ST et gamete

cally shown here.

Chromosomes are numbered according to their length except for the sex-determining
chromosomes, which are called the X, Y chromosomes. Parental chromosomes of the
same number are called homologous. For mitosis, the diagram only highlights three
critical phases: congregation of homologous chromosomes, replication, and cell di-
vision after chromosome recombination. Meiosis differs from mitosis in two critical
ways. First, after replication, homologous chromosomes cross over and exchange parts
of themselves. If homologous chromosomes were lottery tickets, sex-determining chro-
mosomes would be the printing machine, an equipment that is best kept in the same
condition ticket after ticket. Secondly, meiosis division produces 4 male gametes and
one female gamete respectively from one male and one female reproductive cell, and
each gamete contains only half as many chromosomes as the original reproductive cell.
In human, each cell contains 23 pairs of chromosomes, or a total of 46 chromosomes.
Each sperm and ovum on the other hand contains 23 chromosomes of all chromosome
numbers plus either an X or a Y chromosome. The number of gamete’s chromosomes
is called the haploid number and that of cell’s chromosomes is called the diploid
number. The union of male and female gametes forms a cell called zygote, which
then has the full set of chromosomes of a cell. Critical to our mathematical modelling
is the fact that each gamete is a genetically distinct mizture of both parents DNAs.

Genes are segments of DNA that code proteins, the building blocks of cell. A gene
can have different working versions, called alleles. In terms of genes, it is the parental
alleles that are exchanged during meiosis.

Step 2. Conceptual Model.

Asexually reproductive species give their offspring one working copy of genome.
Sexually reproductive species give their offspring a combination of two copies.
The obvious advantage of sexual reproduction is to enhance its practitioners
genetic diversities. Like DNA replication, we can think sexual reproduction
as a communication system in a grander scale, as depicted below.

1 1 —- MW —-—-1

parental gametes zygote offspring gamete
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In this picture, each fertilizing gamete is considered as one packet transmis-
sion, and each packet contains a total information 1g2 x L, where 1g 2 is the
entropy per exchanged segment of homologous chromosomes and L is the
total number of exchanged segments along gamete chromosomes. The gain
is the information of chromosome exchange. However, unlike the narrow def-
inition of a communication channel, the cost to this information gain is not
only in time but also in energy throughout the whole process of courtship
— conception — reproductive maturity, as illustrated in the diagram. In
other words, it is more accurate to think sexual reproduction as a stochastic
process of which the product is a fertilizing gamete and the cost is in time
or/and energy.

Step 3. Mathematical Model.

As a communication channel on one hand, reproduction is characterized by
the mean transmission rate. On the other hand, it is more accurate to think
it as a stochastic process with cost not just in time alone. Thus, it is more
general and accurate to characterize the process by a payoff-to-cost ratio.
The payoff is the information gain from parental chromosome exchange in
offspring’s gametes and the cost is in time or/and energy. Similar to the mean
rate of communication channels, we like to think the 2-sexes reproduction
as a constrained optimal solution to the entropy-to-cost ratio. The set of
constraints is given by the following hypotheses.

HYPOTHESES

1. There are n sexes and reproduction requires the recombination of ga-
mete chromosomes from all sexes.

2. Each gamete autosome (non-sex-determining chromosome) is a mixture
of its contributing sex’s parental homologous chromosomes by the cross-
over process.

3. The mixing probability at any exchanging site along any gamete chro-
mosome is the same for all parental sexes, i.e., the equiprobability 1/n
from each parent.

4. The sex ratio of any pair of sexes is 1:1.

5. The time and energy required to produce a fertilizing gamete is propor-
tional to the average number of randomly grouping n individuals that
has exactly one sex each, called a reproductive grouping below.

©

Remarks on Hypotheses. Hypothesis 1 is necessary to fix the unknown
variable. Hypotheses 1 to 4 are true for n = 2 as discussed in the company
text. More specifically, for Hypothesis 3, an exchanging segment can be a
sequence of many bases or genes. The model applies to whatever length a
segment may actually be. The equiprobability part of Hypothesis 3 follows
from the following facts. First, when a pair of mixed homologous chro-
mosomes split, at any mixing segment one copy is from one sex and the
other copy is from the opposite sex. Thus, there is always an equal num-
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ber of exchanged copies from all sexes at any site and in any population of
gametes. Secondly, the exchange of parental alleles is believed to be inde-
pendent from segment to segment so that each gamete contains a unique
mix of its contributing sex’s parental DNAs. Further factoring the fact that
it usually takes an overwhelming number of gametes for each fertilization,
we can indeed assume the mixing to be completely thorough and thus the
equiprobability. As a consequence, the information entropy of the chromo-
some mixing is maximal, denoted by H, = lgn in bits per segment and
referred to as the reproductive entropy or reproductive diversity. It
is the same for all gamete autosomes. As expected, the more parental sexes
there are, the greater the reproductive diversity per exchanging site is. As a
result of this hypothesis, the model does not discriminate against any sex’s
genetic contribution to reproduction.

Hypothesis 4 can be considered as the Oth order approximation to the
sex ratio. In fact, for n = 2 it is a genetic consequence to the fact that
the sex-determining chromosomes, X and Y, are equally distributed in male
gametes. It is not hard to concoct hypothetical schemes to maintain the
equiratio for n > 3 cases, which is left as an Exercise. Alternatives to the
equal sex ratio will not be pursued because of its molecular origin from the
more fundamental process of meiosis.

At this moment we can regard the assumed mating process by Hypothe-
sis 5 as a simple chance encounter, i.e., a “double-blind” model (“blindfold
blind date”). Further justification will be given after its mathematical rep-
resentation is derived below.

©

We are ready to translate the narrative model into mathematics. We al-
ready have H,, = lgn, the per-site reproductive entropy. Let FE,, be the
dimensionless cost (without the proportionality from Hypothesis 5) in time
or/and energy over the whole reproduction cycle from parental to offspring
fertilizing gametes. The ratio, S, = H,/E,, is called the reproductive
entropy-to-cost ratio over the number n of possible sexes. The optimiza-
tion objective is to maximize S,, over n.

Derivation of Cost. Without loss of generality from Hypothesis 4, assume
each sex has a same number, M, of individuals. Then there are (",ﬁw ) =
n_,((,%l'n—), many ways to choose a group of n individuals from the total nM
many individuals of all sexes. Of which only M™ many are reproductive
groupings by Hypothesis 1. Hence, the reproductive probability is p, ,, =
M™/("M) and

= lim = lim M lim M
P e P = e MY T e nM(nM — 1) - (nM —n + 1)
) (n—1)! (n—1)!
= lim — =
M=co (n—3p)(n—g7) - (n—27) a7

for an infinite population.
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Figure 2.3 (a) Infinite population. (b) Finite popula-
tion with equal sex population M = 10™.

Let P(k) be the probability that the kth try is the first reproductive
grouping. Then P(k) = (1-p, ,,)* 'p, ,,, valid for both finite and infinite
M, and the average number of tries to have a reproductive grouping is
E, = Y20 kP(k) = p,  >op k(1 —p, ,,)F"'. Using the identity that
Skt = ﬁ (see Exercises), we have

En — pn,h{ — 1 ,

(1 - (1 - pn,M))2 Pom
which is the possibility of each conception.
The reproductive entropy-to-cost ratio is
H, lgn

S, = — = .
E, 1/pn,M

Step 4. Interpretation.

Fig.2.3(a) shows the graph of S,, when M ~ oo. Clearly, Sy is the optimal
solution. That S; = 0 is expected since asexual reproduction has zero repro-
ductive entropy. Fig.2.3(b) shows some graphs of S,, as a function of finite
equal sex population M = 10™. The limiting ratios are good approxima-
tions beyond a modest size M = 100. Surprisingly, the 2-sexes reproductive
strategy remains optimal even when the population size is small, M = 10.
The dimensionless cost function E,, = 1/p, ,, is the possibility of each
successful fertilization. For n = 2, Fy ~ 2. That is, for each reproduc-
tive interaction between two opposite sexes, there is one non-reproductive
interaction between like sexes. Like-sex interactions can be in the forms of
competition for mating or cooperation for offspring rearing. Similar inter-
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pretation applies to n > 2 cases. Thus, F,, is a reasonable functional form
for reproductive cost at the population level.

The prediction that S5 is the optimal solution is expected from any rea-
sonable model. Some immediate implications are nevertheless surprising.
For species having the same average number, L, of chromosome exchange
sites, the unit reproductive entropy-to-cost ratio S,, can be used as an in-
trinsic measure for comparison. Since Ss/S3 ~ 1.43, a 3-sexes reproductive
strategy will reduce the part of biological diversity that is due to sexual
reproduction by 43% at every evolutionary stage, given the same amount
evolutionary time and energy. Equivalently, since the reciprocal 1/S,, mea-
sures the minimal time or/and energy required for each bit of reproductive
diversity, a 3-sexes strategy will set back the evolutionary clock that is due
to sexual reproduction by

S
3.5 — S—3 x 3.5 = 1.0525 billion years,
2

assuming life started some 3.5 billion years ago. All these are good reasons
why a 3-sexes reproductive machinery is unknown to be invented by Nature.

There are two ways to compare and contrast the asexual and 2-sexes re-
productive strategies since Hypotheses 1-5 can be thought either to apply
trivially to the asexual case or not at all. In the first case, take for an exam-
ple multiparous mammals which could have their litters effortlessly cloned
from one fertilized egg but did not. For them, each gamete’s reproductive
entropy-to-cost remains at Sy = 0.5 in bits per exchange segment per cost
v.s. S1 = 0 for the would-be cloned embryos. Since 1/S5,, measures the
minimal time or/and energy required at the organismic level for each bit of
sexual reproductive diversity, that 1/5; = oo implies that such species, all
mammals included, would never appeared if they adopted the asexual repro-
ductive strategy. In this regard, our model is consistent with these known
sexual reproductive realities.

In the second case, S,, cannot be used to quantify differences between
the asexual and 2-sexes reproductive strategies because there is no parental
diversity to begin with for the former. Therefore, they must be treated as two
distinct categories second only to the supreme purpose of DNA replication.
Nevertheless, our model offers another insight into the asexual reproductive
strategy. Its continued usage can be explained by the principle reason that
sexual reproduction is not a necessary but only a sufficient way to increase
genetic diversities. Less complex organisms, such as bacteria, may be able to
generate enough genetic diversities by DNA replication alone to compensate
for their lack of reproductive diversity. In this regard, asexual reproductive
realities do not contradict our model.

Step 4. Modification.

The cost function derived from Hypothesis 5 may be considered as a Oth
approximation of sexual reproductive process. It is a reasonable functional
form at the population level for species interactions as pointed out before.



LectureNotes05 June 19, 2008

DNA REPLICATION AND SEXUAL REPRODUCTION 43

However, it may need higher order corrections. For examples, at the cellular
level, somatic maintenance is a necessary reproductive cost expenditure,
and at the organismic level, growth before sexual maturity is another. The
question is will such modifications alter the conclusion easily?

To answer this question, observe from Fig.2.3 that the optimal solution
So is quite robust against the next best solution S3. In fact, the difference
between Sy and S3 is about 30% and 43% of Se and S5 respectively: |Sy —
S3|/S2 = 0.3, |[S2 — S5|/S3 = 0.4285. This implies that the S optimal
solution can indeed tolerate high order corrections of considerable magnitude
and persist.

Exercises 2.4

1. Explain why Theorem 1. 20 does not apply to sexual reproduction.

2. Verlfy the formula Y ;- | ka*~! = = {i=7)2- using the formula St =

T+ for |z| < 1, and one of the following two ways: (a) by multiplication
of infinite series; or (b) by differentiation of infinite series, that if f(z) =
S agz® then f'(x) =3 kapah1L.

3. Construct an (artificial) equal sex ratio scheme for a 3-sexes reproduc-
tive scenario.

2.5 DARWINISM AND MATHEMATICS

Biology is the branch of natural science in which mathematics plays the least
role. Darwin’s theory of evolution is even more removed from mathematics.
However, the mathematical models presented in this chapter for the origins
of DNA replication and sexual replication suggested otherwise. A careful
examination reals a far more closer parallel between these two fields than
conventionally thought, as illustrated in the table below.

Evolution | Mathematics
Darwinism Survival of the Fittest | Constrained Optimization
Common Descent Hierarchical Reduction
Punctuated Equilibrium State Modelling
Modern Genetics | Stochastic Process

First, Darwin’s theory of survival-of-the-fitness mirrors the central dogma
of constrained optimization in mathematics: maximizing payoff, minimizing
cost with constraints. This point is intuitively and conceptually trivial—
every species, extinct or present, can be considered as a constrained optimal
solution. Imagine if we could travel back in time and observe evolution at
every stage, we would be able to write down all fitness objective functions
and all constraint conditions for every species so that the optimizing solution
to the functions over the constraints is a mathematical representation of the



LectureNotes05 June 19, 2008

44 CHAPTER 2

Darwinism. According to Darwin, evolution is driven by natural selection and
sexual selection. Both are processes by which species change over time, as a result
of the propagation of heritable traits that affect the capability of individual organ-
isms to survive and reproduce. Sexual selection depends on the success of certain
individuals over others of the same sex, in relation to the propagation of the species;
while natural selection depends on the success of both sexes, in relation to the general
ecological conditions. Paradoxically, however, sexual selection does not always seem
to promote survival fitness of an individual. Some contemporary biologists prefer to
make a distinction between the two by referring to the former as “ecological selection”
and referring the combination of both as “natural selection” which we will adopt. It
is commonly characterized by the phrase “survival of the fittest”. Darwin’s overall
theory of evolution also includes: common descent, gradualism, and pangen-
esis. Darwin’s natural selection principles give rise to a mechanism by which new
species emerge, leading to his theory of universal common descent. The last universal
common ancestor is believed to have appeared about 3.5 billion years ago. Modern
genetics indeed supports his common descent theory. The theory of gradualism can
be summarized by a direct quote of Darwin’s, “the periods during which species have
undergone modification, though long as measured in years, have probably been short
in comparison with the periods during which they retain the same form.” This leads
to the contemporary concept of “punctuated equilibrium”, which we will use for grad-
ualism. Pangenesis was Charles Darwin’s hypothetical mechanism for heredity, which
is considered flawed. It was replaced by Gregor Mendel’s laws of heredity. Bringing
together Darwin’s theory of natural selection and Mendel’s theory of genetics give
rise to the modern evolutionary synthesis, often referred to as neo-Darwinism.
Today we think evolution to be driven by random mutation of DN A bases and natural
selection.

The following quote from various online sources summarizes the philosophical im-
pact of Darwinism on Western thinking: “Darwin’s evolutionary thinking rests on
a rejection of essentialism, which assumes the existence of some perfect, essential
form for any particular class of existent, and treats differences between individuals as
imperfections or deviations away from the perfect essential form. Darwin embraced
instead what is called population thinking, which denies the existence of any essential
form and holds that a class is the conceptualization of the numerous unique indi-
viduals. Individuals, in short, are real in an objective sense, while the class is an
abstraction, an artifact of epistemology. This emphasis on the importance of individ-
ual differences is necessary if one believes that the mechanism of evolution, natural
selection, operates on individual differences.”

species at the corresponding stage of evolution. The non-triviality however
is of practicality, resulting in far too many missing links between biology and
mathematics in the past, perhaps forever for most species. Simply stated,
for any process shaped by evolution, how it works should tell us why it does
so by reasons of optimization.

Secondly, Darwin’s common descent theory implies that evolutionary prob-
lems can be prioritized and compartmentalized so that a reductionistic mod-
elling approach can be effective. This point is based on the following argu-
ments. If we believe that new and higher order organisms evolved from
simpler ones, then we must held his evolutionary principles to be applica-
ble to life’s all levels: molecular, genetic, cellular, organismic, and pheno-
typic. Although it is extremely difficult to model evolution by constrained
optimization as a whole—mnot only the number of fitness functions and con-
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straints of a given species is no doubtably enormous but also they always
change with time, the same practical challenge at the genetic and molecular
level may not be as acute. All species share a surprisingly few fundamental
commonalities: 4-base replication, 3-codonization for amino acids, 20 amino
acid groups, 2-sex reproduction scheme, etc. Making the matter seemly eas-
ier is the observation that these fundamental commonalities seem to form
an inverted hierarchy with the 4-base replication problem at the root, thus
opening themselves to a reductionistic treatment.

Thirdly, Darwin’s theory of gradualism together with its implied theory of
punctuated equilibrium give the reductionistic approach a theoretical ground
to construct “punctuated equilibrium” or state models one level a time, each
decouples from its upper level “equilibria”. The 4-base DNA replication
model is an equilibrium model oblivious to evolutionary features build atop
long after its origination. The 2-sexes model is another, disentangled from
other reproductive features appeared long thereafter, but building on top
of the replication model as one of its optimization constraint. Without
punctuated equilibriumization, constrained optimization models would be
extremely complex, having to link many if not all levels at once.

Lastly, modern genetics imposes stochastic formulation on most if not
all state models of constrained optimization. Without the stochasticity we
will have to model evolution’s every creation as a deterministic trajectory, a
mathematical nightmare. Without optimization, we will have to appeal to
God’s intervention to impose arbitrary orders, the end of reasoning.

To summarize the Darwinism and mathematics parallel, the constrained
optimization approach deconstructs evolution level by level, down to its
molecular root, only to build it up in stochastic state models level upon
level from the bottom. ®

Further implications of this stochastic constrained optimization to evolu-
tion (SCOTE) are as follows.

To reconcile with the paradoxical observation that sexual selection does
not always optimize, the explanation lies in the fact that constrained optimal
solutions are not necessarily absolute—an optimal solution at one level may
not be so at a higher level, or when its underlining constraints are no more.
Consider the problem of equal sex ratio. As a Oth order approximation it is
very accurate even among those mammals, such as African elephant and lion,
for which a disproportionate number of males never reproduce. It suggests
that sexual evolution does not optimize. From the view of SCOTE, such a
reproductive inefficiency is only a secondary effect to the more fundamental
priority of maximizing the reproductive entropy-to-cost ratio and to the
equiratio’s origin as a fundamental consequence to the meiosis evolution.
Recall that the entropy-to-cost ratio can be the mean reproductive rate if
the cost is in time. Thus, it must be a secondary consideration if indeed
the mean reproductive rate is the priority but not the entropy-to-energy.
Further strengthening the argument is the possibility that the reproductive
diversity may be sufficiently fulfilled from the contribution of a few mating
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males because hundreds of million of distinct male gametes from one male
take part in one conception and adding more males to the gene pool does
not raise the already saturated pool level from the few. In short, changing
it from an effect to the cause to override the constraints (Hypotheses 2,
3, Sec.2.4) will violate the hierarchical order of evolution. By the same
reason, the group’s reproductive priority cannot supersede its individual’s
DNA replication priority. This may explain why those male species fight
but not fight to death for the reproductive privilege. Nature has won a
jackpot in 2-sexes procreation. It allows some species to waste some of the
fortune to engineer social structures in which the strong is defined by a mass
of the week.

To further expand on the point of hierarchical and punctuated equilibrium
modelling, consider the problem of disproportionality in male and female
gamete size. A conceptual optimization model, probably not from the com-
munication theory, would view Nature’s way of having small male gamete
and large female gamete as an optimal strategy to maximize the hit prob-
ability between the two. That is, sexual reproduction essentially employs
a “dumb bomb” strategy for long range haul and a “smart bomb” strategy
for near range hit, using small male gametes in hundreds of millions to hit
one stationary and large female gamete. Whatever constraints maybe the
goal of such a model is to guarantee a sure hit at a minimum cost, and
everything else should be compartmentalized at higher hierarchical levels.
The Pentagon may come up such a model faster than any mathematics or
biology department.

The stochastic formulation of both replication and reproduction models
paints the following picture of Darwin’s theory of evolution. First, since par-
ents cannot choose the genetic composition of their offspring (Hypothesis 3,
Sec.2.4) and offspring cannot choose its parents (Hypothesis 5, Sec.2.4), the
notion of individual ownership of DNA cannot be well-defined. Thus each or-
ganism is only an accidental and temporary carrier of the protogenic DNAs
at the origin or origins of life. This point is not new since it comes from
the stochastic nature of Mendel’s inheritance theory. Secondly however, the
maximal diversity entropies in bits per DNA base or per exchange segment
of chromosome reside in each organism in a suspended probabilistic state all
the time, and it is by the dynamical processes in replication and reproduction
that the maximal entropies are expressed through time, expanded at length,
and multiplied in space, giving rise to an information entropy explanation of
the common descent theory, the evolutionary equivalence of the Big Bang.
Thirdly, because the 4-base replication and 2-sex reproduction are optimal
strategies, evolution is where it should be in time and diversity, supplement-
ing Darwin’s mechanisms of natural selection at a more fundamental level.
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Chapter Three

Spike Information Theory

Neurons are fundamental units of animal brains. Human consciousness and
intelligence are physical states of our brain. Someday when we fully under-
stand both we will have understood neurons in all nitty-gritty details. Of
which we will have had answers to these simple questions: Does a neuron
have an optimal information mean rate? Does it have a preferred information
distribution to realize its channel capacity?

3.1 SPIKE CODES

Billions of neurons light up right at this moment you read these words. One
popular conceptual model in the area of Artificial Intelligence treats the firing
mechanism of a neuron as a binary devise having two modes: “on” (1) and
“off” (0). That is, if you can hook up this binary model to an oscilloscope,
you will only get one type of output in either voltage or current, both looked
the same as below:

Proposition 3.1 Let B = {0,1} be the binary alphabet for a channel. As-
sume the symbol transmission times are equal, 7o = 7 = 6y. Then the mean
rate Ry and the channel capacity K are equal

Ry =K =1/6,

and the capacity distribution is the equiprobability distribution.

A proof is based on Theorems 1.15 and 1.20. It is left as an exercise.

Presumably the brain of the alien species Bynars from the scifi TV series,
Star Trek: The Next Generation, is build this way. It is too crude a model
for our brain.

As a first modification of the binary artificial neuron, a neuron is thought
as a black box having one input and one output. If you hook it up to a
voltmeter or ampmeter, the signals look like the following:
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Spike Code: 1 4 2 2 3
Comma Code: 10111101101 101110

Input Signal: u u u L

That is, the signals are characterized by a comma code: 10, 110, 1110,
11110, .... Let 61 be the process time for the “on” symbol 1 and 6, be the
process time for the “off” symbol 0. Then the code symbol process times are

T = kf1 + 6y for all k.

Since each code symbol can be identified by its number of 1s, i.e., 1 for 10,
2 for 110, etc., we have the following definition.

Definition 3.1 A spike code of size n consists of the channel alphabet
Sn ={1,2,...,n} together with its corresponding transmission times of the
form

T = kb1 4+ 00 for allk=1,2,...,n,

where 6y, 01 are nonnegative parameters. 01 is called the spike interval and
0o is called the intersymbol interval. S, is called the spike alphabet and
{mn} is called the sequence of spike times.

We can think such a phenomenological neuron either as an encoder or a
decoder. As an encoder, the input signal can be thought as a representation
of some information sources internal or external, and the output signal as a
discretization of the source. As a decoder, the input signal can be thought
from a channel and the output signal as a decoded representation of the
source. For this dichotomy, we call it a spike coder.

Proposition 3.2 For a spike code of size n with symbol transmission times
Tx = kb1 4+ 09 for allk=1,2,...,n,
the mean transmission rate R,, is
2lgn
TR+ (a-Dn-1)
where o = (201 + 60) /(01 +00) =1+ 1/(1+00/61).

R, (3.1)

A proof is obtained by Theorem 1.15 using A7 = 6.

By definition, an ideal spike code is one so that the intersymbol interval
is zero 6y = 0. A coder can be considered near ideal if 0 is sufficiently small
relative to the spike interval 6y, i.e., 0 < 0y/67 < 1 (meaning sufficiently
near zero of the quotient). In such a case, a ~ 2 for which Ry is the optimal
rate, see Fig. 1.2(a). That Rs is an optimal mean rate is considered in the
Exercises.
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By definition, a block spike code is one so that the first spike symbol
has a fixed number, ng, of spikes which is used as a base, and the second
spike symbol has 2nq spikes, the third spike symbol has 3ng spikes, and so
on. In this way, we can substitute nof; for ; in the analysis above, and the
block spike coder for large ng is close to being ideal: 0 < 6y/(nof1) < 1.
The same result of the Proposition applies.

Here are some examples that a quaternary spike code or block spike code
may play a role.

® Most spoken languages have 4 to 5 vowels to carry the conversation.

® Studies show that human brains can handle up to 4 tasks simultaneously
without a significant comprise in efficiency and accuracy.

® The common tabulating method using one line increment up to a group
5 as illustrate below:

Ezample: m ‘ ’ = the number 7.

In this example, if the tabulation is going on indefinitely, then the distri-
bution of number 1, 2, 3, 4, 5 is in fact the equiprobability distribution.
® Children in India learn counting by a base 4 system.

©

Exercises 3.1

1. Prove Proposition 3.1.

2. Prove Proposition 3.2.

3. Consider a block spike code of a base number ng. Assume 6; = 6y. Find
the smallest ny such that the mean rate Ry is optimal.

4. What is the size of the alphabet if a spike coder has the optimal mean
rate when 6; = 0?7

5. Consider a polar-spike coder whose output not only can produce up
spikes but also down spikes as shown.

Input Signal: — U
bo

Output Signal:
01

Let the corresponding polar-spike code take an up or down designation.
For example, 2,, 34 would be the up 2-spike and the down 3-spike signal
output as shown. The up and down spike symbols of the same spike
number are naturally paired in their processing times: Top_1 = Top =
k61 + 0y for the pair of k spikes, with #; being the unit spike interval and
0o the intersymbol interval.
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(a) For n even, find R,.

(b) For the ideal case when 6y = 0, show that Ry is the optimal rate.

(¢) Comparing with the mean rate from Proposition 3.1, which sys-
tem is better, the conventional binary system or the ideal polar-
spike system?

(d) Show that in terms of the mean rate, the polar-spike system is
always better than the conventional binary system if 6y < 61/2.

3.2 GOLDEN RATIO DISTRIBUTION

Neural information that has the fastest information transmission rate through
a spike coder is given by the following result.

Proposition 3.3 For a spike code of size n with symbol transmission times
Tx = kb1 4+ 09 for allk=1,2,...,n,

the channel capacity is K = —lgpi/m1 = —lgpk /7 with the source distri-

bution satisfying

e = pgk‘f‘ﬁ)/(l'i‘ﬁ) and Zpgk'f‘ﬁ)/(l'i‘ﬁ) =1

k=1
where T, /71 = (k+ 8)/(1 + 3) and 5= 6y/61.

A proof follows from Theorem 1.20 with A7 = #;. For a binary spike code
n = 2, the capacity distribution is listed below

p 4 pEHA/A+0) _

with p for the probability of the 1-spike symbol and 1 — p for the 2-spike
symbol, where as above 5 = 6y/60;.

For the ideal spike code with 6y = 0, the capacity distribution is the
Golden Ratio Distribution

5-1
— v 5— =0.6180, 1—p = p? = 0.3820.

p

In this book, we use & = @ to denote the Golden Ratio. In the literature
however you will likely find that the notation @ is reserved for ﬁ%'i = 1.6180.
Example 3.2.1 Golden Sequence. Here is an example of a sequence
message from a Golden Ratio distribution. The sequence is generated by
the following algorithm. Star with the number 1. Replace 1 by 10. From
the segment 10 onwards, replace each 1 by 10 and each 0 by 1 to generate
the next sequence. The first 6 sequences are

1

10
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101

10110
10110101
1011010110110

and so on. Note that the numbers of 1s in the sequences are 1, 1, 2, 3,
5, 8, ..., and the numbers of 0s starting at the second sequence repeat
those of the 1s: 1, 1, 2, 3, 5, .... Let N, 1 be the number of 1s of the n-
sequence and N, o be the number of Os of the nth sequence. It is left as an
exercise to show that N,, o = N,,_11, and {N,, 1} is the Fibonacci sequence,
Np1 =F, = F,_1 + F,—2,F1 = F5, = 1. In addition, the probability, p, of
symbol 1 satisfies

. an
p= lim -

— = .
n—oo n,0+Nn,l

This means that if we use the 1-spike symbol to encode 1 and the 2-spike
symbol to encode 0, then the encoded Golden Sequence will reach the ca-

pacity information rate when it goes through the ideal binary spike coder.
®

Example 3.2.2 Penrose Tiling. The equilateral triangle, the square,
the pentagon, and the hexagon are geometric objects of symmetry. If you
rotate the equilateral triangle 120° at its center, you get the same object.
The same applies to the other objects by rotating them 90°, 36°, and 30°
respectively. However, the pentagon is markedly different. You can tile your
kitchen floor using square tiles only, or equilateral triangles or hexagons.
But you cannot tile it with pentagons without gaps or holes. Sir. Roger
Penrose discovered in 1974 that you can cover your floor with two shapes
each, like the pentagon, returns to itself after five rotations of 36° each at
any of its vertices. The company “dart” and “kite” give one example of the
Penrose tiling pairs. The Golden Ratio is the defining ingredient. Unlike
your ordinary kitchen floor however, a Penrose floor is aperiodic, it never
repeats. As long as two like tiles do not touch along an edge and form a
parallelogram at the same time, you can cover an infinite plane without gaps
or holes. Here is another interesting property: let Nga,¢(n) and Nyie(n) be
the numbers of darts and kites in the square, Q,, = [-n,n] x [—n,n|. Then
as the size of the square increases to infinity, we have

. Ndart (n)
hm -
n—oo Nijte(n)

Alternatively, let paart(n) = Naart(n)/(Naare(n) + Niite(r)) and pyite(n) =
Niite(n)/(Ngart (n) + Niite(n)) be the approximating probabilities, then

=o.

Pkite = lim pkite(n) =®, paary = lim pdart(n) = @2,
n—o00 n—oo

the Golden Ratio probability distribution.
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More specifically, take the 2-element set of kite and dart as an information
source alphabet. Pick a tile from an infinite or very large Penrose floor as
the center. Form a sequence of kites and darts in anyway you want from
the square @1. Add new kites and darts to the sequence in any way as long
as they are from the enlarged square Qo that have not be included already.
Continue this way for the square @3, @4, ... and so on. This will generate
an infinite sequence or very long sequence. Different choices of the initial
point and different ways to concatenate the sequence as new kites and darts
become available from the expanding squares produces different sequences.
This defines an information source and the probability distribution is the
Golden Ratio distribution.

Furthermore, if we encode the kite by the 1-spike symbol and the dart by
the 2-spike symbol, then the encoded Penrose floor will reach the capacity
rate in an ideal spike coder. What is about your ordinary kitchen floor? The
information rate is zero for being predictably periodic!

©

One important conclusion of this section is: for an ideal binary spike coder,
the channel capacity distribution of an information source is the Golden
Ratio distribution.

Exercises 3.1

1. Prove Proposition 3.3.
2. For the Golden Sequence example, use induction to verify

(a') N?LO = Nn—171-
(b) {Ny,1} is the Fibonacci sequence,

Npi1=Np_11+Ny_21,N11=Nog =1.

an
c¢) lim ——— = .
( ) n—oo n,O"’Nn,l
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3. For the Penrose Tiling example, assume

. Ndart(n)
lim ———= =&
n—oo Nijte(n)

is true. Verify the following formulas
Pkite = lim pkite(n) = (I)a Pdart = lim Pdart (n) = (1)2'
n—00 n—0oo

4. Consider a binary block spike code of a base spike number ng = 10.
If 6, = 6y, find the channel capacity distribution pi,ps. Show that its
deviation, (p; — ®)/®, from the Golden Ratio is less than 2%.

3.3 OPTIMIZING SPIKE TIMES

We have considered the case in the previous section that the constitutive
spike interval #; is constant for all spike symbol. It should be taken as a
“Oth” order approximation of such. In reality, the progression of spikes in
a spike symbol may not be as neat as the natural number progression. For
example, even if the intersymbol interval 6y is ignored (the ideal spike coder),
71 may be longer or shorter than half of 7. In fact, for a spike symbol of
large spikes, the time difference between adjacent spikes elongates towards
the termination of spikes. This phenomenon is called spike adaptation in
the literature and it is illustrated as follows.

Input Signal: L
Output Signal: J\/\/\/\/\_

By definition, an adaptive spike code of size n consists of the channel
alphabet S,, = {1,2,...,n} together with its corresponding transmission
times of the form

T, = k01 + 0y + ay, for all k =1,2,...,n,

where 6, 01 are nonnegative parameters, and {ay} is a monotone increasing
sequence. {73} is the sequence of adaptive spike times. A spike coder
endowed with an adaptive spike code is called an adaptive spike coder.

In conclusion, the spike interval 6; varies, but assuming it a constant is
a good “Oth” order approximation. This is particularly relevant for block
spike codes.

However, the consequence to varying 6, is important. It leads to varying
time ratios :—’;, which can be different from the natural number progression
N even if the spike coders is ideal, fy = 0. For example, for a binary spike
coder, if &« = 1o/ # 2, then the capacity distribution will be different from
the Golden Ratio distribution. Neurologically, if an information source of
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capacity distribution is somehow related to the psychological phenomenon
of preference, for example, then differences in capacity distribution would
accommodate individual preferences. An example of this sort is considered
in the Exercises.

We will not purse adaptive spike coders further for the following reasons:

e We will consider primarily spike codes of small alphabet size, no more
than 5

® The effect of adaptation is lessened for block spike codes, for which the
progression in the spike symbol times 7 is close to the natural number
progression for which Propositions 3.2, 3.3 are good approximations.

® Most important of all, there seems little room to optimize the spike
interval 67 other than physical limit to how short 6; can be. Varying 7
gives different capacity rates for individual spike codes.

©

Parallel Cluster and Ideal Spike Coder

Unlike the spike interval 67, the intersymbol interval 6y should be made as
short as possible. An ideal spike coder is one for which 6y = 0. Here is one
optimal strategy to achieve such a goal.

Definition 3.2 Assume the input signal, I, to a spike coder takes two dis-
crete value, 0, 1, and that the spike coder outputs spikes only when I = 1
and no spikes when I = 0. Two spike coders are in-phase coders if either
both output spikes (not necessarily the same number) or no spikes for the
same on-or-off signal I. Two spike coders are out-phase coders if the spik-
ing phase and the non-spiking phase of the two coders are exactly opposite
for the same on-or-off signal I. That, one spike coder outputs spikes if and
only the other spike coder does not. Two out-phase spike coders are referred
to as complementary spike coders.

A schismatical illustration of the definition is given below.

Input Signal: ﬂ ‘ ‘
Coder 1: J\ /\/\ /\/W
Coder 2: _/\/\/\/\ /\/\

Coder 1 and 2 are out-phase of each other, forming a complementary pair.
Two complementary spike coders are in the parallel configuration when an
input signal is duplicated to go through both simultaneously. The resulting
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encoder or decoder from the two complementary coders in parallel is referred
to as a parallel cluster of two out-phase spike coders. For the superposed
output signal, the intersymbol interval 6y is zero. As a result, such a parallel
cluster is an ideal spike coder.

Three important lessons of this section are:

1. Spike interval 6y cannot be optimized.

2. Varying spike symbol processing times 75 gives rise to different channel
capacity distributions for individual spike coders.

3. An optimal strategy to have an ideal spike coder is to cluster two out-
phase spike coders in parallel.

Exercises 3.3

1. It has been a on-going debate whether or not the Golden Rectangle is
aesthetically more appealing to our brain than the square or rectangle of
other length ratio. Shown below are a square, a Golden Rectangle (with
length ratio 1:1/® =1:1.6180), and a rectangle with length ratio 1:1.8.

1 1 1

1 1/® 1.8
Some informal survey showed that on average people prefer a rectangle
of length ratio around 1:1.8, about the ratio of a wide screen. It is not
clear how our brain encode a rectangle. But strictly from the point view
of spike codes, we know that if the ratio of the symbol processing times is
a = T9/71 = 2, then the binary capacity distribution is the Golden Ratio
distribution ps/p; = ®. Find the ratio « so that the capacity distribution
{p1,p2} of a binary spike coder satisfies ps/p; = 1.8.
2. Consider a binary spike coder with 67 = 6y > 0.

(a) Find numerically the capacity distribution if it is not adaptive
a1 = a2 = 0.

(b) Find the exact capacity distribution if it is adaptive with a; =
0, a9 = 6‘1.

(c) Assume the spike coder is adaptive and a; = 0, for what value as
does the capacity distribution gives the 1:1.8 ratio: pa/p; = 1.87

3.4 COMPUTER AND MIND

(perspective.)



