
Part IV

All Systems

1





Chapter 1

Fast and Slow Times

Different physical processes operate at different time scales. Some go slow, some

go fast. Usually they are not time coordinated. But when processes of different

time scales start to interact in a larger scheme of things some may evolve to

go in synchrony, some may retain their old pace, and some others may even

manage to make their time differences more divergent. As a result, multitime

processes in nature are everywhere.

Take the first mathematical model in history for a case in point. Here, for

example, let M be the mass of the Sun and m be the mass of a planet. Let rs and

rp be their displacement vectors from, say the center of the Milky Way Galaxy.

Let F = F(rp− rs) be the gravitational pull of the Sun on the planet. Then the

gravity pull of the planet on the Sun is exactly the opposite, −F(rp − rs), and

the Newtonian model for the two-body motion is

M r̈s = −F and mr̈p = F,

with the double dots denoting for the accelerations. One simple rescale of the

time τ = t/
√
m translates the model into

r′′s = −εF and r′′p = F, with ε = m/M.

Here the mass ratio ε becomes the multitime proxy for the system. For the

Earth, the mass ratio relative to the Sun is ε ∼ 3 × 10−6. For the Halley’s

Comet, it is a 10-order of magnitude smaller, ε ∼ ×10−16. Without any serious

computation the two-time scale model immediately demolishes the geocentric

paradigm of the heaven. In fact, by setting the mass ratio to zero, ε = 0, we get

the zero acceleration for the Sun. As a result the Sun’s motion is stationary,

moving in a constant velocity with respect to the galactic center relative to
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Chapter 1. Fast and Slow Times 4

the planet. That is, relative to the planet, the Sun is motionless. It is the

planet that is doing these frantic moving around in the solar system. To ancient

astronomers it was like inside a clear plastic ball tumbling down a hill to whom

the Sun appeared to be rolling.

The point is clear. Typical two-body planetary models are of two time scales.

The motion for the Sun is slow, that for the planet is fast. The addition of any

celestial body of diverging mass ratio to the model creates another time scale.

The multitime nature of the solar system is a given simply because its celestial

bodies acquired their odd masses in ways not prohibited by the physical laws

at the chaotic beginning of the system’s creation.

Down to the microscopic realm, the firing dynamics of a neuron is of many

time scales. Here, the electromagnetic force is instantaneous: wherever the force

field exists charged ions must move. In comparison, the cross-membrane motion

of the ions driven by the active ion pumps is slow. It takes the conversion of

biochemical energy. This divergence in the time scales is clear by taking a look

at such a model:


CVC

′ = −[INa + fK(VC − ĒK) +ANa −AK − Iext]

ANa
′ = λANa[VC − γ(ANa −AK)]

AK
′ = λAK[−VC + γ(ANa −AK)]

εINa
′ = VC − ĒNa − hNa(INa).

(1.1)

Here, VC, ANa, AK, INa are, respectively, the transmembrane voltage, the sodium

ion pump current, the potassium ion pump current, and the sodium ion current

through its serial electrical and diffusive channels. Iext is any forcing current

external to the circuit if any. The potassium ion current is given by the IV -

characteristic IK = fK(VC − ĒK). The sodium current is governed by an S-

shaped hysteresis: VC− ĒNa−hNa(INa) = 0. It is an ideal representation of the

instantaneous electromagnetic force. In circuit theory it is approximated by the

introduction of an extremely small parameter 0 < ε� 1 for the INa-equation as

shown. It is the fastest equation. In comparison, the voltage equation VC is the

next in time scale as the capacitance C is usually small. That leaves the pump

equations to have the slowest time scale as the pump parameter λ is not in the

same orders of magnitude as either 1/C or 1/ε.

Up to the organism level, time scales diverge crossing trophics. Simple or-

ganisms tend to regenerate fast. Complex organisms further up the food chain

tend to reproduce slow. The higher up the slower reproduction becomes. Con-

version of mass and energy between trophics take time. Such properties can be
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easily captured by models. For example, in this three-trophic food chain model
Ẋ = bX −mX2 − a1X

1 + a1h1X
Y

Ẏ = b1
a1X

1 + a1h1X
Y − d1Y −m1Y

2 − u2Y

1 + u2v2Y
Z

Ż = r2
u2Y

1 + u2v2Y
Z − d2Z −m2Z

2

(1.2)

with X, Y, Z being the populations for a prey, a predator, and a top-predator,

the change of parameters below

τ =
b1
h1
t, x =

X

K
, y =

Y

Y0
, z =

Z

Z0
,

with K =
b

m
, Y0 = bh1K, Z0 = b1bv2K

β1 =
1

a1h1K
, β2 =

1

u2v2Y0
, δ1 =

d1h1

b1
, δ2 =

d2v2

r2
,

µ1 =
m1h1Y0

b1
, µ2 =

m2v2Z0

r2
, ε =

b1
bh1

, ζ =
r2h1

v2b1
.

(1.3)

transforms the dimensional model into this dimensionless one

εẋ = x

(
1− x− y

β1 + x

)
ẏ = y

(
x

β1 + x
− δ1 − µ1y −

z

β2 + y

)
ż = ζz

(
y

β2 + y
− δ2 − µ2z

) (1.4)

The parameters ε and ζ are the birth ratios of adjacent trophic species. The

prey dynamics is fast if ε is small. The top-predator dynamics is slow if ζ is

small, and so on. If the top-predator is a pathogen or a species having a lot

alternative food sources, then ζ can be large, making it a fast variable relative

to the predator species. In other words, various time scales can be captured by

varying magnitudes of the birth rate ratios ε, ζ. Singularly perturbed models

like this one arise naturally from ecological modeling.

Not only multitime is a ubiquitous property of models but also a welcome

relief for analysis. Its presence in a model almost always makes the model easier

to understand than without. In fact, as a common simplification practice, one

often judiciously sets some of the small parameters to their singular value zero to

obtain a model smaller in dimension. In this chapter, we will take the approach

to one extreme to show how multitime scales can be utilized to study differential

equation models.
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1.1 Anatomy of Fast-Slow System

After a mathematical model is obtained, it is usually not feasible, if not alto-

gether impossible, to its structures in their essential elements, free of complica-

tions from other parts whose effects are not to enlighten but to obscure. Further

mathematical idealizations are desirable and often follow. Such exercises usu-

ally result in forms considered canonical to the underpinning physical processes.

The ideal forms may be minimal in ingredient or minimal in structure. The field

of chaos offers a perfect example for this line of thinking.

A system of differential equations may have a structure as simple as having

a stable equilibrium, or as mild as having a steady state oscillation, or as wild as

having an unpredictable trajectory trapped inside a chaotic attractor. Simple

and mild structures are also outnumbered by their chaotic kind. In the zoo of

dynamical systems, the tamed species may manage to fill up an exhibition hall,

but the wild kind can take up the whole park.

1.1.1 Complicated Look, Simplicity At Heart

Otto E. Rössler is a prolific German biochemist, a theorist. One year after

he was introduced to the field of chaos he found in 1976 a simple way to con-

struct differential equations of desired features. According to him, “(each of

his artificially constructed systems) consists of (1) an ordinary 2-variable chem-

ical oscillator and (2) an ordinary single-variable chemical hysteresis system.”

He believes that “according to the same dual principle, many more analogous

systems can be devised, no matter whether chemical, biochemical, biophysical,

ecological, sociological, economic, or electronic in nature.” For implementation,

his approach is both systematic and ad-hoc at the same time: “the described

system is just one out of a huge variety of possible combinations of an oscillator,

on the one hand, and a switching system, on the other.” A chaotic attractor

now bears his name.

Here is a deceptively ‘complicated’ system we cooked up using Rössler’s

recipe.

ẋ = (y + a)[b] + (a− y)[−c]
εẏ = (a2 − y2)[y + a−m(x+ a)]− dy,

(1.5)

with a, b, c, d, ε being positive parameters. When Rössler found his attractor, he

opted for a final simple form rather than a simple geometric structure as if he

still wanted to solve his equations exactly. We will let go completely the futility

to find closed solutions of arbitrary differential equations as well the illusion
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that simple equations ought be easier to solve or easier to understand. We will

instead go after straight for the simplest geometric structures of equations which

may look at a glance complex.

The one enduring element of Rössler’s Dual Principle is the use a small

parameter ε as the coefficient of the derivative of one of the variables:

ẋ = f(x, y), εẏ = g(x, y) (1.6)

where the time variable is t and ˙ := d/dt denotes the time derivative. System

like this is referred to as a singularly perturbed system and the parameter ε is

called the singular parameter if ε is very small. The immediate important fact

about such a system is the fact that if the right hands of the equations are

comparable in magnitude, f ∼ g, then the change in x is slow and the change in

y is fast because the rate of change for y is very large as ẏ = g/ε ∼ ±∞. All the

properties of the system are dependent on the interplays between the variables’

different rate responses to the time. Because of this two-time scale characteristic

variable x is called the slow variable and y is called the fast variable.

1.1.2 Slow Time For Slow System, Fast Time For Fast System

There are two different ways to write the system. The form above is referred to

as the slow form and the time t is the slow time. This characterization is viewed

from the vantage of the slow variable x and the slow time scale t. By changing

the slow time variable t to the fast time variable τ = t/ε, with ′ = d/dτ = εd/dt,

the slow form is changed to the fast form of the system:

x′ = εf(x, y), y′ = g(x, y). (1.7)

The characterization is viewed from the vantage of the fast y and the fast time

variable τ . In either form, the x-equation is called the slow equation or the slow

system if x is a vector variable. Similarly , the y-equation is the fast equation

or the fast system.

For higher dimensional systems, multiple time scales may involved. For

example, a system of this form ẋ = f, ε1ẏ = g, ε2ż = h with 0� ε2 � ε1 has x

as the slow variable, y the fast variable, and z the fastest variable, and so on.

The dynamics of such multitime systems progress in distinct phases in gen-

eral with different subsets of variables dominating the dynamics in different

stages. They take in turns to showcase their unique geometric properties. When

the right hand functions are meticulously crafted the dynamics often invoke the

imagery of a symphony with fast, slow, and in-between movements, in succession

by players playing their exquisite roles, in turns or together in harmony.
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1.1.3 Slow Motion On Slow Manifold

Here is how the prototypical system (1.5) does it. Consider first the slow form

of the system. Take the limit to ε = 0, the equations become{
ẋ = f(x, y) = (y + a)[b] + (a− y)[−c]
0 = g(x, y) = (a2 − y2)[y + a−m(x+ a)]− dy.

The second equation is reduced to an algebraic equation rather than remains

as a differential equation. In concept and in practice in general it is easier

to solve algebraic equations than differential equations. More importantly, the

full 2-dimensional system is reduced to the 1-dimensional fast equation on the

zeroes of g, referred to as the slow manifold, which, depending on the number

of variables, can be a set of curves, or a set of surfaces, or hyper-surfaces.

By setting d = 0 we obtain explicitly three branches of the manifold: y = ±a
and y = −a + m(x + a), all are lines, purposefully selected and constructed

to create a specific configuration of the manifold to be explained below. In

particular, the third solution is made to cut through the first two branches at

these intercepts

(x, y) = (−a,−a) and (x, y) = ((2−m)a/m, 1)

which can be easily controlled by the parameters a and m.

The inclusion of the parameter d > 0 is to create what Rössler called a

switch. It is one of many ways to construct such switches, a convenient way

nonetheless. What it does is to generate a z-shaped smooth curve for the slow

manifold, which we will call it a z-switch, or a switch for short following Rössler.

Instead of forming a sharp corner point, each of the knee point of the Z is

smooth. They are called the turning points of the slow manifold. The switch

depends on d continuously, with the curve closely tracking the respective line

branches of g = 0 at d = 0. The following three paragraphes give a more

detailed description, which can be skipped without any loss of following up the

rest discussion.

For d 6= 0, the solution set of g(x, y) = 0 breaks up in two structurally

different configurations as shown in Fig.1.1. The inclusion of the term −dy is

also made by design. For d > 0, all is required is to have the value of g at

the intercept (a, a) positive g(a, a) = −da < 0 and the other intercept value

negative, i.e. g(a, a) = −da < 0, g(−a,−a) = −d(−a) > 0. For d < 0, the signs

reverse themselves. The resulting configuration of the slow manifold for d > 0

contains a z-shaped curve in one continuous piece, which engineers also like to
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Figure 1.1: Top: two configurations of the equilibrium solutions of the fast

subsystem. ± are the signs of g off the slow manifold. Bottom left: the singular

limit cycle at ε = 0 and a perturbed orbit for 0 < ε � 1. Bottom right: the

time series of the perturbed solution.

call it a hysteresis. The morphosis of the z-switch in parameter d is continuous.

The curve converges to the three line branches of g = 0 as d goes to zero.

For d > 0 the solution set of g = 0 also contains two remnants, one to the

right of the upper right knee and one to the left of the lower left knee of the z-

switch. As it will become clear soon the two remnants do not play any essential

role for all the intents and purposes. In other words, if the limit cycle dynamics

is a suit made from the fabric of the 2-dimensional phase space, then these two

corner remnants are part of the throw-away scrap. As a result we will ignore

them and pretend the z-switch is the whole zeroes of g from now on. In fact,

for some more sophisticated choices of g a z-switch comprises all the zeroes of

g without any remnants.

For d = 0 the turning points become the intercepts of the horizontal lines and

the slanted line. Such an intersection by two different branches of the solution

g = 0 at an angle is called a transcritical point. They are fairly common for

population models. Like the turning points they too act like switches, but with

their own peculiarities which we will discussion in greater details later.
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This typically completes the description of the fast equation εẏ = g at the

singular value ε = 0. And we will assume without a loss of generality that the

slow manifold is a z-switch as depicted in Fig.1.1.

Now look at the slow x-equation of the slow form at the singular limit ε =

0. The immediate revelation is that it is a 1-dimensional differential equation

constrained on the slow manifold g = 0. It will soon become clear that only the

dynamics of the slow equation on the top and bottom branches of the z-switch

matter. As noted before the once 2-dimensional full system is only 1-dimensional

on the z-switch. Moreover, depending on the dynamics we want to achieve, we

can construct the function f on each of horizontal branches accordingly, and do

so independently from each other.

In fact, by design f is made to be a linear combination of two arbitrary

functions f−1 and f+1:

f(x, y) = (y + a)f+1(x, y) + (a− y)f−1(x, y).

When restricted to the bottom branch y = −a of the d-limiting z-switch, ẋ =

f = 2af−1, the f+1 term is conveniently killed off. Similarly, on the top branch

y = +a, ẋ = f = 2af+1, completely independent from the bottom branch

assignment. For the particular system (1.5), we assign f+1 = b > 0 so that

every trajectory, (x(t), a), of the reduced slow equation moves to the right on

the top branch. On the bottom branch, ẋ = 2af−1 = −2ac < 0 for which every

trajectory moves to the left, again by design.

1.1.4 Fast Transition Between Slow Manifolds

Next, consider the fast form (1.7). At the singular limit ε = 0,

x′ = 0 and y′ = g(x, y).

It too is reduced from a full 2-dimensional system to a 1-dimensional equation.

In this case, the slow variable frozen at its initial x(t) ≡ x0 because x′ = 0, as

if x is a parameter for the fast equation. The dynamics of the fast equation is

completely determined by the equilibrium set g(x, y) = 0, i.e. the slow manifold:

if g > 0 at an initial point, y(τ) moves up, and if g < 0 at an initial point, y(τ)

moves down, often converges to a point on the slow manifold.

Depending on the location of x0 the number of equilibrium points of the

fast y-equation changes (ignoring the remnants of g = 0 as discussed above).

Let a− denote the x-coordinate of the left turning point of the z-switch and

a+ the right turning point of the z-switch. Then for x0 < a− the y-equation
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has one equilibrium point on the top branch of the z-switch. For x0 > a+ the

equation has one equilibrium point on the bottom branch of the switch. For

a− < x0 < a+ the equation has three equilibrium points: one on each of the top,

bottom, and middle branch of the z-switch. For any initial y0 not on the slow

manifold, the trajectory of the y-equation can only move up or down, away or

toward the equilibrium point(s), depending completely on the sign of g(x0, y0).

Here is another easy handling of g: by multiplying −1 to g if necessary we

can make the top and bottom branches of the equilibrium points on the z-switch

either attractive or repulsive for the fast y-equation. All it takes is to make sure

g < 0 for points right of the z-switch if we want y to move down, which in

turn automatically forces g > 0 to the left since the z-switch is where g = 0. It

suffices to only pick one point (x0, y0) far above the top branch y = a so that

g(x0, y0) < 0 by the so-called one-point testing rule.

1.1.5 Slow And Fast Concatenation

As if in an orchestra the individual players are now assigned their parts, placed

wherever needed be, and directed to do whatever instructed. The show is ready

to start. Once it is switched on by a small positive value ε > 0, regardless

whichever form, slow or fast, any trajectory that starts near the z-switch is

attracted to one limit cycle. It consists of four pieces of movement, alternating

in fast and slow tempo progressions, and dominated in turn and in tandem by

the slow x-equation and the fast y-equation.

Start from any point near the z-switch. Say near the bottom branch.

Whether it is near, on, or far away from the z-switch, it is quickly attracted to

the bottom branch the z-switch. Because the slow variable barely moves, the tra-

jectory moves nearly vertical. This behavior changes only when the trajectory

enters an ε-neighborhood of the slow manifold g = 0. In which the minuteness

of g balances out the smallness of ε so that magnitudes of the rates ẋ = f and

ẏ = g/ε become comparable, and only in which the trajectory can appear to

turn this or that way with comparable speeds for both variables. Subsequently,

the trajectory will be forcefully pinned inside the neighborhood, tightly against

the bottom branch the z-switch because of the strong contracting action of the

fast y-equation. It is inside such a neighborhood, the dynamics of the fast equa-

tion takes over. In this case, because ẋ = f(x, y) ∼ 2af−1 = −2ac < 0 near the

bottom branch of the switch, the trajectory moves leftward, slowly.

Eventually, the trajectory enters a neighborhood of the left turning point the

z-switch, moving leftward still as ẋ < 0. Once it clears, say, a
√
ε-neighborhood
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of the turning point, g is not small enough to counter balance the divisor ε in

the rate ẏ = g/ε. As a result, the fast dynamics takes over. The trajectory

moves quickly upward because ẏ = g > 0, racing toward the top branch of the

z-switch. The trajectory looks like a vertical line during this phase as the slow

variable x again barely moves.

Once it enters an ε-neighborhood of the top branch of g = 0, the strong

effect of 1/ε to the y-variable is again neutralized, and the movement on the

top branch is taken over by the slow motion of the x-equation. This time, the

trajectory is tugged rightward since ẋ ∼ f(x, a) > 0 as y ∼ a, hugging ever so

tightly the z-switch like it did along the bottom branch. This phase lasts until

the trajectory enters and then leaves a
√
ε-neighborhood of the right turning

point of the z-switch. A fast phase transition crisis takes place similar to what

has happened at the left turning point. This time instead of going up it is

crashing down toward the bottom branch of the z-switch because ẏ = g/ε < 0

to the right of the switch. This sets up another repeat of the roundabout around

the z-switch. The limit cycle is thus materialized.

Limit cycle around a hysteresis of a fast-slow system has been known and

well-understood since the 1920s. We know for example the limit cycle orbit is

continuously dependent on the singular parameter ε. As ε → 0, the perturbed

orbit of ε > 0 converges to the so-called singular orbit, which is the concatenated

loop of two limiting fast orbits and two slow orbits. Which piece to start is

unimportant. Start for instance the fast orbit of the fast equation from the

left turning point of the z-switch. It moves up and ends on the top branch

of the slow manifold. It forms a T with the top branch. We call the point a

junction point. Its x-coordinate is the same as the turning point x = a− and

its y-coordinate is from the solution g(a−, y) = 0. Next in the concatenation

is the slow orbit of the slow equation from the previous junction point to the

right turning point whose x-coordinate is a+. Then the descending fast orbit of

the fast y-equation from the right turning point to its corresponding junction

point on the bottom branch of the slow manifold. Lastly, the slow orbit from

the right junction point to the left turning point to complete the singular orbit

loop in concatenation. The perturbed limit cycle with ε > 0 closely tracks along

this singular limit cycle as shown in Fig.1.1.

The figure also depicts the time series of the two variables. It characterizes

such multi-time scale systems in the time profile. Usually you cannot tell the

singular perturbation nature of a system from the slow variable or experiment

data. It can behave just like from a regular system. But the dynamics of the

fast variable cannot be more revealing: there will always be fast rises and falls,
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followed by mild, slow movements, not necessarily like the horizontal lines for

the mockup system. The take-away message is if one sees a fast transition in a

datum, then the underline process must be of different time scale.

1.2 Systems By Custom Design

The types of 3-dimensional structures that can be realized by Rössler’s dual

principle are only limited by one’s imagination. Whatever dynamics one can

dream up the chance is there is a way.

Collected below are some examples. Each makes use of a particular type of

switch. Instead of a curve, all switches are surfaces in the 3-dimensional space.

They are the slow manifolds of the full systems. And all are defined as the

equilibrium points of the fast equation. The switches are either shaped like a

Z or have something to do with it. One type is to have two z-switches to share

a common middle branch, one z-switch glued on top of another. One type is

to rotate a z-curve around an axis to get a rotationally symmetrical z-switch

surface. One type is to have a regular z-curve to shrink in size until it disappear

on the slow manifold switch.

The reduced slow dynamics on the switches are all 2-dimensional. Like in the

mockup 2-dimensional system above, the right-hand side of the slow equations

can be prescribed arbitrarily on separate attracting branches of the switches.

For most cases we will use the simplest linear systems possible. They take

the form ẋ = a(x − x̄) + b(y − ȳ), ẏ = c(x − x̄) + d(y − ȳ) with (x̄, ȳ) being

an equilibrium point of the slow system anywhere we wish to put. We can

choose the constants a, b, c, d so that the equilibrium (x̄, ȳ) is a sink, a source,

a saddle, or a spiral kind of all the above. For some systems we also add a

cubic nonlinearity to control the outward spiral by a limit cycle. Writing such

a slow-subsystem in the polar coordinate centered at the equilibrium point, it

reads ṙ = αr(1− r2/R2), θ̇ = β with R being the radius of the limit cycle. It is

essentially a linear system with an outward spiral equilibrium point. Only in two

examples the reduced the slow system are truly nonlinear. Even in these cases

the functional forms are textbook type examples for some typical 2-dimensional

dynamics, which are considered simple for experts. More specifically, they are

the so-called Hamiltonian systems of the form

ẋ =
∂H

∂y
, ẏ = −∂H

∂x
,

with H(x, y) a function of two variables. We use such systems because their

solutions are the level curves of function H(x, y), called the Hamiltonian. So if
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we know H we know the equation’s solution. Thus, depending on the type of

orbits we like to have, we go out to look for the right kind of functions H whose

level curves fit the description.

1.2.1 Fold At The Interface Of Fast And Slow Flows

For a fast-slow 2-dimensional full system, there are not many ways for the dy-

namics to be more complex than the limit cycle type described above. One way

is to make one of the junction point an equilibrium point of the slow equation.

The limiting orbit is a singular homoclinic orbit and for each small ε one can ad-

just the z-switch a bit if necessary to obtain a homoclinc orbit for the perturbed

system, and orbit that converges to the equilibrium point in both forward and

backward time. The other alternative orbit is obtained by making the junction

point an equilibrium point on both branches of the slow manifold. Such an orbit

is a heteroclinic orbit.

There are a whole lot more one can do for the 2-dimensional slow subsystems.

Lining up equilibrium points with junction points is certainly one simple trick

in the book. Here we want to describe two complications that are unique for

slow systems 2-dimensional or higher. They are depicted in Fig.1.2. They are

referred to as the K-fold points. There are two kinds.

The first kind is the junction point type. In this case the K-fold point is

in the interior of the slow manifold. The flows near it are regular. It is not

an equilibrium point of the slow equations. Away from the branch there is a

turning edge of the slow manifold. The corresponding junction points form a

curve through the K-fold point. From one side of the backbone of the K, the

slow orbits flow to one side of the K and from the other side, the slow orbits

move to the opposite side of the K. The slow orbit forms an elbow at the point

against the backbone. In the depicted junction K-point, the flows in black are

down on the slow manifold, the flows in blue are atop of the black, and the flows

in red are atop of the blue. In fact, this is exactly what must happen when the

perturbation is switched on with ε > 0. That is, carried on by the flows near

the slow manifold, one side of the junction edge will be folded underneath the

other side of the backbone. Hence the moniker junction point K-fold.

The other type of K-fold point is also on a branch of the slow manifold. But

instead in the interior this point is on the turning edge of the slow manifold,

which the the backbone of the K. The slow flows also form an elbow at the

point. On one side of turning edge the slow flows rush on and make the singular

fast jump away from the slow manifold. One the other side of the backbone of
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Figure 1.2: Left: Junction K-fold point. Right: Turing K-fold point.

the K the slow flows stay on the slow manifold. But they are not accessible

from the interior side of the elbow.

Interesting dynamics happen if the K-fold points are reinjected back into

the slow manifolds they belong. In both cases the flows of the full systems will

be folded up and if they are also stretched in the backbone direction of the K,

chaotic dynamics usually ensue.

1.2.2 Fold The Fold

Fig.1.3 shows two chaotic attractors: the original Rössler attractor and one

constructed having a turning K-fold point:
ẋ = ζ(z + r) + (r − z)[α(x− 2)h− βy]

ẏ = (z + r)[b+ c−b
−2−a (x− a)− y] + (r − z)[β(x− 2) + αyh]

εż = (r2 − z2)[z + r −m(x+ r)]− dz
h = 1− [(x− 2)2 + y2]/R2

(1.8)

The xy-equations are the slow equations and the z-equation is the fast equation.

The slow manifold, consisting of the equilibrium points ż = 0 of the fast equa-

tion, has a fixed z-shaped in the xz-variables for every value of the y variable.

On the top of the z-switch the slow orbits flow to the top turning edge, and then

fall down to the bottom branch. On the bottom branch, trajectories spiral out-

ward. The turning K-fold attractor was made to simulate the Rössler attractor.

The Rössler attractor and the mockup attractor are structurally similar. The

chaos is solely due to the presence of a turning K-fold point. The Rössler is

deceptively simple as it is hard to deconstruct it down to its components. The

mockup system looks complicated but it is easy to understand every component

of the equations and to build the chaos bottom up by strategically placing a

K-fold turning point.
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The Rössler Attractor
ẋ = −y − z
ẏ = x+ ay

ż = b+ z(x− c)

with parameter values a = 0.2, b =

0.2, c = 5.7.

Turning K-Fold Attractor:

Figure 1.3: Bottom left: Parameter values of Eq.(1.8): a = 0.5, b = 0, c =

−1,m = 0.4, r = 0.5, R = 6, α = 0.5, β = 2, d = 0.08, ζ = 10, ε = 0.1. Right:

Same values except for ε = 0.001 at which the effect of the fast variable’s

switching becomes more dominant.

Fig.1.4 shows the type of chaotic attractors that uses junction K-fold points.

It belongs to this custom-made system:
ẋ = λz(x− a) + (3− z)× [α(x+ 0.5)h+ βy]

ẏ = µz(y + b)− (3− z)× [−β(x+ 0.5) + αyh]

εż = z(3− z)(x+ z − 3
2 ) + d(x− c)

h = 1− [(x+ 1
2 )2 + y2]/R2.

(1.9)

The construction of the fast z-switch is similar to the previous example. In this

case we kept the K-fold turning point away from the attractor on the lower

branch of the z-switch. On the top branch we carefully fan out the flow and

direct it to the turning fold to create a junction K-fold point on the bottom

branch of the switch. The result is a pure junction K-fold attractor. The figure

shows the top view of the attractor.
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Junction K-Fold Attractor:

Figure 1.4: Parameter values of Eq(1.9): a = −5.5, b = 0, c = 0.5, R = 6, α =

6.2, β = 20, λ = −1.2, µ = 0.87, d = 0.015, ε = 0.006.

1.2.3 Fraternal And Paternal Twin Spirals

Fig.1.5 shows two more uses of the z-switch. In both cases the slow flows on

the top branch and the bottom branch of the z-switch are spirals. Both are

generated by this construction:


ẋ = (z + 2)(λ(x− k)h− µy) + (2− z)(α(x− 2)h− βy)

ẏ = (z + 2)(µ(x− k) + λyh) + (2− z)(β(x− 2) + αyh)

εż = (4− z2)[z + 2−m(x+ 2)]− dz
h = 1− (x−k)2+y2

R2

(1.10)

For parameter R = ∞ both spirals are the logarithmic spirals and the slow

equations are near linear. For parameter µ > 0 both spirals are going coun-

terclockwise. For µ < 0 each rotates in a different direction. One spiral center

is at (x, y) = (2, 0) and the other is at (x, y) = (k, 0) for the slow subsystem.

Parameter m can be used to control the top turning edge of the z-switch and

parameter k can be used to control the location of the top center. Each attrac-

tor contains two turning K-fold points and two junction K-fold points, one pair

on each of the branches of the z-switch.
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Double-Spiral Attractors:

Figure 1.5: Left: Parameter values of Eq.(1.10): a = 7, b = 1.435, d = 0.08, R =

6, α = 0.5, β = 4, k = −3.3,m = 1.543, λ = 0.58, ε = 0.08, µ = −4. The left

spiral is clockwise. Right: The same except µ = 4. The left spiral reverses itself

in direction.

1.2.4 Toroid Braid

For Fig.1.6, the slow manifolds are slightly more intricate. The made-up system

is 
ẋ = z(λx− µy) + (2− z)

[
αx
(
1− x2+y2

R2

)
− βy

]
ẏ = z(µx+ λy) + (2− z)

[
βx+ αy

(
1− x2+y2

R2

)]
εż = z

[
(2− z)[a(z − 2)2 + b]− cx

][
z +m(x2 + y2)− h

]
−d(z − 1)

(1.11)

For the fast equation of the first construction, we consider first the case with

these parameter values: a = c = d0, b = 1:

εż = z(2− z)
[
z +m(x2 + y2)− h

]
.

The slow manifold consists of a horizontal top branch z = 2, a horizontal bottom

branch z = 0 just like the various z-switches above. Unlike the others the slanted

middle plane is replaced by the paraboloid

z = h−m(x2 + y2).

It intersects the top branch along a circle x2 + y2 = (h − 2)/m. It intersects

the bottom branch along a bigger circle x2 + y2 = h/m. If you take a look

at the cross section of the branches on the xz-plane, there are two z-switches

imbedded, one is the mirror image of the other. If you rotate the cross section
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Toroid Attractor:

Figure 1.6: Left: Parameter values of Eq.(1.11): a = c = 0, b = 1, d = 0.1,m =

0.1, h = 3.6, R = 10, λ = −4, µ = −4, α = 2, β = 4, ε = 0.1. Right: a = 3, b =

0.8, c = 0.1, d = 1,m = 0.05, h = 3.312, R = 10, λ = −2, µ = 1, α = 2.8, β =

5, ε = 0.1.

around the z-axis, you will get the full slow manifold. Also, when the parameter

d > 0 is turned on, you will get the two mirror double z-switch on the xz-cross

section, and the full slow manifold of interest is the curve’s rotation about the

z-axis. We can call it a toroid-switch instead.

As before the slow equations on the top and bottom branches are linear

systems of equations. On the top branch, all orbits are pulled inward the center

(0, 0). On the bottom, all orbits are pushed outward away from the center.

Rotation of the slow orbits is added by using nonvanishing values of µ and β.

As shown in the figure, an invariant toroid is obtained. Orbits on the invariant

toroid can be periodic, quasi-periodic, but no chaos. No K-fold points of either

kind are present.

The terms a(z − 2)2 + b and −cx are purposely included so that the toroid

switch is not rotational symmetric. The top turning edge shapes like an egg

instead of circle with a = c = 0. When projected down to the bottom branch

as the junction points, the asymmetric curve will create a junction K-fold point

when meeting the symmetric slow flows on the bottom branch of the toroid

switch. Chaos breaks out because of the existence of the K-fold point. In other

words, the once smooth invariant toroid is folded as a place. Orbits from the

attractor pile on top of each other near the K-fold point. The attractor on the

right of Fig.1.6 is one example of such folded toroid attractors.
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Double-Toroid Attractor:

Figure 1.7: Left: Parameter values of Eq.(1.12): a = b = 1, d = 0.06α =

cos θ, β = sin θ, θ = .08, ε = 0.06. Right: chaotic attractor for a modified

system.

1.2.5 Wind Around Conjoined Toroid

For the system of Fig.1.7, the dynamics look more complicated. However the

design idea is the same as the toroid attractor above. The terms used are more

complex than the toroid attractor, but they are the simplest kind to realize the

double toroid construction:
ẋ = a(1.5− z)x(x2−8)

16 + bz
[
α(αx+ βy) 8−(αx+βy)2

16 − β(βx− αy)
]

ẏ = a(1.5− z)y + bz
[
β(αx+ βy) 8−(αx+βy)2

16 + α(βx− αy)
]

εż = z(1.5− z)
[
z − 1 +H(x, y)

]
+ d( 3

4 − z)
(1.12)

As for the slow manifold, or the double-toroid switch, the top and bottom

branches are horizontal plane. Instead of the paraboloid which only one hump,

we use a surface having two humps, which is represented by the equation

z = 1−H(x, y), with H =
(x− y)4

64
− x2 − y2

2
+

(x+ y)2

4
.

Therefore, instead one hole this surface cuts out two holes on the top branch

z = 1.5. As for the toroid switch, only one hole is cut out by the surface. In

terms of level curves, the z = 1.5 level curve consists two closed curves and the

z = 0 level curve contains only one. The d-term is strategically place to break

up the branches in the right ways so that the top and bottom cutouts become

turning points of the double-toroid switch.

For the slow equations on the top and bottom branches, the requirements

are far more different than what we have encountered so far. Linear systems
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are not enough anymore. For example, on the bottom branch z = 0, the slow

equations are

ẋ = a(1.5)x(x2 − 8)/16, ẏ = a(1.5)y

for which there are three equilibrium points (0, 0), (±
√

8, 0). It is made so that

the (0, 0) equilibrium point is a saddle, and the other two equilibrium points are

sources. The slow equations on the top branch is made the same except in two

ways. First the flow’s direction is reversed so that two equilibrium points on

the wing are two sinks. Second, the vector field is slightly rotated by θ angle,

which explains the parameters α = cos θ, β = sin θ. One invariant double toroid

is created as shown. Six orbits are shown. Each converges to one of the four

limit cycles.

Lastly, the double-toroid attractor can be made chaotic by creating K-fold

turning points and K-fold junction points. The system of equations is the

same as the double toroid equations except that the bottom slow equations are

replaced by this perturbed Hamiltonian system instead:

ẋ = a(1.5− z)
(
−∂H
∂y

)
, ẏ = a(1.5− z)

(
∂H

∂x
+ cy

)
, with z = 0,

where H is the same function used to construct the double-toroid switch. The

trajectories of the unperturbed equations with c = 0 are the level curves of H.

The perturbed Hamiltonian flow is enough to break up some inherent symmetry

of the double-toroid system. From the chaotic attractor one can see at least two

K-fold junction points, one from each of the inner junction curves.

1.2.6 Fast-Slow Butterfly

The French mathematician Henri Poincaré is perhaps the first person to en-

counter the phenomenon of chaos in a mathematical model. That was in the

1880s. The American meteorologist Edward Lorenz is considered the founding

father of the chaos theory by his discovery of the Lorenz attractor. That discov-

ery was made in 1963. His equations are simple but extremely hard to analyze.

Here is the last fast-slow contraption of this section:


εẋ = (y − p)− 5(x3 − (z − q)x)

ẏ = (x+1)2

4 f(y, z, a1, b1, c1, θ1)− (x−1)2

4 f(−y, z, a2, b2, c2, θ2)

ż = (x+1)2

4 g(y, z, a1, b1, c1, θ1) + (x−1)2

4 g(−y, z, a2, b2, c2, θ2)

(1.13)
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with the ingredient functions given by[
f(y, z, a, b, c, θ)

g(y, z, a, b, c, θ)

]
=

[
cos θ − sin θ

sin θ cos θ

]
[
φ(ȳ, z̄, a, b, c)

ψ(ȳ, z̄, a, b, c)

]
φ(y, z, a, b, c) = ay + bz − ay2

ψ(y, z, a, b, c) = by + az − 3
2by

2 − ( 3
2ay + c)z

and the rotated slow variables[
ȳ

z̄

]
=

[
cos θ sin θ

− sin θ cos θ

][
y

z

]
We now break it down on how his butterfly effect is realized.

For visualization reason only, x is designated the fast variable, y, z the slow

variables. The slow manifold is a surface that is rather easy to understand. It is

a cusped z-switch – whose turning edges meet at a point, forming a cusp when

looked from the x-axis, and hence the term for the switch. Beyond the cusp

point the once top and bottom branches of the switch merge into one smooth

sheet. These descriptions can be easily verified by looking at the cross section

curves for fixed z-values. In fact, the manifold in the sectional curve form is a

cubic polynomial, y = p + 5(x3 − (z − q)x, in x having precisely two turning

points in the fast flow direction when z > q. For z < q the turning points

disappear and the two branches merge into one continuum sheet.

For the slow equations in variables y, z, their constructions only approximate

what we like to have on the cusp switch. In particular, we want to place the

wings of the butterfly on the switch, one on the back sheet near x = −1 and

one on the front sheet near x = 1. Since the front and back branches are not

the constant planes x = ±1, the slow equations,

v′ =
(x+ 1)2

4
F+1(v) +

(x− 1)2

4
F−1(v), with v =

[
y

z

]
,

are not constructed with the absolute precision we have achieved for the other

examples. For example, the frozen equations with x = +1, v′ = F+1(v) is only

an approximate of the actual restricted vector field on the curvy front sheet

near x = 1.

Because of the inherent symmetry of the two wings of the butterfly, the

vector fields F+1 and F−1 are reflective symmetric in the y variable. That is,

F+1(v) =

[
f(y, z)

g(y, z)

]
if and only if F−1(v) =

[
−f(−y, z)
g(−y, z)

]
.
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Lorenz Attractor:
ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz

parameter values: σ = 10, ρ =

28, β = 8/3.

Fast-Slow Lorenz Attractor:

O

Figure 1.8: Left: Cusp-switch and singular orbits. Right: Parameter values of

Eq.(1.13): a1 = a2 = 0.5, b1 = b2 = −4, c1 = c2 = −1, θ1 = θ2 = π/4, p = 0, q =

0.1, ε = 0.005.

This explain the general form of the constructed slow equations, and the reason

that we only need to specify the vector field (f, g).

This vector field is the rotation of the specific vector field (φ, ψ) by angle θ.

That is what the rotation matrixes in cos, sin and in ȳ, z̄ are about. Thus, our

deconstruction comes to the last phase to explain the 2-dimensional system of

equations ẏ = φ(y, z), ż = ψ(y, z), omitting the dependency on the parameters.

For people familiar with some exotic 2-dimensional systems, not constructed by

singular perturbations, this type of systems does not invoke surprises. One can

check that without the perturbation terms with a = c = 0, it is an Hamiltonian

system ẏ = ∂H/∂z, ż = −∂H/∂y with H = b
2

(
z2 + y3 − y2

)
. All solutions

are the level curves of H. In particular, (0, 0) and (2/3, 0) are two equilibrium

points with the former a saddle and the latter a center. The zero level curve
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z2 + y3 − y2 = 0 contains also a homoclinic orbit to the origin, going around

the center equilibrium point, counterclockwise. The perturbations are added to

break this homoclinic orbit and to control the eigenvalues at the origin which

are a± b.
Upon a θ = 45◦ rotation of the homoclinic loop and everything else going

with the vector field, the front wing to the butterfly is in place. With the

reflection the back wing is also done. Both are held together at the equilibrium

point (0, 0, 0) for the full system. The cusp switch and the orbits on it as depicted

in Fig.1.8 are the actual objects of the constructed system. It does not show any

K-fold turning point above the cusp point. Although there are plenty K-fold

junction points but the attractor does not seem to use any. The cusp point, the

holding equilibrium point, the eyes of the wings are the elements responsible for

the butterfly effect. These features are decidedly distinct from the double-spiral

attractors even though their appearances make them look alike if the vantage

point is right.

The one property that is included in all working definitions of chaos is the

one that Lorenz emphasized the most with his discovery, namely the sensitive

dependence on initial conditions. Like many discoveries made throughout the

history, his came also with a pinch of serendipity. It happened when Lorenz

set his equations running to double check an early numerical run, walked away

for a cup of coffee, and only to find when he returned the new result was miles

away from the original simulation. He found that any small perturbation to an

initial state would result in the system bouncing between the two wings of the

attractor in different orders. Since his model was related to weather prediction,

this so-called sensitive dependence on initial condition property gave birth to the

now frequently quoted butterfly effect metaphors. That the flap of a butterfly’s

wing in Brazil can set off a tornado in Texas is one of the variations.

1.3 Fast-Slow Chaos of Models

We can learn a lot from the multitime scale construction above and use the

lessons to understand mathematical models for physical processes. We learned

that unique to systems of three dimension and higher the turning-point K-fold

and the junction-point K-fold are two primary mechanisms for chaos generation.

We also learned that if it were not because of various nonlinear switch surfaces

on which the slow processes of a system dominate there would be no reoccurring

of the folded fast and slow flows, and the dynamics would be less than chaotic.

Here below let’s take a look at a few models for which the learned lessons are



25 1.3. Fast-Slow Chaos of Models

I
AV

C

I K
,p

I
AV

C

I K
,p

Figure 1.9: Left: Parameter values of Eq.(1.1): ENa = 0.5, EK = −0.7, r1 =

10, r2 = −12.2, i1 = 0.24, i2 = 0.43, G1 = 15, G2 = −0.37, V1 = −1, V2 =

−0.02, λ = 0.055, C = 2.2, R = 0.18, ε = 0.001, and zeroes for other parameters.

Right: The same values except for C = 0.1.

particularly insightful.

1.3.1 Neuronal Models

Fig.1.9 shows a chaotic attractor for the neuronal circuit model Eq.(1.1). Vari-

able AK is the ε-fast variable and the others are the ε-slow variables. The

Z-switch is the hysteresis surface of the AK-equation. It is the ε-slow manifold.

For healthy neurons, the capacitance C is small for normal cell operations. This

condition creates another time scale amongst the ε-slow variables for which the

membrane potential is a C-fast variable, enhancing various cell acuities. In

abnormal situations such as demyelination the cross-membrane capacitance de-

grades to become large. The cell loses a fast time scale and there is no further

temporal distinction between the cross-membrane potential and the ion pump

current variables. The cell dynamics becomes chaotic. The simulation shows

that a turning-point K-fold on the lower branch of the Z-switch leads to the

type of chaotic attractor similar to the Rössler attractor. It also shows that for

a small capacitance the model is in an expected normal state of spike burst.

The K-fold point is always present for the range of the capacitance. It takes the

combination of both the point and the capacitance’s degradation for the chaotic

state of the cell to occur.
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1.3.2 Food Chain Models

The attractor on the left of Fig.1.10 is for the food chain model Eq.(1.4). It

is for the case in which the prey X reproduces fast. They are modeled by

small ε values. Between the predator Y and the top-predator Z the latter is the

slowest, modeled by small ζ values. The X-nullcline surface is the slow manifold.

It consists of the prey extinction plane X = 0 and the cylindrical parabola, i.e.

the predator mediated prey equilibria. The top ridge on the parabola separates

the surface into two parts – the capacity branch part and the Allee branch. The

capacity branch and extinction branch are the attracting branches of the slow

manifold and the Allee branch is the unstable middle branch. Together they

makeup a variant z-shaped switch for the fast prey species, if the parabola fold

occurs in the first octant phase space.

On the capacity branch of the X-nullcline surface, the fast flows hit a junc-

tion K-fold. To the top-predator’s higher population side of the K-fold, the

predator population is depressed still even though it is supported by the prey’s

capacity mass. To the top-predator’s lower concentration side of the K-fold,

the predator prospers, heading up in population, all taking place on the ε-slow

manifold. The creation of the z-shaped switch, i.e. the turning edge at the

top of the X-nullcline surface, is primarily due to an ineffective predator in the

middle, not good at preying on the prey. In particular, having a too large prey

handling-time parameter h1 will create the undesirable bump on X-capacity

surface, thus the z-shaped switch. Above the prey capacity ridge, the prey pop-

ulation collapses with higher predator concentration. That collapse leads to a

prolonged decline in the predator population which eventually allows the prey

to rebound. It is during the fast recovering phase the populations can hit a

traffic jam near the junction K-fold point. The chaotic dynamics is due to the

creation of the z-switch and the presence of the junction K-fold point along the

rebounding line. When the predator is selected to become more effective and

efficient this type of population chaos shall disappear.

The tea-cup attractor on the right side of Fig.1.10 is for the same type of

food chains except that the top-predator also preys on the prey X, i.e. an

intraguild predator. The dimensional model is given below

Ẋ = bX −mX2 − a1X

1 + a1h1X
Y − u1X

1 + u1v1X + u2v2Y
Z

Ẏ = b1
a1X

1 + a1h1X
Y − d1Y −m1Y

2 − u2Y

1 + u1v1X + u2v2Y
Z

Ż =
r1u1X + r2u2Y

1 + u1v1X + u2v2Y
Z − d2Z −m2Z

2.
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Figure 1.10: Left: Parameter for Eq.(1.4): β1 = 0.33, β2 = 0.1, δ1 = 0.1, δ2 =

0.64, µ1 = µ2 = 0, ζ = 0.33, ε = 0.1. Right: Parameter for Eq.(1.14): β1 =

0.33, β2 = 0.1, δ1 = 0.1, δ2 = 0.6, µ1 = µ2 = 0, u = 1, v = 0.1, w = 0.1, ζ =

0.3, ε = 0.2.

It is the same as the previous food chain model except for a joint Holling Type II

predation functional for the top-predator on both the prey and predator. With

the same parameter scaling and the additional ones below

u =
u1Z0

bu2v2Y0
, v =

u1v1K

u2v2Y0
, w =

r1u1K

r2u2Y0

the dimensional model is transformed into the following dimensionless form

εẋ = x

(
1− x− y

β1 + x
− uz

b2 + vx+ y

)
ẏ = y

(
x

β1 + x
− δ1 − µ1y −

z

β2 + vx+ y

)
ż = ζz

(
wx+ y

β2 + vx+ y
− δ2 − µ2z

)
.

(1.14)

The key difference between the previous tri-trophic model and the intraguild

model lies in the X-nullcline surface, the ε-slow manifold. Unlike the tri-trophic

model whose X-nullcline does not depend on the top-predator population, the

intraguild model does. As one can see from the phase portrait the higher the

top-predator population the smaller the prey’s capacity surface. The surface ta-

pers as the top-predator’s population increases until vanishes altogether. Above

such a high top-predator population the prey population collapses. Again the

creation of the top fold on the prey nullcline surface is due to an ineffective preda-

tor. That coupled with a junction K-fold point on the prey’s capacity surface
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Figure 1.11: Left: Parameter for Eq.(1.15): a1 = 0.08, a2 = 0.23, a3 =

0.24,m1 = 10,m2 = 4,m3 = 3.5 and b = b1 = b2 = 1. Right: Parameter

for Eq.(1.16): β1 = 1.1, β2 = 0.33, δ1 = 0.37, δ2 = 0.25, µ1 = µ2 = 0, σ1 =

0.2, σ2 = 0.67, κ = 3.3, ζ = 0.12, ε = 0.01.

is the key makeup of the attractor. A turning K-fold point is also present in

the attractor along the top ridge of the surface, creating an additional place to

fold the flows.

Fig.1.11 is for two different types of ecological models. The first is the

standard chemostat model for which a fixed amount of nutrient or resource N

is present for a food chain. The food chain consists of a prey or producer X, a

predator or consumer Y , and a top-predator or top-consumer Z, measured in

the same unit as the resource. S = N−X−Y −Z is the amount available for the

producer X to synthesize. The resource N is kept at a steady amount for the

system and the food chain product is continuously brought out by a constant

washout rate w. All species are subject to Holling’s Type II rate assimilation

constraints. The dimensional model takes the following form:

N = S +X + Y + Z

Ẋ =
baS

1 + ahS
X − wX − a1X

1 + a1h1X
Y

Ẏ =
b1a1X

1 + a1h1X
− wY − u2Y

1 + u2v2Y
Z

Ż =
b2u2Y

1 + u2v2Y
Z − wZ.

for which b, b1, b2 ≤ 1 are the product-to-consumption ratios limited inside the

range (0, 1]. The washout rate is significant enough to carry out all dead or non-
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reactant elements of all causes. Thus no death or elimination rates of any kind

are explicitly needed. By a change of variables we can transform the dimensional

model to this dimensionless one:

ẋ = x

(
bm1(1− x− y − z)
a1 + (1− x− y − z)

− 1− m2

a2 + x
y

)
ẏ = y

(
b1m2x

a2 + x
− 1− m3

a3 + y
z

)
ż = z

(
b2m3y

a3 + y
− 1

)
.

(1.15)

The effective phase space is inside the simplex x + y + z ≤ 1 in the first oc-

tant. Although this system is not in the strict singular-perturbation form with

explicit small parameters, the multitime property is inherent of the system as

the nutrient element N works its way up the chain its assimilation at a higher

level becomes slower. Thus, the X-nullcline can be taken to be a default slow

manifold. Again if the next consumer is inefficient a capacity fold will develope

on the surface. Like the other cases it too becomes the prerequisit for chaotic

dynamics. As it is shown by the left portrait of Fig.1.11, it also has a junction

K-fold point for the chaotic makeup of the attractor.

The last model to show is the simplest stoichiometric food web model con-

sisting of a prey or producer X and two competing predators or consumers Y1

and Y2 of which the second is subject to a stoichiometric constraint. That is,

all species depend on more than one nutrients to grow but the prey and first

predator always have the right amount balance but the second predator can be

limited by the Law of Minimum. More specifically, assume they are measured

by the unit of carbon in their population and they also depend on phosphorus

for growth of which the two predators must maintain a constant phosphorus to

carbon ratio s1 and s2 respectively. The available phosphorus amount for the

prey is P − s1Y1 − s2Y2. The possible transferred phosphorus ratio from the

prey to the second predator is (P − s1Y1 − s2Y2)/X. If it is below the pre-

ferred ratio s2 the second predator becomes less productive. If it is above the

preferred ratio, its reproduction depends only on the availability of the carbon.

Under these assumptions the dimensional stoichiometry model for Holling Type

II consumers becomes

dX

dt
= rX

(
1− X

K

)
− c1X

a1 +X
Y1 −

c2X

a2 +X
Y2

dY1

dt
= e1

c1X

a1 +X
Y1 − d1Y1 −m1Y

2
1

dY2

dt
= e2 min

{
1,

(P − s1Y1 − s2Y2)/X

s2

}
c2X

a2 +X
Y2 − d2Y2 −m2Y

2
2 .
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Here e1, e2 are the birth-to-consumption ratios. With a proper change of vari-

ables and parameters the model can be cast in the following dimensionless form

ε
dx

dt
= x

(
1− x− y1

β1 + x
− y2

β2 + x

)
dy1

dt
= ζy1

(
x

β1 + x
− δ1 − µ1y1

)
dy2

dt
= y2

(
min

{
1,

(1− σ1y1 − σ2y2)

κx

}
x

β2 + x
− δ2 − µ2y2

) (1.16)

Multitime scales dominate when parameter ε and ζ become small.

The attractor on the right of Fig.1.11 is from this model. Again a crashing

fold develops on the ε-slow manifold, which is the capacity branch of the X-

nullcline if one of the predators or both are inefficient. In the case shown it is

the second predator. A junction K-fold point is also present on the rebounding

path of the fast X-flows. It is the result of the second predator being subject

the quality of its food. One can see that to the left of the rebounding junction

K-fold point, the high concentration in element X is not favorable for predator

Y2 but indifferent for predator Y1. Only after the high concentration is drawn

down by predator Y1 to a level does it become beneficial for predator Y2 and

prompt a rebound of its population. Then the crash in the prey ensues above

the ridge of the X-nullcline, and the chaotic cycle continues. In any case, chaos

is cooked up by a similar recipe.

The recipe is apparently not favored by selection because it asks for ineffec-

tive and inefficient species. The multitime scale analysis of the models reveals

another unfavorable factor for ecological chaoses. It shows fast transitions are

always associated with population collapses and all attractors are invariably

tracking along the extinction zones of the crashing populations. It is hard for

nature to maintain and sustain such ravages, and it should be improbable for

us to observe. In fact, there are no confirmed ecological chaoses in the wild.
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Dynamical Systems

The French mathematician Jules Henri Poincaré (1854-1912) pioneered the dy-

namical systems approach for mathematical models. It concerns the long time

behaviors of solutions of differential equations. The methodology is geometrical,

more qualitative than quantitative. Because they last indefinitely, equilibrium

solutions, periodic solutions, and chaotic attractors are the primary objects of

interest. Of which we are particularly interested in those which attract all nearby

solutions. This is because such so-called asymptotically stable steady states are

what we suppose to observe for the physical processes the mathematical models

describe.

2.1 Hyperbolic Decomposition of Linear Systems

Take the linear system of differential equations as an example, x′ = Ax. The

immediate standout steady state is the trivial equilibrium solution x = 0. If

all the eigenvalues of the coefficient matrix A have negative real parts, then

all solutions converge to the trivial equilibrium point, and the convergence is

at an exponential decay rate. The equilibrium point is asymptotically stable.

If all the eigenvalues have positive real parts, then every solution except for

the equilibrium solution diverges without bound, at an exponentially divergent

rate. The equilibrium point is asymptotically unstable. If some eigenvalues

have positive real parts and all others have negative real parts, then orbital

structure of the phase space is a mixed version of the last two types. We can

organize the phase space in the following way and refer to it as a hyperbolic

decomposition. In particular, we can find a change of the variable so that in

the new coordinate denoted by x = (xs, xu) the coefficient matrix is of two

31
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Figure 2.1: Hyperbolic decomposition at an equilibrium point. The solution of

the equations maps stable foliations to stable foliations and unstable foliations

to unstable foliations.

diagonal blocks A = diag(As, Au) with the property that all eigenvalues of

As have negative real parts and all eigenvalues of Au have positive real parts.

Corresponding to this eigenvalue splitting is the hyperbolic decomposition of

the phase space Rn = Es ⊕Eu with Es corresponding to the eigenvector space

of the matrix A having all negative real parts of its eigenvalues and Eu the

eigenvector space having all positive real parts of A’s eigenvalues. The Es

subspace is called the stable subspace or stable manifold when generalized to

nonlinear systems. Similarly, the Eu subspace is called the unstable subspace or

unstable manifold. This description is for good reasons. In fact, every solution

from the stable subspace always stays in the subspace and converges to zero

exponentially, every solution from the unstable subspace stays in the unstable

subspace and diverges without bound. For every initial point not of either types,

the full solution x(t) = (xs(t), xu(t)) always diverges without bound because of

having a nonzero component in the unstable subspace. In this sense the trivial

equilibrium point is unstable.

The space off the invariant stable and unstable subspaces can be further

organized geometrically. First, for every point p from the stable manifold Es

there is a manifold (i.e. hypersurface) of the same dimension as the unstable

subspace Eu having these properties. Denote the manifold by Fup . Then it

forms a family, Fu = {Fup : p ∈ Es}, referred to as an unstable foliation.

Each member of the family is identified by the point the manifold intersects

the stable manifold Es. The most essential property that defines the unstable
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foliation is the invariance property: solutions starting from one member of the

family stay in another member of the family at every moment of time. That

is, (Fup )t ⊂ Fupt . As a result, the invariant foliation is set-convergent to the

unstable manifold forward in time, limt→∞(Fup )t = Eu. Similarly, there is an

invariant stable foliation Fs = {Fsq : q ∈ Eu} so that it is set-convergent to

the stable manifold backward in time, limt→−∞(Fsq )t = Es. Fig.2.1 gives an

schematic illustration of this hyperbolic decomposition of the phase space at the

equilibrium point.

Generalization of this geometric description about orbits of dynamical sys-

tems can proceed in four directions: to nonlinear system of equations, to non-

hyperbolic equilibrium points, to maps, to all above but for periodic orbits and

chaotic attractors. We will describe these generations in various degree of de-

tails. All are about qualitative behaviors of orbits and solutions, and all are

modeled after the linear system template above, none is about exactly form of

particular solutions. The descriptions are all geometrical and qualitative.

2.2 Hyperbolic Decomposition of Nonlinear Systems

Suppose we have a nonlinear system of equations x′ = f(x) and suppose it has

an equilibrium point q, i.e. f(q) = 0. We can consider at the same time or

as the first step of investigation the linear approximation of the system at the

equilibrium point, x′ = Df(q)(x − q). Here Df(q) is the first derivative of the

nonlinear righthand of the full equations. For the first generalization of the linear

hyperbolicity we assume the trivial equilibrium for the linearized equations u′ =

Df(q)u with the translation of variables u = x − q is hyperbolic, i.e. the

coefficient matrix has no eigenvalues whose real parts are zeros. With this

primary assumption the objects of stable manifold, unstable manifold, stable

foliation, unstable foliation, can be all defined and proven to exist with sufficient

smoothness.

More specifically, for the stable manifold, its notation and definition are

given as

W s(q) = {x : lim
t→+∞

xt = q},

i.e., the set of all initial points x so that their solutions xt converge to the

equilibrium point q. The unstable manifold Wu(q) is defined similarly but with

the solutions of its points converging backward to q:

Wu(q) = {x : lim
t→−∞

xt = q}.
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These manifolds exit, are unique and as many time differentiable as the vector

field f itself. They further satisfy these properties. the stable manifold W s(q)

is of the same dimension as the stable subspace Es of the linearization and is

tangent to it at the equilibrium point q; and similarly, the unstable manifold

Wu(q) is of the same dimension as the unstable subspace Eu of the linearization

and is tangent to it at the equilibrium point.

Similar to the linear case, there exist for the nonlinear system an invariant

stable foliation Fs = {Fsp} and an invariant unstable foliation Fu = {Fup } sat-

isfying the same invariance properties. The only difference is that the existence

of these objects is only local, guaranteed to exist in a small neighborhood of the

equilibrium point. The stable manifold is a special member of the stable folia-

tion through the equilibrium point and the likewise the unstable manifold is a

special member of the unstable foliation through the equilibrium point. Also, if

the unstable spectrum, i.e. the set of eigenvalues of positive real parts, is empty,

then full local space near the equilibrium point is the stable manifold. Similarly,

if the stable spectrum, defined analogously, is empty, the full local space near

the equilibrium point is the unstable manifold. If both spectra are nonempty,

then the stable and unstable foliations split is the hyperbolic decomposition of

the equilibrium point. The same depiction by Fig.2.1 applies.

The structural decomposition can get finer. Take the unstable manifold for

example. Assume the unstable eigenvalues have different negative real parts.

Then we call the eigenvalues having the largest negative real part (i.e. closest

to the imaginary axis in the complex plane) the principal eigenvalues and all the

rest unstable eigenvalues the strong unstable eigenvalues or the non-principal

unstable eigenvalues. The linear unstable eigenspace can be further split into

the direct sum of the principal unstable eigenvector subspace and the strong

unstable eigenvector subspace like this Eu = Epu⊕Euu. For the linear system,

solutions from the strong unstable manifold Euu diverge without bound at a

greater exponential rate than solutions from the principal unstable manifold

Eps. For a perturbed nonlinear system this split mostly persists. More specifi-

cally, the strong unstable manifold Wuu persists in the sense that it is invariant,

tangent to the strong unstable eigenvector subspace Euu, and all orbits from

the submanifold are characterized by a divergent rate higher than the principal

unstable eigenvalues.



35 2.3. Nonhyperbolic Decomposition

2.3 Nonhyperbolic Decomposition

The generalization to the case for which the linear system x′ = Ax or the

linearization x′ = Df(q)(x − q) of a nonlinear system at an equilibrium point

has eigenvalues of zero real parts is both straightforward in form and subtle

in structure. For the linear system the phase space can be decomposed into

Rn = Es⊕Ec⊕Eu with Es, Eu meaning the same and Ec being the eigenvector

space of all eigenvalues of zero real parts. The subtle part of the generalization

even for the linear system case is that for point from the center subspace or

center manifold Ec the solution can converge to the trivial equilibrium point,

or diverge away from it, or simply stay put being another equilibrium point, or

go around in cycle.

For a nonlinear system of equations at a nonhyperbolic equilibrium point, the

same definition and result hold for the stable and unstable manifoldsW s,Wu. In

addition, there exists an invariant manifold W c, referred to as a center manifold

of the equilibrium point satisfying these properties. It is of the same dimension

as the center subspace Ec of the linearized system at the equilibrium. It is

tangent to linear subspace Ec at the equilibrium. It contains all solutions that

remain in a small neighborhood of the equilibrium, i.e. any equilibrium point,

any periodic solution, any solution that stays in both forward and backward

time. Unlike the linear systems, center stable manifolds is not unique for non-

linear systems, but unique up to a change of variables. That means for any two

different center manifolds there is a change of variables from one to the other

so that any solution from the first manifold is changed to a solution from the

second manifold and vice versa.

Jointly, there exist the so-called center-stable manifold W cs and the center-

unstable manifold W cu. Each is invariant, i.e. a solution which starts from

the manifold stays in the manifold. Each is tangent to the linear subspace

Ecs = Es⊕Ec and Ecu = Ec⊕Eu, respectively. And the center-stable manifold

contains the stable manifold as a subspace and the center-unstable manifold

contains the unstable manifold as a subspace. Moreover, the intersection of

both is automatically a center manifold, i.e. W c = W cs ∩W cu.

The stable and unstable foliations also exist, Fs = {Fsp : p ∈ W cu} and

Fu = {Fup : p ∈ W cs}. For the former, the membership is defined by the leaf’s

intersection with the center-stable manifold and for the latter, the intersection

with the center-unstable manifold.
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2.4 Connecting Orbit

Before we continue to generalize the hyperbolic and nonhyperbolic decompo-

sitions for periodic orbits and for maps, let’s give a brief description for some

interesting results that cannot be described otherwise without featuring the

stable and unstable manifolds of equilibrium points.

Equilibrium points, limit cycles are all closed orbits. The next in line of

closed orbits in terms of complexity are homoclinic and heteroclinic orbits. A

homoclinic orbit of an equilibrium point q lies in the intersection of the point’s

stable and unstable manifolds. That is, if a point is from the intersection set,

x ∈W s(q)∩Wu(q) 6= ∅, then the solution xt must converges to the equilibrium

point both in forward and in backward direction, that is,

lim
t→+∞

xt = q and lim
t→−∞

xt = q.

A heteroclinic orbit is one that lies in the stable manifold of one equilibrium

point and the unstable manifold of another equilibrium, i.e. the orbit converges

to different equilibrium points in the opposite directions:

lim
t→+∞

xt = q1 and lim
t→−∞

xt = q2.

The existence of such orbits in a system almost always raises the interest level

multiple folds. For a homoclinic orbit a small perturbation to the nonlinear

system usually creates a periodic orbit. When the conditions are right, they can

bring along chaotic orbits, including infinitely many periodic orbits. Heteroclinic

cycles can bring out similar complex dynamics as well.

Two-dimensional examples are fairly straightforward. If a HamiltonianH(x, y)

has a saddle critical point which lies on closed level curve H(x, y) = c, then the

critical point is a saddle equilibrium point of the Hamiltonian system x′ =

Hy(x, y), y′ = −Hx(x, y) and the closed level curve is a homoclinic orbit. Also,

if we construct a mockup system by Rössler’s singular perturbation method for

which an equilibrium is on a singular limit cycle, then a homoclinic orbit can be

maintained by a perturbed system. Homoclinic and heteroclinic orbits as vari-

ous intersecting configurations of stable and unstable manifolds are much more

interesting in three dimensional systems. Let us take a look at some examples,

mostly for their geometric appeals.

2.4.1 Twisted Homoclinic Orbit Doubled

To motivate we first take a look at a mockup system by Rössler’s singular per-

turbation construction. The system of Fig.2.2 has a homoclinic orbit for which
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Twist Like A Möbius Band:
ẋ = (2− z)a(x− 2) + (z + 2)×

[
α(x− x̄)− β(y − ȳ)

]
ẏ = (2− z)

[
c(b− a)(x− 2)/4 + by

]
+ (z + 2)

[
β(x− x̄) + α(y − ȳ)

]
εż = (4− z2)

[
z + 2−m(x+ 2)

]
− dz

−2.5
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2.5
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Z

Figure 2.2: A twisted homoclinic orbit in a projected 2-dimensional view and a

3-dimensional view. Parameter values: a = 1, b = 1.5, c = −3.5, d = 0.02,m =

1.1845, α = 0.01, β = −5, x̄ = −0.1, ȳ = −2, ε = 0.01.

the unstable manifold of the equilibrium point in question is 2-dimensional and

it has a half-twist like a Möbius band around homoclinic orbit before converg-

ing to the strong unstable manifold Wuu. The same type of z-switch as before

is used. On the bottom branch z = −2 of the z-switch with d = 0, the slow

equations are

ẋ = 4a(x− 2)

ẏ = 4
[
c(b− a)(x− 2)/4 + by

]
.

It is a linear system, and as such everything that needs to be computed can

be computed. In particular, the equilibrium point is at (2, 0). The coefficient

matrix has two eigenvalues, both are positive, 0 < λ1 < λ2. The eigenvector for

the principal unstable eigenvalue λ1 is on the line from the equilibrium point to

the point (−2, c). The eigenvector for the strong unstable eigenvalue λ2 is on

the line through the point and parallel to the y-axis. The triangle band that

fans out from the equilibrium point contains the principal eigenvector solution

and a few slow orbits around it. The vantage point of the band for the plane

view is from the negative z-axis and with the coordinate rotated 180◦. The
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band hits the bottom turning point edge, jumps up to meet the top branch of

the z-switch. The slow equations on the top branch is a linear spiral around the

equilibrium point (x̄, ȳ). It is positioned so that the band makes a half turn and

then hits the top turning edge. It falls down exactly on top of the equilibrium

point on the bottom branch of the slow manifold, with the junction points line

up along the strong unstable direction of the point. The twisted band contains

a homoclinic orbit, and the band is the unstable manifold of the equilibrium

point. The fast orbit whose junction point is the equilibrium point is the slow

manifold of the equilibrium point. The two manifolds intersect to create the

homoclinic orbit. When the unstable manifold goes around with full twists, the

homoclinic orbit is nontwisted. It happens for the system when the parameter

c changes from −3.5 to −0.2. Somewhere in between the homoclinic orbit hits

a K-fold junction point on the top branch of the z-switch. Chaotic dynamics

can arise from perturbed systems near such junction-fold homoclinic orbit.

So twisted homoclinic orbit can happen, and it can happen in the simplest

setting by singular perturbation. For such an orbit the following theorem holds.

Simply put, a twisted homoclinic orbit can double itself if it is to a resonant equi-

librium point. Hereon we will always assume the right hand of any differential

equations has derivatives of all orders.

Theorem 1 Assume a system of equations in R3 has a twisted homoclinic orbit

to a hyperbolic equilibrium point. Assume also the principal stable eigenvalue is

a simple real number λs < 0 and the principal unstable eigenvalue is a simple

real number λu > 0. Assume the resonance condition holds that the magnitude

of the principal eigenvalues are equal in magnitude, i.e. |λs| = λu. Then one

can always find a perturbation to the system so that the perturbed system has

one homoclinic orbit winding around the tube twice.

In fact, much more can be concluded than stated in the theorem. A lengthy

version of the theorem is to say when the conditions are met, one of the following

holds in a tubular neighborhood of the homoclinic orbit: (i) the perturbed

system does not have a homoclinic orbit nor a periodic orbit; (ii) the perturbed

system has only one periodic orbit; (iii) the perturbed system has one unstable

periodic orbit and one stable periodic orbit winding around the tube twice; (iv)

the perturbed system has one unstable periodic orbit and one homoclinic orbit

winding around the tube twice. And furthermore this result can be generalized

to higher than three dimensional spaces.

We will not even attempt an outline of proof for this theorem nor for any

theorem stated in this chapter. Doing so will take us too far offtrack. Suffice it
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to say all proofs require careful tracking of most if not all the invariant manifolds

introduced in the previous sections.

2.4.2 Spiral At Itself

Leonid Pavlovich Shilnikov (1934-2011) was a mathematician from the former

Soviet Union. He was generally considered to be the pioneer in the study of ho-

moclinic and heteroclinic orbits of differential equations in higher dimensions.

He discovered the first criterion for chaos generation that involves homoclinic

orbit to equilibrium point of differential equations, being influenced by and

shortly after Smale’s discovery of the horseshoe map which we will discuss in

the last chapter of this book. His criterion stands to this day to be the simplest

kind and the most common mechanism for chaos generation. His work is well

regarded in the West but he had a considerable hard time to gain the recogni-

tion he deserved at home. Here below is his best known theorem, which says

chaos will surely happen if a system has a homoclinic orbit to an equilibrium

whose unstable manifold solutions spiral out slower than whose stable manifold

solutions close in. Such an equilibrium point is referred to as a saddle-focus

equilibrium.

Theorem 2 (Shilnikov’s Saddle-Focus Homoclinic Chaos) Assume a system of

equations in R3 has a homoclinic orbit to a saddle-focus equilibrium point at

which the principal stable eigenvalue is a simple real number λs < 0 and the

principal unstable eigenvalue is a pair of complex numbers λu + iµ, µ > 0 so

that the contraction is stronger than the expansion at the equilibrium point along

the homoclinic orbit, i.e. |λs| > λu > 0. Then in a tubular neighborhood of the

orbit and the equilibrium point there is a set of orbits inside the neighborhood in

both forward and backward time so that the set contains infinitely many periodic

orbits, uncountably many aperiodic orbits, and infinitely many dense orbits of

the set. Furthermore, this result can be generalized to higher than three dimen-

sions.

Actually, if it is not for our consideration for presentation to postpone the

introduction of Bernoulli’s shift dynamics to the last chapter, the more general

way to state his result is to say the solution set is equivalent to a Bernoulli shift

on infinitely many symbols.

Fig.2.3 shows a number of Shilnikov’s orbits. The top left plot is for the

mockup system Eq.(1.8) which was used in the previous chapter to simulate the

Rössler attractor. The construction of the Shilnikov’s orbit is by design. The
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Figure 2.3: Top left: a = 2, b = −2, c = 1,m = 0.923, r = 2, R =

1010, α = 0.3829, β = 5, d = 0.08, ζ = 4, ε = 0.001, for Eq.(1.8). Top right:

ENa = 0.5, EK = −0.7, r1 = 10, r2 = −12.2, i1 = 0.24, i2 = 0.43, G1 =

15, G2 = −0.37, V1 = −1, V2 = −0.02, λ = 0.055, C = 2.2, R = 0.18, ε = 0.001,

and zeroes for other parameters, for Eq.(1.1). Bottom left: β1 = 0.26, β2 =

0.5, δ1 = 0.2, δ2 = 0.19, µ1 = 0, µ2 = 0.1, ζ = 1, ε = 0.02, for Eq.(1.4). Bot-

tom right: a1 = 0.08, a2 = 0.23, a3 = 0.185,m1 = 15,m2 = 7,m3 = 2.5, and

b = b1 = b2 = 1, for Eq.(1.15).

top right plot is for the neuronal circuit model Eq.(1.1) for which the type of

Shilnikov’s chaos occurs when the membrane capacitance becomes large. The

bottom left plot is for the dimensionless food chain model Eq.(1.4) for which

chaos arises when the predators are not proficient in catching their preys with

small half saturation parameters β1 and β2. The bottom right plot is for the

chemostat model Eq.(1.15). Again, chaos can only occur when the consumers

are not proficient with small a1 and a2. The last three model attractors would
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spread out to fill more space like the first attractor had we followed up the

solutions over a longer period of time like we did for the first one. The beauty

of the theorem lies in the simplicity the condition entails. All one has to establish

for a system of differential equations to be chaotic is to prove the existence of

a Shilnikov’s saddle-focus homoclinic orbit. For fast-slow systems this strategy

has proved to be extremely effective.

2.4.3 One Twisted Loop And Infinite Connections

Next, let us take a look at a specific model with a very interesting feature around

a pair of heteroclinic orbits to two equilibrium points that forms a loop if one

follows the time evolution of the orbits. That is, the model has one hetero-

clinic orbit from equilibrium one to equilibrium two and another heteroclinic

orbit from equilibrium two back to equilibrium one. The interesting feature

is the center-stable manifolds of the equilibria that are twisted respect to the

connecting loop.

The model system in question is the FitzHuge-Nagumo reaction-diffusion

equations

vt = vxx + f(v)− w, wt = ε(v − γw), (2.1)

with the function f being this cubic polynomial f(v) = v(1 − v)(a − v). The

system is used as a model for electrical impulse transmission along an infinitely

long cable. It is often cited in the literature as a model for nerve axon, which is

more of a tenuous application. Nevertheless in the setting of the nerve axon, the

spatial variable represents the axial dimension of the axon. The variable w with

ε small is often referred to as the recovery variable which from our modeling of

the neurons corresponds to the ion pump dynamics. The function f is used to

model the simplest type of nonlinearity for cross-membrane passive currets in

parallel channels.

Nerve impulses are thought to maintain their spatial profiles as they travel

along the axon, and the model is used to capture this so-called traveling wave

phenomenon. In terms of solutions to the reaction-diffusion equations, they are

represented by the traveling wave solutions of the form

(v, w)(x, t) = (v, w)(x+ ct),

where c > 0 is the wave propagation speed. Casting the equations in the

traveling coordinate frame z = x+ct transforms the reaction-diffusion equations

Eq.(2.1) into a system of ordinary differential equations as follows

cv̇ = v̈ + f(v)− w and cẇ = ε(v − γw),
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where the dot represents taking derivative in the traveling wave coordinate z,

i.e. ˙ = d
dz . By introducing the velocity variable of the v-variable, u = v̇, the

higher order system of equations is transformed into a first order system:

u̇ = cu− f(v) + w, v̇ = u, ẇ = ε(v − γw)/c (2.2)

Since ε is a small variable, representing the slow pump dynamics, this system

acquires the attractive feature of being multiple time scaled. As a fast-slow

system, variables u, v are the fast variables and w the slow variable.

The slow manifold consists of the equilibrium points of the fast subsystem:

u = 0, w = f(v), i.e., the cubic curve on the vw-plane. It shapes like the

letter N upsidedown in the vw-plane view. Fig.2.4 shows only the left and right

branches of the upsidedown N . Depending on the size of γ, there are one, two,

or three equilibrium solutions. Fig.2.4 depicts an interesting case of having three

equilibrium points, the origin 0, the equilibrium point p, respectively on the left

and right branches of the N slow manifold. The figure depicts a parameter

case in which the unstable manifolds of both 0 and p land precisely on the slow

manifold at the singular value ε = 0. The unstable manifold of 0 lies on the fast

uv-plane with w = 0, the unstable manifold of p lies on a plane parallel with

the uv-plane as ẇ = 0 at the singular limit ε = 0. The slow dynamics moves

down above 0 on the slow manifold’s left branch because the w-rate of change

is negative, w′ = (v − γw)/c < 0. Below p on the right branch the derivative

is positive, w′ > 0, thus the slow dynamics moves up. As a result, the fast and

slow flow concatenations result in a singular heteroclinic orbit from 0 to p and

a symmetric one from p to 0.

The figure gives a qualitatively correct depiction of the invariant manifolds

at the singular value ε = 0. In particular, the center manifold of 0 is exactly

the left-branch of the slow manifold, and similarly for the center-manifold W c
p

of p. The most interesting feature is the fact that the singular heteroclinic orbit

from 0 to p connects opposite sides of the center-stable manifold of 0. Similarly,

the heteroclinic orbit from p to 0 arises from the back side of the center-stable

manifold W cs
p of p and ends on the front side of it, which lines up along the

strong stable manifold of 0 when its orbits flow backward in time.

Consequences to this twisted heteroclinic pair are very interesting. It is a

proved fact that for each sufficiently small ε and each γ near the parameter

point (c∗, γ∗) for the singular heteroclinic cycle, there are two decreasing se-

quences of c, c0,n and cp,n, near c∗ so that the reaction-diffusion equations have

a heteroclinic orbit from 0 to p around the loop n times at the wave speed c0,n

and another heteroclinic orbit from p to 0 around the loop n times at the wave



43 2.4. Connecting Orbit

w

p

0

W
u

0

W
cs

0

W
c

0

W
cu

0

u

v

Figure 2.4: A twisted embrace of the center-stable manifolds of 0 and p.

speed cp,n. Furthermore, the equations have a homoclinic orbit to 0 around

the loop once at the wave speed c0,∞ which is the limit of c0,n, and symmet-

rically another homoclinic orbit to p around the loop once at the wave speed

cp,∞ = limn→∞ cp,n. In addition, for all c sufficiently near but below c0,∞ or

cp,∞ the equations have a periodic orbit around the loop once.

The parameter point (c∗, γ∗) from which all the n-loop heteroclinic orbits

arise can be explicitly computed. Let’s file it away in the statement below.

Theorem 3 At ε = 0 and for 0 < a < 1/2, the parameter point (c∗, γ∗) is

given by c∗ = 1−2a√
2
, γ∗ = 9

(1−2a)(2−a) . Also the corresponding equilibrium point

p = (0, v∗, w∗) is given by v∗ = 2
3 (1 + a), w∗ = f(v∗).

Although these orbits are close to each others as solutions to the ordinary

differential equations (2.2), as solutions to the partial differential equations they

are far apart in the spatial profile dimension. The question for the PDE, which

is an infinitely dimensional system, is are these infinitely many traveling waves

stable? The last, but not the least, interesting property is the fact that they are

indeed all asymptotically stable, and the stability is determined by the way the

center-unstable manifold of 0 (resp. p) and the center-stable manifold of p (resp.

0) intersect at an acute angle in the direction of w on a plane perpendicular to

the fast unstable orbit Wu
0 (resp. Wu

p ). Without the twist all the infinitely

many heteroclinic pulse waves are not possible.
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Double Shilnikov Attractor:
ẋ = z(z + r)ζ − z(z − r)ζ + (r2 − z2)[αx− βy
ẏ = z(z + r)[b+ c−b

−3−a (x− a)− y]

+z(z − r)[−b+ −c+b
3+a (x+ a)− y] + (r2 − z2)[βx+ αy]

εż = z(r2 − z2)
[
z −m(x+ 3)

][
z −m(x− 3)

]
− εd(z + x)

(2.3)

Figure 2.5: Parameter values: a = 0, b = 0, c = 0, d = 1,m = 0.8993, r = 2, β =

5, ζ = 47, ε = 0.1, and α = β ln(1+Φ)
2π = 0.3829. Left: the up and the down

homoclinic orbit. Right: the attractor.

2.4.4 Up Or Down: Random At The Core

Up to now we have relied on eye witness account to slap a chaos label on any-

thing that looks complicated. We still have to wait until the last chapter to

give one precise definition of chaos. In this example, however we can be more

convincing about the chaos than about all other chaoses, even though we still

rely on pictures. It is to apply one working definition of chaos to make the

determination. It is the property of sensitive dependence on initial conditions

Lorenz had emphasized with his butterfly attractor discovery. Instead of theo-

rizing it, let us present another mockup system whose unstable manifold of an

equilibrium is fantastically pulled, twisted, torn in two different directions.

Fig.2.5 shows the equations and the attractors. Instead of a single z-switch

the switch slow manifold consists of three horizontal branches z = −2, z =

0, z = 2 for bottom, middle, top branches, respectively, and two slanted planes.

Two adjacent branches are part of a z-switch. Together they form a double
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z-switch, one Z at the top and one Z at the bottom, both share the middle

horizontal plane. The slow orbits on the top and bottom branches are linear

flows, both pulling toward their respective turning edge. An unstable spiral

equilibrium point is placed at the center (0, 0, 0) in the middle branch of the

double z-switch of the slow manifold, so that it is the junction target of the

two turning edges. There are two K-fold turning points in the middle branch,

one switches the slow flows up to the top branch of the double z-switch and

the other switches the slow flows down to the bottom branch. So depending on

where a point is located in the middle branch, from one region the orbit is sent

to the top and from another region the orbit is sent to the bottom. And the

two types of regions are tightly tangled up at the equilibrium point.

By turning the parameter values as nobs one can simultaneously construct

two homoclinic orbits to the center equilibrium point. Each orbit is a Shilnikov’s

saddle-focus homoclinic orbit. Because of the double z-switch, we get two. In

this case, both shares the common equilibrium point. In terms of the unstable

manifold of the spiral center (0, 0, 0), one piece has to be pulled up to meet the

top branch of its stable manifold and another piece has to be pulled down to

meet the bottom branch of the stable manifold. While doing that they have to

rotate infinitely many times near the unstable manifold. Like inside a shredder,

infinitely many pieces are torn away to be sent up and infinitely many pieces

are torn away to be sent down, again and again, and so on. Yet, inside this

double chaotic funnels things must move on orderly – these infinitely many

threaded pieces do not bump on each others because if they do they would

create additional homoclinic orbits but the only orbits that are allowed to hit

the bullseye are the two homoclinic orbits.

The sensitive dependence on initial conditions is never so obvious. No mater

how close two points are near the equilibrium point, one can be sent out spiraling

to go up and the other can be sent out spiraling to fall down. Any random

perturbation or fluctuation to an initial point near the core can send the orbit

onto a completely different path. This random switching goes on indefinitely at

the center. Without any formal verification of any version of chaos definition,

this double whammy Shilnikov casts much lesser doubt on its chaosness.

2.5 Decompositions For Map

The idea of invariant manifolds decomposition near equilibrium points can be

easily extended to periodic orbits. One can do this by generalizing the various

definitions. But Poincaré had a better idea. Instead of working with the solution
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Figure 2.6: Return map on a cross section to a periodic orbit.

operator xt of the equations with initial point x and the continuous time t,

Poincaré introduced the idea to work with the first return map defined on a

cross section of the periodic orbit, see Fig.2.6 for an illustration. Denote the

return map by f : S → S with S being a cross section of the phase space. Then,

the periodic orbit becomes a fixed point of f . It is always locally defined, and

in many cases it can be defined globally as shown in Fig.2.6 for some examples.

Poincaré pioneered the modern version of hyperbolic decomposition of maps

which was extended for equilibrium points of differential equations. Because a

map can be thought to be an iterative, discrete process, we can use the natural

number to denote the discrete time progression. So we denote xn the current

state of a process and xn+1 = f(xn) be the next state. If f is a linear map,

then we can write xn+1 = Axn after relocating any fixed point to the origin.

The change of coordinate, the hyperbolic decomposition of the phase space,

Rd = Es ⊕ Ec ⊕ Eu, are also done by eigenspace of the matrix A. The only

difference between flows and maps with regard to the eigenvalues is that the

unstable eigenvalues of Eu for maps are those lying outside the unit circle in

the complex plane, and those of Es inside the unit circle, and those of Ec on

the unit circle. If x ∈ Eu, then the iterative orbit xn = f(xn−1) = Anx0 with

x0 = x must diverge without bound at a geometrical rate. If x ∈ Es, the

orbit xn = Anx must converge to 0 geometrically. For x ∈ Ec, the orbit xn can

behave in many different ways. It may remain bounded, or converge to the fixed

point, or diverge without bound, but in the latter two cases they cannot do so

at geometric rates, forms like λn with either |λ| < 1 or |λ| > 1, the discrete

equivalence to exponential rate for flows when n is replaced by a continuous

time.

For nonlinear maps with fixed points, the generalization for the various man-

ifolds and foliations proceed in the ways as for differential equations, using the

linear subspace decomposition Es ⊕ Ec ⊕ Eu as various tangent space combi-
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Figure 2.7: K-fold attractors and their return maps. Top: The same junction

K-fold attractor as Fig.1.4. The return map is a unimodal map in the interval

[a,b] with c being the maximal point. Bottom: Turning K-fold attractor of

Eq.(1.8) with parameters: a = 2, b = −10, c = −8.5,m = 0.92, r = 2, R =

1010, α = 0.5, β = 5, d = 0.08, ζ = 8, ε = 0.001

nations at the fixed point. The same picture (2.1) can be used as an geometric

illustration of the local hyperbolic decomposition for both flows and maps, one

at equilibrium points and the other at an fixed points. If we use Wu
loc to denote

the local unstable manifold that contains the fixed point and is tangent to the

linear subspace Eu at the fixed point, then the global unstable manifold Wu

is also the dynamic spread of the local one, i.e. Wu = ∪∞n=0f
n(Wu

loc) for map

and Wu = ∪∞0≤t<∞φt(Wu
loc) for flow. Similarly, we have W s = ∪∞n=0f

−n(Wu
loc),

assuming f is a diffeomorphism.

2.5.1 Tangled Chaos

Homoclinic and heteroclinic orbits are defined similarly as for the flows to be the

intersections of the global stable and unstable manifolds of the same or different
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Figure 2.8: The stable and unstable manifolds of a map can intersect transver-

sally as well as tangentially, forming an extremely complex tangle.

fixed points. Unlike differential equations in 2-dimension, two-dimensional maps

can be much more interesting and complex. This is perhaps not a fair compar-

ison because a 2-dimensional map is inherently a 3-dimensional flow on a cross

section. Nonetheless, when the stable and unstable manifolds of a fixed point

of a map intersect, the typically do so with the manifolds go through each other

at an angle, referred to as transversal intersection. If x0 is such a homoclinic

point, then both forward and backward iterates xn converge to the fixed point

as the discrete time goes to infinity, n → ±∞. Since a piece of the unstable

manifold goes through the homoclinic point x0, that piece is replicated infinitely

many time along the forward orbit xn, n > 1, piling up closer and closer to the

local unstable manifold Wu
loc first and then being stretched and spread along the

global unstable manifold Wu. The same picture is true for a piece of the stable

manifold through x0 that is carried backward in time. This creates an orderly

but tangled mess that even befuddled Poincaré to the point he had to leave a

three-body problem unsettled which earned him his first official accolade not

because he did not solve the problem completely but because he had made so

much progress on an extremely hard problem. With the Smale horseshoe and

chaos to be defined precisely in the last chapter later we can state the following

simplest chaos scenario for maps.

Theorem 4 If a differentiable map has a transversal homoclinic point then the

map has an invariant set near the point that contains infinitely many periodic

orbits, infinitely many homoclinic orbits of periodic orbits, infinitely many hete-

roclinic orbits of periodic orbits, uncountably many non-periodic orbits, infinitely

many dense orbits, and all things of chaos.
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In its flow equivalent setting, the fixed point of the return map corresponds

to a periodic orbit of the flow, the transversal homoclinic point of the map

corresponds to a transversal intersection of the stable and unstable manifolds

of the periodic orbit. Thus, this theorem gives a simple way, of course, simple

in a relative sense, that a system of differential equations in three dimension or

higher can become chaotic.

Back to the map, the transversal intersection of the stable and the unstable

manifolds are not necessary. Actually there is nothing in theory to prevent them

from intersecting tangentially. When they do, there will be infinitely many such

tangential homoclinic points referred to as sinks. One can show that you cannot

destroy one tangency without creating another somewhere else. We will discuss

this later in a different setting.

2.5.2 Markov Chain: A Deterministic Random Process

Let us close this chapter with a nonhyperbolic map which is used to model a

lot of discrete stochastic processes. Such processes can be cast in the following

setting. First there are a finite number of states, state 1, state 2, and etc. all up

to the last state n. Second the process at a particularly discrete time, called it

the stage, is at a state. This process’s state at stage t is denoted by Xt and it is

equal to state j, the process’s state at the stage. Hence we can denote it by Xt =

j. Third the process is not deterministic but probabilistic. That is, the state

at the next stage is not determined by a function but by a probability. It can

be any number of the states. Finally if we assume the probability to determine

the transition over one stage from a state j to a state i is independent of other

states nor any prior stages, the resulting probability distribution, denoted by

pij , completes the probabilistic model for such a process. A process satisfying

these conditions is called a Markov chain, the changing state Xt is referred to

as the random variable taking values in the states and the probability pij from

state j to state i is referred to as the transition probability. In notation, we

have, pij = Pr{Xt+1 = i|Xt = j}, which reads for the righthand side that the

(conditional) probability of the process at state i given the process at state j at

the previous stage.

Because the state j must transit to one of the n states, the possibility to

itself also included if that probability is not zero, the sum over the destination

states must be 1 for each given state j, that is
∑n
i=1 pij = 1. List them all in an

array we obtain the so-called transition matrix P = [pij ], of which each column

is the transition probabilities from the column j state to other states, which are
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the row numbers. If we stop motivating further about such Markov processes,

the transition matrix formally has already defined a linear map dynamical sys-

tem xk+i = Pxk. What we like to illustrate below is the fact all pertinent

questions about the Markov process have something to do with the matrix as a

dynamical system. The most interesting feature of all is the property that the

invariant spectral space split of the map at the trivial fixed point x = 0 is always

nonhyperbolic. In fact, the first natural number 1 is always an eigenvalue of

the matrix and the center stable manifold Wc is exactly the linear eigenspace

Ec of the eigenvalue and it is exactly one dimensional. That is, there are no

other center eigenvalues for the map. Furthermore, all other eigenvalues are

stable eigenvalues, strictly inside the unit circles. That is, the stable manifold

W s is the linear spectral space Es, filling up the rest complementary space for

the phase space Rn. These results and more are based on one hard theorem,

referred to as the Perron-Frobenius Theorem, which we will state shortly and

then illustrate how the theorem leads to the nonhyperbolic decomposition of

the map alluded here above.

Back to the Markov process. The transition probability matrix is only

the means not the questions about the process. The first question one asks

usually starts with an initial probability distribution about the process. Say,

at the initial stage the process is likely to be found at a given state i with

probability x(i). Here x(i) is the ith row component of the probability vector

x = [x(1), x(2), . . . , x(n)]′ with ′ denoting the transpose operation from a row

to a column vector and from a column to a row vector. This is the so-called

marginal probability for the random variable Xt. Use the transition probabil-

ity as the conditional probability, then we can find the marginal probability

for the random variable Xt+1 at the next stage. Denote the probability by

x1 = [x
(1)
1 , x

(2)
1 , . . . , x

(n)
1 ]′. Then we have by Bayes’ rule, x

(i)
1 =

∑n
j=1 pijx

(j).

That is, the probability to find the process at state i is distributed over all

possible paths into state i: from state 1 to state i, from state 2 to state i, and

so on. The application of Baye’s formula gives the first usage of the transition

matrix as one can check trivially x1 = Px0 with x0 = x. Use x1 as a new

initial state’s marginal distribution and apply the same computation as above,

we then have x2 = Px1 = P 2x for the marginal distribution for the process

at the new stage 1, i.e. the original stage 2. In general, carry this iteration

forward, we have xk = Pxk−1 = P kx for the stage k’s marginal distribution xk

for the process states. If we let p
(k)
ij denote the components of the kth iterate

matrix P k, then it represents exactly the (conditional) transitional probability

of being at state i given that the process is at state j but k many stages prior,
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Figure 2.9: The dynamics of the transition matrix of a Markov process at the

trivial fixed point and the steady state distribution.

that is p
(k)
ij = Pr{Xt+k = i|Xt = j} with p

(1)
ij = pij .

The next question obviously is to ask what happens in a long run, or if

the asymptotic marginal distribution x∞ = limk→∞ xk exists? If it does, does

the limit depend on the initial distribution x? If not, the interpretation for

the limiting distribution x∞ is this steady state interpretation for the Markov

process. Which means no matter what initial marginal distribution for the

process states, in a long run the probability to find the process at state i is

x
(i)
∞ . If such a steady state exists, we use w to denote the asymptotic limit,

w = x∞, for the property that it is independent of the initial state distribution

x. The vector w is a column vector, and a probability vector with wi ≥ 0 and∑n
i=1 wi = 1. This leads to the following statement.

Theorem 5 (Perron-Frobenius Theorem) If the transition matrix P satisfies

this transitive property that after a finite iteration k, all the entries of P k is

positive, i.e. every state is probable to become any other state after k many

stages, then the limit limk→∞ P k exists and the limit is consisting of a unique

steady state distribution probability vector w repeated for every column of the

limit, i.e. limk→∞ P k = [w,w, . . . , w]. In components, limk→∞ p(k)ij = wi for

all i and all j.

This result immediately implies that as a discrete dynamical system the

matrix P has the first natural number 1 as an eigenvalue and the steady state

distribution vector w is an eigenvector. In fact, we have this rewriting of the

limit,

P [w,w, . . . , w] = P lim
k→∞

P k = lim
k→∞

P k+1 = [w,w, . . . , w]
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implying Pw = w, when equating the left and the right one column a time. Since

each column of P k sums to 1, so is the limit and the w vector is a probability

vector and as such it is a nonzero vector. So λ = 1 is an eigenvalue and w is

its eigenvector, and the center manifold W c is at least of the linear span by w.

That is, W c must contain the line through the origin and the point w in the

phase space Rn, see Fig.2.9. In fact, a few lines of simple manipulation will

show the eigenvalue 1’s spectral line is all of the center stable manifold W c.

Here is how. As far as the eigenvalue 1 goes, we don’t need the big theorem of

Perron-Frobenius. We can check easily that if we denote 1 for the column vector

consisting of 1s for all its entries, then it is an eigenvector for the transpose of the

transition matrix, i.e. P ′1 = 1. The calculation is trivial because
∑n
i=1 pij = 1

for all js. State it differently, the row vector 1′ is a left eigenvector of the

transition matrix as 1′P = 1′ whose eigenvalue is 1. So λ = 1 is an eigenvalue

of the matrix.

The dynamics on the center manifold W c is trivial. It consists of all fixed

points of the matrix as P (rw) = rw for all coefficients r. Next, we find the stable

manifold of the matrix at the trivial fixed point x = 0 or at every fixed point

on the center stable manifold W c. Surprisingly it is the hyperplane through the

origin that is perpendicular to the transpose’s eigenvector 1. That is, for every

x from W s, the dot product with the normal vector 1 is zero for orthogonality,

x · 1 = 0, or W s = {x = [x1, x2, . . . , xn]′ :
∑n
i=1 xi = 0}. The line of argument

is almost trivial because for each x from the set W s, its iterate converges to

zero: limk→∞ P kx = [w,w, . . . , w]x = (
∑n
i=1 xi)w = 0. Because P is a matrix,

the convergence must be geometrical (i.e. exponential) and x must be from

the eigenspace of a stable eigenvalue. Because the dimension of W s is n − 1-

dimensional, there must be n− 1 many stable eigenvalues and therefore 1 is the

only center eigenvalue of the matrix.

The spectral decomposition of the phase space of the matrix at the trivial

fixed point is exactly depicted by Fig.2.9. Notice that every plane parallel to

the stable manifold W s is a leaf of the stable foliation. The one through the

steady state distribution point w is the one containing the probability simplex,∑
xi = 1, xi ≥ 0, pertinent to the Markov process. Herein we can recover the

asymptotic steady state property of the process satisfying the transitive con-

dition of the Perron-Frobenius Theorem. For any initial marginal distribution

x, the long term marginal distribution is the constant steady state distribution:

limk→∞ P kx = [w,w, . . . , w]x = (
∑n
i=1 x

(i))w = w. If x is from any other stable

foliation leaf, the limit converges to the fixed point (
∑n
i=1 x

(i))w on the center

manifold W c.
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Universal Number 1

In the 1970s the American physicist Mitchell Feigenbaum and, independently,

two French physicists Pierre Coullet and Charles Tresser made a fantastic discov-

ery on the simplest possible nonlinear map, the logistic map fr(x) = rx(1− x).

Their discovery is now referred to as the Feigenbaum-Coullet-Tresser Univer-

sality because their result not only applies to the logistic map but also to all

dynamical systems which undergo the cascade of period-doubling bifurcations

to chaos.

3.1 Period-Doubling Universality

The logistic map maps the unit interval [0, 1] into itself for 0 ≤ r ≤ 4. The

origin x = 0 is always a fixed point x̄ = fr(x̄) for all r. It is globally attracting

only for 0 < r < r0 = 1 but for r above r0, it becomes unstable. For r > r0

a nontrivial fixed point is born inside (0, 1). Between r0 < r < r1 = 3 the

new fixed point is stable and then becomes unstable for r > r1. The parameter

value r1 starts the first period-doubling bifurcation point in the cascade: for

r > r1 the map has a period-two periodic orbit which attracts all orbits except

for the two unstable fixed points. This attraction holds for parameter values

below the next bifurcation point r2 = 3.449490 in the cascade. From r2 onward

the period-two orbit losses its stability and a period-four orbit is born for all

r > r2. It stays stable only below another parameter point r3 > r2 and losses

its stability beyond r3 from which a period-23 is born, and so on. That is,

the cascade consists of an increasing sequence of period-doubling bifurcation

points, r1 < r2 < · · · < rn < · · · , so that for rn < r < rn+1 the map has a

stable period-2n orbit which losses its stability as r across rn+1 from below at

53



Chapter 3. Universal Number 1 54

0 1
 

1

x
n

x n+
1

Figure 3.1: Left: the so-called cobweb plot of orbit for 1-dimensional maps. Let

{x0, x1, x2, . . . } with xn+1 = f(xn) for a 1-d map f in a normalized interval

[0, 1] so that 0 ≤ xn ≤ 1. One starts at point (x0, x0), connects it to (x0, x1)

by a line, draws another line to (x1, x1) on the diagonal, and then repeats the

process to the last point in a finite sequence of the orbit from the initial point

x0. The plot shows an orbit of the logistic map at parameter value r = 3.56 that

is converging to the attracting period-8 orbit (red). Right top: the bifurcation

diagram for 2 < r < 4, showing the attractors, chaotic or periodic, in the

unit interval for a discretized sequence of the parameter. Bottom: a room-in

window for the bifurcation diagram, not against the parameter r ∼ rc − αδ−n

but against this logarithmic transformed parameter, n = −[log rc−r
α ]/ log δ with

α = 2.5029. It shows the period-2n bifurcation points approximately fall on the

integers n = 7, 8, 9, 10, 11, numerically demonstrating the convergence of rn to

rc is exponential.

which a stable period-2n+1 is born, see Fig.3.1.

3.1.1 The First Universal Number

This sequence has a limiting value rc = 3.569945672... at which the map has an

unstable periodic orbit of period 2n for all nonnegative integers n = 0, 1, 2, . . . ,

the onset of chaos for the logistic family. These three physicists also found that

the convergence of the cascade to the limit point is exponential: rc − rn ∼ δ−n

with

δ = 4.6692016091029....
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They also observed that for different families of maps, such as fr(x) = r sin(πx),

the period-doubling cascade may take on different bifurcation values rn and

different limit rc but the exponential convergence rate rc − rn ∼ δ−n remains

the same. In an equivalent fashion for exponential decay, the quotient sequence

of adjacent differences satisfies

lim
n→∞

rn − rn−1

rn+1 − rn
= δ.

That is, the number δ is universal for the class of dynamical systems undergoing

the period-doubling bifurcation cascade, independent of any particular family

in the class. For this reason the number δ is referred to as the Feigenbaum-

Coullet-Tresser universal constant.

3.1.2 Renormalization: Return Map Of Map

What they did next was truly fascinating — they constructed another dynamical

system on top of the dynamical systems of all logistic-like maps to explain

their universal constant δ. The new dynamical system is referred to as the

renormalization map R. It is not a 1-dimensional mapping or a n-dimensional

mapping, but a mapping on a set of all logistic-like mappings on the unit interval.

The set, denoted by U , is called the renormalizable space, consisting of mappings

like the logistic map. The operation R does nothing but essentially find a return

map of any logistic-like map from U ! See Fig.3.2 for an illustration.

Here is how R and U are defined. Notice that a point f from U is actually

a 1-dimensional mapping of the unit interval into itself. The first requirement

of f is to have two subintervals I0, I1, not sharing any interior point so that

f maps I0 into I1 and I1 into I0: I0
f→I1

f→I0. This combinatoric condition is

referred to as renormalizable. Because of this recurring relationship, the return

map of f in I0, f2 : I0 → I0, is well-defined: the first application of f takes I0

to I1 and the second takes I1 back to I0 to complete the return. A mapping

having a unique maximum in the interior of the unit interval and no interior

minimums is referred to as unimodal. The last requirement for f in U is for it

to be unimodal. Once these two conditions are met, the renormalization R(f)

of f needs at most two more steps to complete. The first is a must: scale the

domain-image interval I0 of the return map f2 to the unit interval [0, 1].

Normally this completes the definition of R(f). For the case these researchers

were interested in, the unimodality was essential. In fact, they were dealing with

the case that f is unimodal in I0 but monotone decreasing in I1. As a result the

return map f2 on I0 has a unique interior minimum and no interior maximums



Chapter 3. Universal Number 1 56

0   1
 

 

 

1

 

 

I
0

I
1

f

f 2

0 1
 

1

 

 

f

f 2
2

0 1
 

1

 

 

f

f 2
3

0 1
 

1

 

 

f
R(f)

R2(f)
R3(f)

Figure 3.2: Top left: the restriction of the double iterate f2 to the middle

interval in shade is the Poincaré return map of f in the subinterval. Flipping

the shaded box left right, top side down and then stretching everything in it,

especially the graph of f2, to fill the unit box complete the definition of R(f)

(bottom right). The two flipping operations are the same in result as the rotation

of the center box by 180◦. In the case shown R(f) is again renormalizable

and R(R(f)) is essentially defined by the return map of f , i.e. f4 = (f2)2,

restricted to the center most invariant interval (top right). Rescale the center

box to the unit box again to complete R(R(f)) (bottom right). R2(f) is again

renormalizable (bottom left) but R3(f) is not, escaping the space U because

it no longer admits the required interval combinatory: I0 → I1 → I0. This

illustration is for the logistic map fr at the period-8 bifurcation point r3.

in I0. Thus, to make it unimodal again we only need to flip the interval I0 left

right and the image of f2 upside down to make the return map unimodal before

scaling the definition interval to the unit interval. The effect of these reflective
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flips can also be achieved by rotating the I0-by-I0 box 180◦ before the scaling.

With this change of orientation of I0, the definition of R(f) is at last completed.

The image R(f) may or may not be in U , depending on only one thing.

Because of the reflective flips when f is unimodal in I0, R(f) is automatically

unimodal. Thus whether or not the renormalized image is in U is whether or not

the image R(f) is renormalizable, i.e. having its own I0 → I1 → I0 recurring

split. If so, the second iterate R2(f) = R(R(f)) is also defined and so on.

Fig.3.2 shows the case for which R(f), R2(f) are renomalizable but R3(f) is

not. Notice that the iterative sequence of R is essentially a family of return

maps of f on nested subintervals.

3.1.3 Hyperbolic Decomposition

In a true dynamical systems fashion, Feigenbaum, Coullet, and Tresser sug-

gested the following picture, which was rigorously proved later by others, see

Fig.3.3. The mapping R has a unique fixed point g in U , g = R(g). This fixed

point admits a hyperbolic decomposition: Wu ⊕ W s, of which the unstable

manifold Wu is 1-dimensional and the stable manifold W s is of U ’s dimension

but one, namely W s is a co-dimension-one manifold. Both intersect each other

at g transversely. Moreover, the one-parameter family of the logistic maps fr

forms a smooth curve in U and it intersects the stable manifold W s trans-

versely at a point precisely corresponding to the onset of chaos at the end of

the period-doubling cascade, frc . Carried forward by R, the family of curves

Rn(fr) converges to the unstable manifold Wu. The image family can be a part

of continuous unstable foliation of the fixed point g.

Fig.3.3 also shows a part of a stable foliation Fsrk . Here and anywhere else,

a foliation is nothing more than a class or classification of objects or points.

The class of Fsr1 consists of all unimodal maps that undergo a period-doubling

bifurcation from a fixed point to a period-2 orbit, at which the derivative of

the unimodal map f at the fixed point x̄ is −1, i.e. f ′(x̄) = −1 and f(x̄) = x̄.

Similarly, the class of Fsr2 consists of unimodal maps which undergo a period-

doubling bifurcation from a period-two orbit to a period-4 orbit, and so on.

For this foliation, the logistic mapping fr at, say, the period-8(= 23) bifurcation

point r = r3 of the cascade, is on the leaf Fsr3 . This means that the stable period-

4(= 22) orbit of fr is undergoing a period-doubling bifurcation at r = r3 to

become a period-8 orbit. Because the renormalized mapping R(fr) is essentially

the same mapping fr, i.e. a return map of fr on a shorter interval, counting

every two iterates of fr as one iterate of R(fr), and every four (22) iterates of
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Figure 3.3: Top left: the dynamical systems view of the map R. The rest plots

show how some typical points behave in the functional space U under the action

of R. Top right: three iterates of fr by R for r = 3.583, corresponding a point

lying above the co-dimension 1 stable manifoldW s. R3(fr) is outside U . Bottom

left: by the third iteration, R3(frc) already looks fixed, an approximation of the

fixed point g. It is a good approximation of g because the convergence to g on

W s is exponential. Bottom right: the finite orbit of fr3 by R. The third iterate

is outside R’s domain of definition U .

fr as one iterate of R2(fr), and every eight (23) iterates of fr as one iterate of

R3(fr), and so on. Thus, the parameter value r3 for fr is for a corresponding

period-2 orbit undergoing period-doubling to become a period-4 orbit for R(fr),

and for a fixed point undergoing period-doubling to become a period-2 orbit for

R2(fr), and so on. Therefore, R(fr3) and fr2 belong to the same leaf Fsr2 , all

undergoing period-doubling from period-2 to period-4 bifurcation. Similarly,

R2(fr3) and fr1 belong to leaf Fsr1 , and so on. This explanation shows the
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foliation family Fsrk is invariant under the renormalization, i.e. R(Fsrk) ⊂ Fsrk−1
.

Since we know the period-doubling bifurcation at a fixed point x̄ of a unimodal

map is characterized by the condition x̄ = f(x̄) and f ′(x̄) = −1, Fig.3.3 shows

it for R2(fr3) for which its derivative at the interior fixed point is −1. However,

rolling forward two more iterations, this interior fixed point of f22

becomes the

boundary fixed point of the return map f23

or the trivial fixed point x̄ = 0 for

the third iterate of the renormalization R3(fr3), at which its derivative becomes

+1 instead. At this point it is no longer renormalizable.

3.1.4 Universal Number Is An Expanding Eigenvalue

As the limiting map frc is on the stable manifold W s, it is indefinitely renormal-

izable and Rn(frc) converges to the fixed point g. For every other parameter

value r 6= rc, fr is only finitely renormalizable, diverging away from g along

the Wu direction. The universality about the number δ lies in the fact that

orbits on the unstable manifold Wu are repelled away from g at the exponential

rate δ = 4.6692.... As the stable leaves Fsrn intersect the unstable stem Wu

transversely and they are invariant under the renormalization R, the distance

between neighboring leaves shrink at the reciprocal rate 1/δ with increasing n.

This adjacent distance is approximated by the parameter difference rn − rn−1.

Thus as an exponentially decreasing sequence it is captured exactly by the afore-

mentioned ratio test:

lim
n→∞

rn − rn−1

rn+1 − rn
= δ.

The Feigenbaum-Coullet-Tresser Universality is about the fact that the logistic

family fr is just one family of dynamical systems going through the period-

doubling cascade to chaos, and any sufficient nice family of dynamical systems,

mappings or differential equations, going through the same type of cascade

permits exactly the same description above, the limit behavior in particular. In

the exact technical term, δ is the unique expanding eigenvalue of the derivative

DR(g) of the operator R at the fixed point g. The essence of δ’s universality.

3.2 Return Map of Bursting Spikes

Let us switch topic to a different type of bifurcations. It is about cross-membrane

voltage spikes from the class of neuronal circuit models introduced in a previous
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chapter. We recall one of the models here below for conveniences,
CVC

′ = −[IK + fNa(VC − ĒNa) + Ipump − Iext]

Ipump
′ = λIS[VC − γIpump]

IS
′ = λIpump[VC − γIpump]

εIK
′ = VC − ĒK − hK(IK).

(3.1)

We have learned that this type of model is capable of generating spikes on

transient with the absolute total pump current IS changing so slowly that it can

be treated like a parameter. For all intents and purposes we will drop the IS

equation and treat IS as a parameter.

For the resulting 3-dimensional system, the IK is the fastest variable because

its equation is to simulate the idea Z-hysteresis VC = ĒK + hK(IK). The cross-

membrane voltage VC equation is the fast variable because the capacitance C is

usually small to generate healthy spikes. The net pump current Ipump-equation

is the slow, i.e. the slowest equation.

These conditions provide an idea set-up for a singular perturbation analysis.

The IK-hysteresis is an ideal Z-switch. For the parameter region we are inter-

ested in but without the need to specify, the reduced 2-dimensional fast-slow

flow on the top branch of the switch is pulled to the top turning edge of the

switch. On the bottom branch of the z-switch, the reduced flow is again a fast-

slow system with CλIS as the combined slow parameter. We will lump them

together to call it µ = CλIS. The reduced fast-slow flow is determined by the

nullclines VC
′ = 0 and Ipump

′ = 0 with the former forming the slow manifold of

the 2-d system. It shapes like a letter V on its side. The horizontal part of the

side-way V is the attracting branch of the slow manifold. The tip of the V is

a turning point for the reduced µ-singular system. The slant part of the V in-

tersects the bottom turning edge of the Z-switch at a K-fold turning point K1.

The Ipump-nullcline Ipump
′ = 0 is simple. It cuts a line on the bottom branch

of the Z-switch, above it trajectories move rightward in the increasing Ipump

direction and below it trajectories move leftward. Last, if the Ipump-nullcline

Ipump
′ = 0 is not caught between the junction lines and the turning edges of

the Z-switch, the prototypical configuration for spike generation is finalized.

Fig.3.4 gives a numerical simulation for the description given above. The

top-left figure shows a train of four spikes follows a refractory phase, which

resets the membrane for another burst of four spikes. The number of spikes in

each burst is determined by the slow parameter µ: the smaller the µ the more

spikes in a burst. We note that this phenomenon of spike-burst is not unique to

neuron models. The first food chain model from the previous chapter is capable

of exhibiting it too.
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Figure 3.4: Top-left: bursts of spikes determined by the slow manifold IK
′ = 0,

the slower manifold VC
′ = 0, and the nullcline Ipump

′ = 0. Arrows represent

the direction of the multi-time scale vector field. Top-right: a return map of

the model with xn representing the pump current variable Ipump. Bottom-left:

the return map at the limiting value µ = 0. Bottom-right: the return map for

small µ > 0. Both looking down at the IK-hysteresis from the IK-axis.

3.2.1 Fast-Slow Deconstruction Of Spike

For further simplification, we take up the idea of Poincaré return map. One

can take any two-dimensional cross-section through which the vector field of

the model intersects transversely. Because the model is naturally multi-scale in

time with the IK variable switching up and down by its hysteresis, the system

is essentially a concatenation of the reduced µ-singular systems on the top and

bottom branches of the hysteresis switch, pieced together by the fast jumps
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between the switch’s turning edges and their junction lines. As a result any

cross-section can be effectively a line or a curve transversal to the reduced µ-

singular system, or a line through the plane between a turning edge of the switch

and its junction line. The corresponding return map at the singular limit ε = 0

is 1-dimensional, a map from a line segment to itself. For a non-zero ε but

extremely small, we can still use the limiting 1-d return map as a very good

approximation.

A simulated return map for the model is shown in Fig.3.4 that demonstrates

this 1-dimensionality property of the full return map. The map is neatly divided

into two intervals, or two phases, by a discontinuity critical point, which we

denote by c throughout. From the left interval, the map is monotone increasing

above the diagonal line, representing the active phase of spiking of the model.

In the right interval, the graph of the map is nearly flat, representing the silent

phase of the action potential of the model. It resets the membrane back to

the active phase for a new burst of spikes. The presence of the discontinuity

point between the active and silent phases is due to the existence of the K-fold

turning point at which the VC-nullcline intersects the bottom turning edge of

the Z-switch. At this point, the reduced fast-slow trajectory on the bottom

branch of the switch is tangent to the turning edge.

As mentioned above the return map not at the ideal singular value ε = 0 can

be approximated by the one at the limit. What makes the singular perturbed

model even more appealing is the fact the limiting case can be made precise by a

geometrical analysis, which is illustrated in the bottom figures of Fig.3.4. All it

takes for the geometric analysis to work is to piece together the µ-fast-slow flows

on the top and bottom branches of the Z-switch — how do the flows hit the

turning edges of the Z-switch and where do they land on the junction branches

of the switch, and so on.

For the illustration, all dashed flow lines with arrows are trajectories of the

reduced µ-fast-slow system on the top branch of Z-switch, and all solid flow

lines with arrows are the said trajectories on the bottom branch. The top flow

lines have one simple motion — all move toward the top turning edge to be

switched down. The bottom flow lines can move in two general ways. The flow

line that separates others into these two groups is the trajectory connecting the

K-fold turning point K1. Call it Γ. If a flow line starts on the left side of Γ

it moves up toward the bottom turning edge, and jumps up to the top branch

following the fastest IK-dynamics. If it starts right of Γ it will eventually move

down toward the horizontal side of the the VC-nullcline, i.e. the slow-manifold

of the reduced µ-singular system. This branch of the side-way V -shaped slow
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manifold represents the silent phase of the spike dynamics. The flow line then

moves slowly leftward toward the turning point of the VC-nullcline, the knee

point of the V . Goes around the point and moves up like any flow line left of

the flow line Γ. The VC-turning point represents the start of a new burst of

spikes. The flow lines right of Γ are further divided up by the K-fold junction

point K0 at which the unstable part of the VC-nullcline intersects the junction

line of the top turning edge of the Z-switch. At this K-fold junction point K0

the flow line is tangential to the junction line. To the left side of K0 the flow

line first goes up and then down. To the right side of K0 the flow line heads

straight down toward the slow manifold of the reduced µ-system.

As we have seen in the previous chapter, if a return map’s defining flow lines

include a K-fold turning point, such as K1, the map will have a discontinuity

point. In addition, if its defining flow lines include a K-fold point, such as K0,

the return map will have a fold point which is either a local maximum or a

local minimum of the map. If these descriptions and the figures are enough to

convince you that a return map can be constructed, you can skip right to the

return map families Sµ, sµ, ψµ, and then to the next section. Otherwise, read

on to find out how return maps are pieced together.

3.2.2 Geometric Portrait Of Return Map

In fact, we can make this general description a little bit more precise. We can

do so by looking at the limiting case with µ = 0, which is the simplest, and

separately a typical case with µ > 0. To start, we can take any line segment as

a cross-section as long as the line is transversal to the singular vector field at

ε = 0. For example, we will take the cross-section right on the bottom turning

edge, but left the K-fold turning point K1. We cannot include K1 because the

singular flow fails to be transversal to the edge at this point.

For the case of µ = 0, the bottom-left figure of Fig.3.4 gives an illustration

for the return map. The cross-section interval is divided by a discontinuity

point c, which corresponds exactly to the K-fold junction point K0. To the

left of c, every point from the cross-section return exactly to itself. The map

maps the interval left of c onto the diagonal. That is, when the pump current

Ipump is fixed at a constant left of the K0 value, the circuit is in a perpetual

state of periodic firing. On the other hand, for any point right of K0 (i.e. c for

the return map), the flow first goes up to the Z-switch, then down on the top

branch of the Z, and down off the branch’s turning edge. Instead of heading up

for points from the left side of c, it moves down on the bottom branch to the
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steady state VC
′ = 0. That point is then concatenated to the turning point of

the VC-nullcline by the µ-slow orbit along the nullcline µ-slow manifold. The

turning point brings the concatenation back to the cross-section to complete the

return of all points right of c. As a result, the graph of the return map right

of c is a flat line. Since this return map is about capturing the spikes of the

model, we use Sµ to denote the return map, with the cross-section normalized

to be the unit interval [0, 1]. The description above is thus for the graph of S0.

The case with a typical non-vanishing value µ > 0 is illustrated by the

bottom-right figure of Fig.3.4. It is of course a bit more involved than the

simpler limiting case of µ = 0. But the complexity is only about keeping track

of the two K-fold points K0,K1, on how the fast-slow flow on the bottom

branch of the Z-switch is affected by their existence. For example, the return

map will still have a discontinuity point c. Instead of directly lining up with

the K0 point, it is related to the K1 point in concatenation. First, the ε-fast

flow brings it to the top branch of the Z-switch. A µ-fast-slow flow brings to

the top turning edge and then down to a junction point on the bottom branch

of the Z-switch. That junction point is connected to the K-fold turning point

K1. Now, depending which side of the critical point c, the subsequent flow

line can proceed in different directions. If one takes the left side of c, then the

point is considered to have made the required return to the cross-section. If one

takes the right side of c, then the point is considered to miss the cross-section

and continue on the bottom branch of the switch, first across the VC-nullcline,

around its turning point, and at last returning to the cross-section at its lowest

end which is designated as 0 for the return map on the unit interval.

To the left of the critical point c, every point from the cross-section will go

around the Z-switch, shift rightward, and return to the cross-section, generating

one spike in the process. The reason that it progresses rightward is because the

fast and slow orbits in the concatenation lie above the Ipump-nullcline in which

Ipump
′ > 0. Thus, the graph of Sµ is monotone increasing, above the diagonal

line. It represents the active phase of the model in which the train of spikes

moves rightward.

For point right of c, it goes around the Z-switch but does not return right

away like points from the other side. Instead, it falls to the right side of the

slow trajectory Γ that defines the point c. As a result, it will moves around the

turning point of the VC-nullcline before returning to the cross-section near its

lower end. One point stands out in this interval. It is the point which connects

to the K-fold junction point K0 on the bottom branch of the switch. Such a

point folds the flow around it, creating a local maximum in the right interval.
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The local maximum value is denoted by M in the illustration. The equilibrium

point at which all three nullclines intersect plays an indirect role. From which

the slow trajectories connecting the two K-fold points arise. Since it stays in

one side of the turning edges and their junction lines of the switch, its effect

does not show up directly in the return map Sµ.

3.2.3 Quantitative Fit Of Return Map

The description above alone explains qualitatively how spikes are generated.

But to understand how the number of spikes changes from n to, say, n + 1,

we need to incorporate quantitative information into the return map Sµ. We

will take a short cut to do it because it will take too much space to derive it

from the model even though the model is already simple enough. We will do so

phenomenologically.

First, the functional form of Sµ in the silent phase interval right of c is

easier to fit. We know it has the minimum vale at the left end point c and

a local maximum between c and 1. So we will first fit it with this function:

(x − c) exp(−(x − c)/(bµ). This function is 0 at x = c and is maximal at

x = c+ bµ with the maximal value bµ exp(−1). Here b is a parameter. We also

know that the maximum value of the return map, i.e. amplitude is exponentially

small against the slow parameter µ as the lower branch of the VC-nullcline

attracts the silent phase points exponentially in time. We will complete the fit

by multiplying the function with an exponentially small amplitude. The final fit

in the right interval is Sµ = a exp(−d/µ)(x−c) exp(−(x−c)/(bµ) for c < x ≤ 1,

with a exp(−d/µ) being the control on the amplitude.

The fit of Sµ in the active interval takes some work. We know it is the

diagonal x when µ = 0, and it is more or less parallel the diagonal and above it

when µ > 0. We also know it takes the fixed maximum value 1 at the left limit

of c. We also know it has a vertical tangency at the left limit of c for µ > 0

because the slow flow on the bottom branch of the Z-switch has a horizontal

tangency at the K-fold turning point K1. Here is the functional form we use to

fit Sµ in the left interval

Sµ(x) = µ+ x+ [1− (µ+ c)]
wµp

wµp + (c− x)1−qµ for 0 ≤ x ≤ c.

We impose the constraint 1− µ− c > 0 so that the last term is a non-negative

addition to the line µ + x parallel the diagonal. We require p > 1 so that the

addition is a high order correction term to the line µ + x. We need the power

1− qµ to be less than 1 because we want the derivative of (c− x)1−qµ at x = c
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to be infinity. The use of the quotient form is motivated by the Holling Type

II functional form x/(h + x) which saturates at 1 for large x with h being the

half saturation point. All parameters are non-negative. It is straightforward to

check Sµ(c) = 1, S′µ(c) =∞ and S0(x) = x, and that Sµ is approximately µ+x

but with a rapid ascension only in a µ-neighborhood of the critical point.

To summarize, the phenomenological return map is

Sµ(x) =

{
µ+ x+ [1− (µ+ c)] wµp

wµp+(c−x)1−qµ , 0 ≤ x ≤ c
a exp

(
− d
µ

)
(x− c) exp

(
−x−cbµ

)
, c < x < 1

(3.2)

for which all parameters are non-negative with 0 < c < 1, p > 1, and µ < 1− c.
Of course, this return map is defined on the maximal cross-section possible,

all the way to the K-fold turning point K1 at which the vector field fails to be

transversal to the cross-section. One can choose a shorter cross-section to define

a return map. For example, one can take the interval left of the critical point

c to be the cross-section. One can either directly derive a phenomenological

return map or use Sµ to find a return map of it on the left interval. We will

pursue the latter idea in greater details later. For now, let us use the direct fit

to derive such a short return map.

We will use Fig.3.4 as a prop. From the µ > 0 illustration, we designate c

to be the new 1, the right end of the cross-section. But we must use the old c’s

immediate backward concatenated point on the cross-section as the new critical

point c. Instead of staying in the interior of the interval [0, 1] like the old c, this

new critical point depends on µ, i.e. c = c(µ). In particular, at µ = 0, c(0) = 1

as all the spikes are frozen as fixed points. If we denote this short return map

by sµ, then s0(x) = x for 0 ≤ x < 1, and sµ(x) = µ + x for 0 ≤ x < c(µ).

For points from the right interval (c(µ), 1], they will first hit the turning edge

between the old c and K1, not returning to sµ’s cross-section, and then hit the

silent phase space before rounding around the turning point of the VC-nullcline

and returning to the new cross-section. We can lump all the actions together

by a similar bump function of the same form of Sµ on its right interval. A

phenomenological fit to the short return map is thus given as below,

sµ(x) =

{
µ+ x, 0 ≤ x ≤ 1− µ
a exp

(
− d
µ

)
(x− 1 + µ) exp

(
−x−1+µ

bµ

)
, 1− µ < x ≤ 1

(3.3)

with c being substituted by 1− µ for simplicity.

Two key differences stand out between the full return map Sµ and the short

one sµ: the discontinuous critical point for Sµ is more or less fixed and is in

the interior of [0, 1] but that for sµ is not, moving to 1 at µ = 0; and Sµ has a
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vertical tangency at the left of c but sµ does not. Although sµ should have a

vertical tangency at the right end point 1 of the interval, we will ignore it since

its amplitude is dominated by the exponential decay of the slow trajectories

journeying through the silent phase. Both are good approximations of return

maps of the differential equations at the singular limit ε = 0, the short return

map sµ is simpler than the long one Sµ.

Because of its simplicity, one more special subfamily of the short return map

sµ is considered in subsequent sections. It is given a name, the ψµ family. It is

sµ with the silent phase amplitude parameter a setting to zero. That is,

ψµ(x) =

{
µ+ x, 0 ≤ x ≤ 1− µ
0, 1− µ < x ≤ 1.

(3.4)

Obviously, of all maps ψµ is the simplest to approximate the spike generation

of the neuronal models.

3.3 Isospiking Bifurcation

The number of spikes in a burst after a neuronal model starts in its silent phase

has a direct correspondence with the number of iterates in the active phase

interval of a return map of the model when the iterate starts in the silent phase

interval. For the ψ-family of return map, this spike dynamics can be determined

completely.

In fact, start any point x0 ∈ [1− µ, 1] from the right interval, x1 = ψ(x0) is

always zero because ψ(x) = 0 for 1 − µ ≤ x ≤ 1, with the interpretation that

x1 = 0 ∈ [0, c) is counted for 1 spike. Here c = 1− µ is the discontinuity point

separating the active and the silent intervals. Because ψ(x) = µ+ x for x < c,

the 2nd iterate is x2 = ψ(x1) = µ+ x1 = µ, the 3rd x3 = µ+ x2 = 2µ, etc. The

(k + 1)st iterate is explicitly

xk+1 = kµ

as long as the kth iterate xk is in the active interval xk < c. If the (k + 1)st

iterate falls into the silent phase interval, the burst stops, having exactly k

spikes. Because of the form of this family, every initial point from the silent

interval goes through the exact spike iterates and has the exact number of

spikes in one burst.

The condition for the k-spikes burst is

xk < c ≤ xk+1, i.e. (k − 1)µ < 1− µ ≤ kµ.
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Figure 3.5: Spike bifurcation diagram for the ψ-family.

Solving the inequalities to obtain 1
k+1 ≤ µ <

1
k . Now let

µk =
1

k + 1
.

Then the map ψµ has exact k spikes for each burst if µk < µ < µk−1. If the

parameter µ slips down through µk, the map will gain at least one more spike

to have at least k+ 1 spikes. If the parameter climes up through µk−1, the map

will lose at least one spike to have at most k − 1 spikes.

3.3.1 Harmonic Sequence Progression

This simple result gives the most enduring feature of all spike return maps.

That is, as the singular parameter µ decreases to its natural limit µ = 0, the

spike number progresses like the natural numbers, from 1 to 2, to 3, and so on.

In addition, the bifurcation parameter µk at which the spike number progresses

from k to k+1 forms a decreasing sequence converging to the singular limit and

most importantly the bifurcation sequence is the harmonic sequence:

µk =
1

1
,

1

2
,

1

3
,

1

4
, · · · → 0.

As an illustration, Fig.3.5 is the spike bifurcation diagram for the ψ-family.

In it, the c0 line is the critical point: c0 = 1− µ. The c−1 line is the pre-image
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of c0 under the map, i.e. ψµ(c−1) = c0. It is c−1 = 1 − 2µ. The c−k line is

the pre-image line of c−k−1, and so on, and it is exactly c−k = 1 − (k + 1)µ.

In the opposite direction, m0 is the forward iterate of the critical line c0 with

m0 = ψµ(c0) = 0, and mk is the kth iterate of m0. They are given exactly

as mk = kµ. The intersections of the m-lines with the critical line c0 are

the spike bifurcation point: µk is the µ-value of the intersection of mk−1 with

c0. Above the c0 line is the silent phase region. For any µ ∈ (0, 1), one only

needs to count how many m-lines lie below c0 to determine the number of

spike per burst. The map has k spikes per burst if the diagram has k many

m-lines, including the m0 line always, under c0. The slope of the m-family

lines progresses up on the positive integers, and the slope of the c-family lines

progress down on the negative integers. Wherever they intersect the per-burst

spike number bifurcates, and they only intersect along the harmonic sequence.

3.3.2 What Isospiking Is

Next, we take a look at how many of the spike bifurcation properties of the

ψ-family are preserved for the short return map family sµ, which is a closer

approximation to the neuronal models than the ψ-family is. The key difference

is that the ψ-family has a zero maximum in the silent phase interval but the

s-family has a non-zero maximum instead M = max{sµ(x)) : c < x < 1} =

a exp(−d/µ)bµ exp(−1). This difference makes it possible that not all silent

phase initial points will have the same number of active phase iterates. That is,

the per-burst spikes may vary. This leads to the following definition:

Definition: The dynamics of the system (or the parameter that represents the

system) is said to be isospiking if the per-burst spike number is fixed for every

initial point from the silent phase.

For all the spike return maps, finding the conditions for isospiking parameters

is surprisingly straightforward. It is all determined by keeping track of the

minimal value, m, and the maximal value M of the map in the silent phase

interval [c, 1]. The minimum m is always normalized to 0 but the maximum

M is not, which is an offset above the baseline m = 0. Denoting their forward

iterates by m0,m1,m2, . . . and M0,M1,M2, . . . , with m0 = m and M0 = M .

Then we realize that the maxmin iterative pair forms what we call the orbital

corridor by their cobweb plots, see Fig.3.6. That is, every initial point from the

silent phase interval must move inside the maxmin corridor. The space outside

the corridor is forbidden for all iterates as long as they start from the right

interval. It is abundantly clear that if the critical point c0 is inside the corridor,
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Figure 3.6: Top: the maxmin orbital corridor and the configurations for isospik-

ing and non-isospiking state. Bottom: the spike bifurcation diagram for the

s-family of return maps. The corridor is bounded by the m iterative curves

(cyan) and the M iterative curves (light purple). When the critical curve c0

(dashed) splits the corridor, the state is non-isospiking, with the region colored

gray. If it does not, the state is isospiking, with the region colored cyan. The

number of cyan patches below the c0 curve is the isospike number.

i.e. splits the corridor, the parameter value or the state of the system is not

isospiking. If it is outside the corridor, the map is isospiking. The isospiking

condition is simply as follows:

Mk−1 < c0 < mk.

And when the condition holds, the map is of isospiking of k spikes per burst for

all bursts. If the critical point splits the corridor with

mk < c0 < Mk,
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then some bursts will have k + 1 spikes and some bursts will have k spikes.

The bifurcation values at which the corridor boundary and the critical point

cross each other can be computed. We already have the value from the ψ-family

above for the m-iterate corridor boundary crossing, c0 = mk, whose solution is

µ = µk = 1/(k + 1). We denote this sequence value by µ−k = 1/(k + 1). The

superscript is used to connote the fact that it is the intersect point of the critical

line c0 with the lower corridor boundary mk. Likewise, we denote by µ+
k the

µ-parameter value when the upper corridor boundary Mk = M +kµ crosses the

critical point c0. For the non-isospiking interval mk < c0 < Mk, we solve the

left and right inequalities simultaneously to get

µ+
k < µ < µ−k .

It is a simple algebraic exercise to get µ+
k = (1−M)/(k+ 1) from the equation

c0 = Mk. Here because M = abµe−d/µ−1 is exponentially small as µ → 0 and

µ−k = 1/(k + 1), we reach the simple but important conclusion that the non-

isospiking interval is exponentially narrow! That is, if the non-isospiking state

of neurons is undesirable for neurological reasons, this result simply implies that

the bad set is negligible. We seem to have a mathematical basis here to posit

that evolution is responsible for this favorable outcome.

Once we have found the non-isospiking intervals µ+
k < µ < µ−k , the isospiking

intervals are easy to understand. As µ moves below the plus-point µ+
k , the

system enters the (k + 1)-isospiking state. As it moves above the minus-point

µ−k , the system enters the k-isospiking state. Hence, as µ decreases to the

singular limit µ = 0, the minus-point µ−k is the bifurcation point at which

the system leaves behind the k-isospiking state, and the plus-point µ+
k is the

bifurcation point at which the system enters into the (k + 1)-isospiking state.

In between lies the k(k + 1)-non-isospiking state. So if we take the decreasing

direction of µ as the preferred reference direction, we can refer to the plus-point

µ+
k as the start of the (k + 1)-isospiking state, and to the minus-point µ−k as

the end of the k-isospiking state. Since the start of something must the be end

of something else, we can also say, for example, that the minus-point µ−k is the

start of the k(k + 1)-non-isospiking state.

3.3.3 Notation For The Start And End States Of Isospiking

The notation, description used above are still not descriptive enough. It becomes

more confusing as the bifurcation points are going down rather than up, which

is the most natural direction for most people. We will give a try to simplify the
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matter. Since α and ω are the first and the last letter in the Greek alphabet,

we will denote by αk = µ+
k−1 for the start of the k-isospiking parameters and

ωk = µ−k for the end of the k-isospiking parameters. Thus the isospiking intervals

are

. . . , (ωk, αk), . . . (ω3, α3), (ω2, α2), (ω1, α1),

i.e., the interval sequence {(ωk, αk)} is decreasing in order as µ is toward the

singular limit µ = 0. For the s-family, the end of isospiking is the harmonic

sequence {ωk} = {1/(k+1)} and the non-isospiking interval width |ωk−αk+1| ∼
exp(−1/µ) ∼ exp(−k) is exponential small as µ is approximated by 1/k in the

interval.

We also gained a valuable insight from the work-out above. That is as long

as spike bifurcation is concerned only the minimal and the maximal point from

the silent interval matter, nothing else. The minimum takes place to the right

side of the critical point c and the maximum takes place in the interior of the

interval (c, 1). The right end point 1 plays no role nor any point else except for

the two extrema.

3.3.4 More Accurate Model But Similar Result

We are now ready to take a look at the full return map family Sµ. We will

first formalize a notation we used informally above. Two points x and y are

said orbitally related by a map f or simply related within the same context if

xk = fk(x) = y or yk = fk(y) = x for some iterate k. For k = 0 the iterate

f0 is just the identity map. We have for this trivial case that x0 = x. That

was the reason we used c and c0 interchangeably above. With negative integer

subscript, we say c−k is related to c0 if fk(c−k) = c0 with f = Sµ, sµ. Because

the spike maps are monotone increasing the first backward iterate c−1 of c0

always exists if the minimum of f in the left interval is lower than the critical

point, f(0) = m < c0. With this notation in place, we can now consider the

return map of Sµ in the interval [0, c0], and denote it by rSµ. As we have seen

from the previous section, rSµ is just return map of the singularly perturbed

neuronal model on a shorter cross-section. That is, a return map of a return

map of a flow is just a return map of the flow.

This return map rSµ’s definition interval [0, c0] can be divided into the left

and the right intervals by the backward iterate c−1 of c0: [0, c−1], (c−1, c0]. Since

S is monotone in [0, c0] it maps [0, c−1] to [0, c0], the automatic return. So we

do nothing, and assign rSµ(x) = Sµ(x) in the left interval [0, c−1]. For the right

interval (c−1, c0], the return map takes two applications of the original map Sµ
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to define. The first application maps (c−1, c0] out to (c0, 1], the silent phase

interval of the old map, the second application returns the silent interval back

to the definition interval (0, c0] of the return map. That is, rSµ(x) = S2
µ(x)

for x from (c−1, c0]. Equivalently, the right interval (c−1, c0] is the silent phase

interval for rSµ.

The return map preserves the minimal value, m, and the maximal value,

M , of the original map in their respective silent intervals. This is the only

property we need and care about for the silent phase interval as far as the spike

bifurcations are concerned. Because they are the same map, the bifurcations

points αk, ωk are the same except that the subscript shifts by 1. This is because

for the return map these bifurcation points are the intersections of mk,Mk with

c−1, which are equivalently the intersections of mk+1,Mk+1 with c0 for the

original map. Therefore, it is only left to find out what c−1 behaves like.

First of all, because the graph of Sµ in the spiking interval [0, c0] is at least a

µ-displacement above the diagonal line, c−1 is at least that much of a magnitude

away from c0: c0 − c−1 > µ. Therefore, every point x from the left interval of

the return map, 0 ≤ x < c−1, is at least that much of a distance away from

c0: c0 − x > µ. Because of this estimation, the third term of Sµ is truly a

higher µ-order term and therefore can be ignored: wµp/(wµp + (c− x)1−qµ) ∼
µp/µ1−qµ = µn for n = p+ qµ− 1 > 1 if p > 2. That is, the sharp ascension of

Sµ to the left of c takes place within a distance less than the order of µ. Since

the behaviors of Sµ in this interval, regular or peculiar at the left side of c0,

never affect the minimal value or the maximal value of the right interval, they

can be all ignored for the return map rSµ.

We are left with this simple fact. For all intents and purposes, the return

map rSµ is approximated by µ+ x in the left interval and the same functional

form as Sµ in the right interval. If we scale its interval [0, c0] to the unit interval

[0, 1], and call it RSµ, then for all intents and purposes we can replace RSµ by

a form similar to the sµ-family. This is because scaling of the variable does not

change the parameter nor the bifurcation points. The description above is for

some people a proof and for everyone else a thorough outline for the following

theorem.

Theorem 6 For p > 2 the isospiking bifurcation points αk, ωk exist for the

return map Sµ-family for large k with the properties that the end of the k-

isospiking bifurcation point is approximately harmonic, ωk = 1/k+ o(1/k), and

the non-isospiking intervals are exponentially narrow, |αk+1 − ωk| ∼ exp(−k).

Here o(1/k) means higher order of 1/k.
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Figure 3.7: A numerical simulation for the S-family. Bottom left: the spike

bifurcation diagram with the lower and upper corridor boundary iterates: mk

(black) and Mk (red). The corridor is colored cyan for isospiking and gray for

non-isospiking. Dashed curves are c0, c−1, c−2. Bottom right: The bifurcation

diagram for the return map RS of the S-family. Top right: a zoom-in around

ω1 for RS and ω2 for S. Top left: in the scale −1/µ, −1/ωk are spaced equally,

a property defining the harmonic sequence ωk. The non-isospiking intervals

appear to be lines, i.e. αk+1 = ωk.

Fig.3.7 gives a numerical simulation of the S-family consistent with the the-

orem. One more takeaway message from the simulation is that the immediate

and transient property in bursting spikes is uncorrelated with the long-term

dynamics of the system. The system can be in a chaotic but isospiking state or

a chaotic non-isospiking state. This means if the immediate state of a neuron

is what the neural code is about, the asymptotical state of the neuron, chaotic

or quasi-periodic or periodic, is not important. All that matters is whether or

not the spiking state is regular, isospiking always or misfiring occasionally.
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As the last observation of this section that leads naturally to the next section,

we note that a harmonic bifurcation sequence, such as ωn = C/n for some

near constant C, differs from all exponential bifurcation sequences, such as

the period-doubling cascade, in a fundamental way. The so-call ratio test for

convergence converges to 1 for the harmonic sequence and to the exponential

ratio δ 6= 1 for the latter:

lim
n→∞

ωn − ωn−1

ωn+1 − ωn
= 1.

In the Feigenbaum-Coullet-Tresser scenario the limit of the ratio test is their

universal constant δ = 4.6692.... We ask if the first natural number as the limit

of the ratio test of a harmonic sequence is also a universal constant in some

analogous setup.

3.4 Universal Number 1

It is the time to let the real player in who has been knocking the door for the

last two sections. The renormalization operator. When Feigenbaum, Coullet,

and Tresser used it, it was mysterious. We know now their renormalization is

simply finding return maps of the logistic-like maps and then to scale them up

to the unit interval to have a common framework. We too used a return map of

the spike map family in the previous section to show that isospiking bifurcations

scale along the harmonic sequence. Formalizing the process of finding return

maps of return maps of neuronal models and scaling them to the unit interval

results in our renormalization operator, R. The renormalizable space, U , is a

set of maps on the unit interval. Conceptually there should be little restriction

on the set because after all one can define or find a return map on pretty much

any map of the unit interval. To limit the scope we will restrict the set for now

to maps similar to the return maps of neuronal models we introduced in the

previous sections.

3.4.1 Spike Map Renormalization

More specifically, a map f is from U if these conditions hold. One, it has exactly

one discontinuity point c in the unit interval minus the left end point 0. If it is

continuous in the entire interval, then c is taken to be the right end point c = 1.

Two, to the left side of c the function f is continuous, monotone increasing, not

below the diagonal line. Three, the maximum of f on the interval right of c,

(c, 1], is no greater c. Four, the value of the function at the left end point is no
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Figure 3.8: Renormalization of spike return map. Here c′0 is the discontinuity

point of the renormalized image. It is defined to be c−1/c0.

greater than c, f(0) ≤ c. It is this condition that is key to f ’s renormalizibility.

Last, it is not important in which interval f is defined at c. For convenience we

can just assume c is included in the left interval.

The renomalization R is defined as follows. Since f from U is monotone

to the left of its discontinuity c and its minimal value in the left interval is

less or equal to c, the critical point c must have a preimage c−1 in [0, c]. This

property permits a return map, rf , to be defined on [0, c]. Because f maps

[0, c−1] inside [0, c], we keep the map itself: rf(x) = f(x) for 0 ≤ x ≤ c−1. For

x from (c−1, c], f maps it out into (c, 1], and then back into [0, c]. So we define

rf(x) = f(f(x)) = f2(x) for c−1 < x ≤ c. Finally we scale the return map’s

interval, [0, c], to [0, 1]. This completes the renormalization of f :

R(f)(x) =
1

c
rf(cx), for 0 ≤ x ≤ 1.

See Fig.3.8 for an illustration. The renormalized image R(f) may or may be

renormalizable depending on if R(f) belongs to the renormalizable space U . If

it does, then the second backward iterate c−2 of the discontinuity point c must

exist, and the return map of the return map of f is a return map of f . Without

the scaling, it is the return map of f in the interval [0, c−1], of which it is the

map f in the left interval [0, c−2] and it is the 3rd iterate f3 in the right interval

(c−2, c−1]. Scaling this return map by c−1 gives R2(f). This description is easily

generalized for Rk(f) if it exists. For which the return map before scaling is

the (k+ 1)st iterate fk+1 in the right interval (c−k, c−k+1] and just f in the left

interval [0, c−k]. Namely, if Rk−1(f) is renormalizable, then

Rk(f)(x) =

{
1

c−k+1
f(c−k+1x), 0 ≤ x ≤ c−k

c−k+1

1
c−k+1

fk+1(c−k+1x), c−k
c−k+1

< x ≤ 1,
(3.5)
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where c−i is related to c with f i(c−i) = c for i = 0, 1, 2, . . . , k. Again, without

the scaling by c−k+1 the map is simply the return map of f in the interval

[0, c−k+1].

3.4.2 Harmonic Invariance

A couple of simple exercises to warm up the idea. Take the simple ψ-family

for example. At the limit, ψ0(x) = x is the identity map. It is in U and its

‘discontinuity’ point is the right end point 1. The entire interval [0, 1] is the

left interval and the right interval is empty set. So R(ψ0) = ψ0, a fixed point

of R ! For positive µ, c = 1 − µ and ψµ(0) = µ. So ψµ is renormalizable if

ψµ(0) = µ ≤ c = 1 − µ, i.e. µ ≤ 1/2. Since ψ(x) = 0 in the right interval,

all its return maps are zero in their right intervals. Since ψ is a line in the left

interval, any scalar scaling preserves the slope of the line, i.e. a scalar-scaled

line is a line of the same slope. With the scaling by 1− µ, the renormalization

is

R(ψµ) = ψµ/(1−µ).

That is, R maps the ψ-family into itself, or the curve ψµ in U is invariant under

R.

This is intriguing. One may become curious at this point to ask what about

the isospiking bifurcation members ψµk of the family? They are onto themselves

because for µk = 1/(k+ 1) we have µk/(1− µk) = µk−1! That is, the harmonic

sequence ψµk is an orbit of R, going in backward.

As the image ψµ/(1−µ) seems to be ‘farther away’ from the fixed point ψ0

than the preimage ψµ is because µ/(1−µ) > µ, as a curve in the space U the ψ-

family behaves like an unstable manifold of the fixed point ψ0. The contracting

backward orbit {ψ1/k} only deepens the impression. By most people’s intuition

the parameter values should be a measure of distance between the family mem-

bers. If so the break-away rate from the fixed point along the unstable manifold

should be gauged by the following ratio test,

r = lim
k→∞

µk − µk−1

µk+1 − µk
.

But the test limit

lim
k→∞

µk − µk−1

µk+1 − µk
= lim
k→∞

1/(k + 1)− 1/k

1/(k + 2)− 1/(k + 1)
= 1,

is not a number greater 1 as we normally expect. That is, this preliminary

exploration suggests that the ψ-family is not the usually hyperbolic type of
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unstable manifolds. Instead, it is a center manifold that is expanding, i.e. an

unstable-center manifold.

3.4.3 Distance Between Spike Maps

Intuition is no substitution for proof. So the problem turns into a question about

how to measure the distance between elements in the renormalizable space U .

As a starter we certainly would like the ψ-family to be a continuous family in

the parameter µ with respect to whatever distance measure we will come up

for U . For f, g from U , our immediate choice to try is the point-wise distance

|f(x) − g(x)|. But this is not a good measure because for two arbitrarily close

parameters µ1 and µ2 this point-wise distance between ψµ1
and ψµ2

is always 1

at one of the discontinuity points. Apparently this is the only deficiency of the

point-wise distance we need to fix. We will instead use the average distance of

the two in the unit interval. By elementary calculus the average distance is the

area between the two graphs. We will denote it by

‖f − g‖ =

∫ 1

0

|f(x)− g(x)|dx

and refer to it as the norm between f and g.

Let us try out a couple simple computations. First the distance of the ψ-

family member ψµ to the fixed point ψ0. The area between them consists of

one parallelogram and one trapezoid. The parallelogram is over the left interval

[0, 1 − µ] with side length µ. So its area is µ(1 − µ). The trapezoid is over

the right interval [1 − µ, 1] between the diagonal line and the base. Its area is
1−µ+1

2 µ. Together we have

‖ψµ − ψ0‖ = µ
4− 3µ

2
,

showing in fact the distance is a near constant factor of µ. We can do this type

of simple calculations for any two members, ψµ1
, ψµ2

, of the family to have

‖ψµ2 − ψµ1‖ = |µ2 − µ1|
4− 3|µ2 − µ1| − 2 min{µ1, µ2}

2
.

Again, it is proportional to the parameter difference |µ2 − µ1| as we wanted.

Applying the first formula to the backward harmonic orbit ψ1/k we have

‖ψ1/k − ψ0‖ =
1

k

4− 3(1/k)

2
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going to zero monotonically in k. Applying the second formula to the same

backward orbit we have the following ratio test limit

lim
k→∞

‖ψ1/k − ψ1/(k−1)‖
‖ψ1/(k+1) − ψ1/k‖

= lim
k→∞

1/k − 1/(k − 1)

1/(k + 1)− 1/k
= 1.

These results can be generalized to any µ-harmonic orbit: {ψµ/(1+kµ)} for any

fixed value µ as R(ψµ/(1+kµ)) = ψµ/(1+(k−1)µ) since µ/(1+kµ)/(1−µ/(1+kµ)) =

µ/(1 + (k − 1)µ). That is, the ψ-family is in fact a weakly expanding center-

manifold.

3.4.4 1 Is An Eigenvalue

We will push our luck one more time. The following simple estimate proves that

1 is in fact an eigenvalue of R at the fixed point ψ0:

‖R(ψµ)−R(ψ0)− 1 · (ψµ − ψ0)‖ = ‖ψµ/(1−µ) − ψµ‖

=
( µ

1− µ
− µ

)4− 3(µ/(1− µ)− µ)− 2µ

2

∼ µ2 ∼ ‖ψµ − ψ0‖2,

showing that ψµ−ψ0 is an eigenvector of the the eigenvalue 1. All it takes is the

distance formula for any two elements of the ψ-family. This is embarrassingly

fortunate comparing to the Feigenbaum-Coullet-Tresser universality. It took

about twenty years to have a conceptual proof for their universal number δ to

be an eigenvalue of their renormalization.

3.4.5 0 Is Also An Eigenvalue

There is no reason to stop pushing our luck. Let us take a look at the full spike

return map family Sµ. At µ = 0, we have S0(x) = x for 0 ≤ x ≤ c and S0(x) = 0

for c < x ≤ 1. Thus, R(S0) = id the identity map, i.e. R(S0) = ψ0. That is, in

one iterate S0 is onto the fixed point ψ0, showing 0 is an eigenvalue of R:

‖R(S0)−R(ψ0)− 0 · (S0 − ψ0)‖ = 0 ∼ ‖S0 − ψ0‖2.

One can actually show that Rn(Sµ) converges to the unstable-center-manifold

ψµ in the following manner: for any arbitrarily small number ε > 0 and any

member, ψµ, of the ψ-family, there is a sufficient large integer k and a member,

Sµ′ , of the S-family so that kth renormalization Rk(Sµ′) of Sµ′ is within ε-

distance of ψµ:

‖Rk(Sµ′)− ψµ‖ < ε.
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Figure 3.9: The shaded area is the distance between Rk(Sµ) and the fixed

point ψ0 for some µ which gives the map Sµ 49 isospikes because the 47th

renormalization has 2 spikes per burst.

This result is the so-called λ-lemma. We will not dive into a proof for the

S-family but to illustrate the idea for the s-family.

3.4.6 Weakly Hyperbolic Structure

The explanations start and end with the ψ-family. For each fixed µ of the ψ-

family, we consider its µ-harmonic sequence µ′ = µk = µ/(1 + kµ). Because it

satisfies the µ-harmonic invariance R(ψµ/(1+µ)) = ψµ we have Rk(ψµk) = ψµ.

Recall also that ψµ and sµ are identical in the active interval [0, 1 − µ] with

exactly the shared back iterates c−i = 1 − (i + 1)µk of the discontinuity point

c0 = 1 − µk for µ = µk. Thus Rk(sµk) differs from Rk(ψµk) = ψµ only in

the silent phase interval (1−µ, 1] with its maximum the scaled maximum value

M(µk) of sµk . Because of the formula (3.5) for the kth iteration of R, the scaling

factor is c−k+1 = 1−kµk = 1
1+kµ and the new maximal value is M(µk)/c−k+1 =

(1 + kµ)M(µk). Because M(µk) decays exponentially in k we can always find a
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Figure 3.10: Invariant foliations near the non-hyperbolic fixed point ψ0.

large k so that the new maximum is no greater than ε, M(µk)/c−k+1 < ε. As

a result ‖Rk(sµk)− ψµ‖ < ε as desired.

A proof for the S-family is very similar because the return map rSµ is ap-

proximated by sµ. However we will use a numerical simulation, Fig.3.9, instead

for an illustration to spare the details. It shows that for any ψµ one can find µk

so that Rk(Sµk) is arbitrarily close to ψµ. It also shows the weakly hyperbolicity

of the fixed point ψ0 — the renormalization iterate Rk(Sµ) moves closer to the

fixed point before it moves away from the fixed point.

What about foliation transversal to the unstable-center manifold ψ-family?

Here is one. Let Fωk denote the subset of renormalizable maps f so that mk = c0

for f ’s lower spike corridor boundary orbit mk and f ’s discontinuity point c0,

i.e. the condition for the end of k-isospiking point for the ψ, s, and S families.

Hence, for f from Fωk if and only if R(f) is in Fωk−1
because the application

of R to its argument f simply takes out one spike count of f , showing

R(Fωk) ⊂ Fωk−1
.

As for the ψ, s, S families they all intersect the F-foliation transversely at the

isospiking bifurcation points ωk. See Fig.3.10

We list all the easy and fast goodies in the following theorem,

Theorem 7 The first natural number 1 is a weakly expanding eigenvalue of the

renormalization map R and the ψ-family is a corresponding invariant unstable-

center-manifold. Also, the s-family and the S-family each converges to the ψ-

family under the iteration of R. In addition, the family of sets {Fωk} is an

invariant foliation of R that is transversal to the ψ, s, S families.
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Figure 3.11: Top-left: TheM−1 line splits the triangle above the c0 line in golden

ratio, so does the M0 line for the triangle below the m1 line. Other golden ratio

objects are abundant in this this diagram. Top-right: The M -orbit (black) and

the m-orbit (red). The diagrams are invariant under the renormalization R. If

you the µ = 1/2 line to µ = 1 and the c0 line to horizontal line y = 1 (i.e. the c1

line), you get the exactly same diagrams. Bottom: The bifurcation diagram of

the q-family. The zoom-in plot on the right shows a seemingly period-doubling

cascade is interrupted prematurely.

3.4.7 More Harmonic Invariance Families

Before closing we want to point out that the ψ-family is not the only center-

manifold of the fixed point. Here we give two more families. They are the

specific cases of the general form

fµ(x) =

{
µ+ x, 0 ≤ x < 1− µ
gµ(x), 1− µ ≤ x ≤ 1,



83 3.5. Universal Are All Numbers

for which the functional form in the left interval is exactly the same as the

s-family and the functional form g in the right interval satisfies the following

renormalization-invariance condition:

1

c0
f2
µ(c0x) =

1

c0
gµ(µ+ c0x) = gµ/c0(x)

with c0 = 1− µ.

The first family is a special form of the s-family for which we set the param-

eter d = 0. Since the function form gµ is gµ(x) = a(x− c0) exp(−(x− c0)/(bµ))

with c0 = 1 − µ, it is straightforward to check that gµ(µ + c0x)/c0 = gµ/c0(x).

This holds for any choice in a and b. We will call it the φ-family for this param-

eter choice b = Φ2, a = (Φ + 1) exp(1) with Φ = (
√

5 − 1)/2 being the golden

ratio (Φ2 = 1− Φ),

φµ(x) =

{
µ+ x, 0 ≤ x < 1− µ
(Φ + 1)(x− 1 + µ)e1−(x−1+µ)/(Φ2µ), 1− µ ≤ x ≤ 1.

When µ = 1, the maximum point b = Φ2 and the maximum value abe−1 =

(Φ + 1)Φ2 = Φ is a golden ratio split. The top-left figure of Fig.3.11 shows

the isospiking bifurcation diagram of the family and the top-right figure shows

the M -orbit and the m-orbit which define the spike corridor. These diagrams

are invariant under R in the following way. For any vertical line µ find its

harmonic predecessor µ/(1+µ). The dynamical image of R(φµ/(1+µ)) is exactly

the dynamical image of φµ.

The second family of fµ has the simplest nonlinear form for the right interval

gµ(x) = λ(x− c0)(1− x)/µ with c0 = 1− µ. We call it the q-family,

qµ(x) =

{
µ+ x, 0 ≤ x < 1− µ
λ
µ (x− (1− µ))(1− x), 1− µ ≤ x ≤ 1.

Again, it is straightforward to check the invariance condition: gµ(µ+ c0x)/c0 =

gµ/c0(x). The bottom figure of Fig.3.11 shows the asymptotic orbits for the

upper and lower corridor boundary points for the parameter value λ = 1/2. For

µ = 1, q1 is the quadratic map x(1−x)/2 for which the maximum point x = 1/2

is supper stable. It dynamics is far from chaos. But the dynamics of the spike

family can be chaotic at every small scale of µ.

3.5 Universal Are All Numbers

The dynamical systems world would be extremely mysterious if the Feigenbaum-

Coullet-Tresser number δ = 4.6692... were the only universal number. We now
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know it has a companion. But the dynamical system world would still be very

peculiar if δ and 1 are the only universal numbers. What about the number 2

or the number π? We will show in fact all positive numbers are universal by

the same criteria as we have applied to the two universal numbers known so far.

One criterion requires that a universal number be the limit of a ratio test on the

bifurcation sequence of a dynamical system. The other criterion requires that

the number is an eigenvalue of a renormalization map on the dynamical system.

3.5.1 Exponential Invariance Families

Let us first do the easier part of the two criteria because we only need to continue

on with the same renormalization map R on the spike renormalizable space U .

For any real number λ > 1 we consider the following u-family of maps,

uλ,µ(x) =

{
µ+ λx, 0 ≤ x ≤ 1−µ

λ

0, 1−µ
λ < x ≤ 1,

(3.6)

for 0 ≤ µ ≤ 1. (When parameter λ is not part of an analysis we will drop it for

a streamlined notation uµ.) At the right end of the parameter µ, we have

u0(x) = λx for 0 ≤ x ≤ 1
λ and u0(x) = 0 for 1

λ < x ≤ 1.

It is the line through the origin with the slope λ > 0 in the left interval [0, 1/λ]

and the horizontal line in the right interval (1/λ, 1]. The critical point is c =

1/λ. Its backward iterates are c−k = 1/λk+1 with c0 = c. Since they form a

decreasing infinite sequence, the map u0 is indefinitely renormalizable. Since u0

is zero in the right interval, its renormalized image is zero in the right interval.

Since u0 is a line, its renormalization is also a line in the left interval and with

the same slope because scalar scaling preserves all lines through the origin.

Therefore u0 is a fixed point of R, R(u0) = u0, for any fixed parameter λ ≥ 1.

In fact, for λ = 1, the u-family is the ψ-family we studied in the last section.

As a result pretty much all analyses applied to ψµ apply to u-family as well.

For example, for µ > 0, uµ is the u0 lifted by µ and then clipped by the top

of the unit box at the new critical point c0 = (1 − µ)/λ. By exactly the same

reasons as above and as for the ψ-family, the u-family is also invariant with R:

R(uµ) = uµ/c0 = uλµ/(1−µ).

Unlike the ψ-family which is a center manifold of the identity map ψ0, the u-

family is the unstable manifold of the fixed point u0. This is backed up by the

following computations.
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3.5.2 Every Positive Number Is An Eigenvalue

First, we can find the distance ‖uµ−u0‖ of uµ to the fixed point u0. It consists

of two areas between the graphs — the area of the parallelogram between uµ

and u0 over the interval [0, (1−µ)/λ] and the area of the trapezoid between uµ

and u0 over the interval [(1−µ)/λ, 1/λ]. A simple tabulation of the areas gives

‖uµ − u0‖ =
µ

λ

4− 3µ

2
,

the same distance between ψµ and ψ0 scaled down by λ. It is an increasing

function of µ for 0 ≤ µ ≤ 1
3 , i.e., uµ moves away from u0 in that parameter

interval.

Second, we can show λ is likely an eigenvalue by calculating the rate of

expansion along the expanding u-family. It is by the distance formula above

and the identity R(uµ) = uλµ/(1−µ) that we have

lim
µ→0

‖R(uµ)−R(u0)‖
‖uµ − u0‖

= lim
µ→0

µ
1−µ
µ
λ

4− 3 λµ
1−µ

4− 3µ
= λ.

To show that λ in fact is an eigenvalue we need some not so trivial com-

putations. It involves the so-called generalized function, namely the delta dis-

tribution function δa at a point x = a. It starts with finding the so-called

linearization of R along the unstable manifold uµ at the fixed point u0. It is the

limit of the following quotient

lim
µ→0

R(uµ)−R(u0)

‖uµ − u0‖
= lim
µ→0

uλµ/(1−µ) − u0

µ
λ

4−3µ
2

.

If the limit exists then it must be a number (a complex number in general) times

a function whose norm or length is the unit 1. Without showing the detailed

computations for the limit about, let Tu denote the following function

Tu(x) = −1

2
δ1/λ(x) +

1

2
vλ(x) with vλ(x) =

{
λ, 0 ≤ x < 1

λ

0, 1
λ < x ≤ 1,

where δ1/λ(x) is the δ-function with the norm ‖δa‖ = 1 for any a and this

formula ‖Tu‖ = ‖− 1
2δ1/λ‖+ ‖vλ‖ to calculate Tu’s norm. Then those omitted

computations would have shown that

lim
µ→0

R(uµ)−R(u0)

‖uµ − u0‖
= λTu.

Because vλ points in the same direction as R(uµ) − R(u0) and ‖Tu‖ = 1, it

follows that λ is indeed the eigenvalue of the corresponding unit eigenvector

Tu.
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Thus, the only question remains is if the u-family is the return map family

for a system of differential equations. The unimodal families can be the return

maps of a lot of dynamical systems, e.g. the food-chain models from the previous

chapter. The S-family are the return maps of the neuronal models for spike

generation. What dynamical systems have the u-family as their return maps

and what type of bifurcations will the family be about?

3.5.3 Graded Fast-Slow Systems

Up until this point we have used fast-slow systems constructed by singular

perturbations to gain valuable insights into chaos generation in models. We

used them as proxies. We will call them up one more time, but this time use

it on their own right because we do not have physical models for the u-family.

That is the key difference between the u-family and the other two families.

The system is Eq.(1.8) for the Shilnikov homoclinic orbit to an expanding

spiral equilibrium point. It is a singularly perturbed system with one singular

parameter ε,

ẋ = f, ẏ = g, εż = h.

Here the zeroes of h define the Z-switch as usual, with the top and bottom

branches approximated by the plane z = ±2. The xy-equations are the ε-slow

system. On the bottom branch z ∼ −2 of the switch, we will use one time scale

for both x and y variables. In fact, we will use a linear, logarithmic spiral for

the reduced slow system, which in the polar coordinate is simply,

ṙ = αr, θ̇ = β.

For each θ0, it takes t = 2π/β amount of time to return to the radial line

θ = θ0. Its radial displacement on the return line from the center is r = r0e
αt =

r0e
2πα/β . That is, with λ = e2πα/β the spiral from the center expands outward

λ-times away. For the system considered we will use (x, y) = (2, 0) for the spiral

center.

On the top branch z ∼ 2, we will further split the time scale for the reduced

slow subsystem. This is unlike all multi-scales systems we have constructed and

encountered so far. We can either use a second singular parameter ζ but require,

0 < ε� ζ � 1. That is, the second parameter is small but not smaller than the

first in magnitude. Or we simply use ζ = εp for some constant 0 < p < 1. We

will adopt the latter. Thus, up to a common scalar multiple, the ε-slow system

takes the following εp-form on the top branch of the fast switch,

ẋ = εp, ẏ = b+
c− b
−2− a

(x− a)− y.
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Figure 3.12: Top-left and center: Parameter values for the Shilnikov attractor

of the system: a = 2, b = −2, c = 1, m = 0.923, α = 0.3829, β = 5, d =

0.08, ζ = 4, p = 0, ε = 0.001. Top-right: The same parameters except for

ζ = 1, p = 1/3, b = 0, m = 0.905. The particular choice in α and β results

a gold ratio spiral with λ = 1 + Φ. Even though ε is at the singular value, all

flows are channeled into one trickle on the top branch. Bottom: The return

map u-family from the graded fast-slow system. The fall of the top flow misses

the spiral center by an amount proportional to µ, the first return of the new left

end point of the return map.

It is a linear but singularly perturbed system. Variable x is the εp-slow variable

and variable y is the εp-fast variable. The corresponding εp-slow manifold is the
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y-nullcline:

y = b+
c− b
−2− a

(x− a),

which goes through the points (a, b) and (−2, c), completely controllable by

parameters a, b, c. Thus, at the singular limit εp = 0, all the flows on the top

branch are squeezed onto the εp-slow manifold and then led rightward (because

ẋ > 0) toward the turning edge of the switch. With the top turning edge

running along the line x = 2, and the parameter choice a = 2, b = 0, all the

εp-singular orbits are dumped down below onto the spiral center (2, 0) on the

bottom branch of the switch.

For convenience we recall the system below:
ẋ = ζεp(z + 2) + (2− z)[α(x− 2)h− βy]

ẏ = (z + 2)[b+ c−b
−2−a (x− a)− y] + (2− z)[β(x− 2) + αyh]

εż = (22 − z2)[z + 2−m(x+ 2)]− dz

and refer to it as a εp-graded fast-slow system. Fig.3.12 gives a numerical

simulation of the system for a regular ζ value with p = 0 and for a ε-graded

value with p = 1/3 and ζ = 1.

Without the grading (p = 0 and ζ regular), the top slow flows fan out

toward the top turning edge like a waterfall. The resulting dynamics is the

Shilnikov chaos from a homoclinic orbit to a saddle-fucus equilibrium point.

The presence of a K-fold turning fold point splits the reduced slow flow on the

bottom branch in two directions, one going up to the top branch, the other

staying on the bottom for another round of spiraling. It creates a discontinuity

point for its return map on any radial line through the spiral center. In the right

interval of the returning line (θ = 0), the corresponding homoclinic point is a

critical minimum, being the limit of the K-fold junction point if the waterfall

misses the spiral center. With εp-graded, the top waterfall is pinched to one

line. The corresponding return map on the right interval is the flat line zero.

3.5.4 Return Map Of Graded Fast-Slow Shilnikov Orbit

Fig.3.12 also gives a derivation of the return map on the line x ≥ 2 (i.e. θ = 0).

To the left of the point corresponding to the K-fold turning point K1, the map

is exactly µ + λx with λ = e2πα/β being the logarithmic spiral ratio. The

linearity in the return variable x is because the reduced slow system on the

bottom branch is a linear spiral. To the right of the discontinuity point, the

map is flat-lined at zero because the top εp-graded slow system reduces all flows

to the 1-dimensional εp-slow manifold. The offset parameter µ is proportional
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to the distance between the falling slow-manifold orbit and the spiral center the

orbit missed. The return map is of the u-family.

Like the ψ-family, the u-family maps go through a sequence of bifurcations

as µ decreases to zero. Unlike the ψ-family which undergoes the isospiking

bifurcations the u-family undergoes changes in the number of spirals on the

bottom branch of the switch. The number of spirals increase from 1 to 2, to 3,

and so on as µ goes down to zero. The number reaches infinity when the orbit

becomes the homoclinic orbit of the spiral center.

The bifurcation point, µk, at which the singular orbit changes from having

k spirals to k + 1 spirals is determined by the bifurcation equation

mk = c0,

the same as for the isospiking bifurcation point ωk. Since m0 = 0 and mk =

ukλ,µ(m0) = µ+ µλ+ . . . µλk−1 = µ(λk − 1)/(λ− 1), we have from the equation

mk = c0 = (1− µ)/λ the solution

µk =
λ− 1

λk+1 − 1
,

approaching 0 at the exponential rate 1/λ as k goes to infinity. As a result the

ratio test limit is

lim
k→∞

µk − µk−1

µk+1 − µk
= lim
k→∞

λk+2 − 1

λk+1 − λ
= λ.

It is what we expect for any geometric sequence of bifurcations with an expo-

nentially contracting rate.

To summarize we have the following theorem,

Theorem 8 Every number λ > 1 is a universal number in the sense that it is

the eigenvalue of the renormalization map R along a family of return maps for

a graded fast-slow system. The family of return maps is the unstable manifold

of the eigenvalue λ to a fixed point of R. The family of return maps undergoes

an infinitely sequence of bifurcations in the number of spirals as the graded fast-

slow system approaches a singular homoclinic orbit of an unstable saddle-focus

equilibrium point.

Curiously the Feigenbaum-Coullet-Tresser number δ is re-created by the graded

singular homoclinic bifurcation when λ = δ but the natural number 1 cannot.

This is because at the limit λ = 1 the return maps for the graded singular

homoclinic orbit of the spiral center is always the singleton S0 map, i.e. u1,µ =

S0 for all µ. The graded singular homoclinic bifurcation ceases to provide a
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new mechanism by which the universal number 1 can be re-created by the u-

family even though as λ goes to 1 the limit limuλ,µ = ψµ exists. One more

curious feature. Formally as λ → 1 the bifurcation point µk does converge

to the bifurcation point µk of the ψ-family. This is because for each fixed k,

µk = (λ−1)/(λk+1−1) = 1/(1+λ+λ2 + · · ·+λk) which converges to 1/(k+1)

as λ goes to 1. Everything seems to fit except that the λ-limit u1,µ = S0 is a

family of only one member.



Chapter 4

Big Chaos

The American mathematician Stephen Smale had an ambitious plan in the

1950s. He wanted to have some definitive thing to say about all differential

equations. If he could prove what he envisioned, the field of dynamical systems

would be done, all taken, no more virgin land to plow. Fortunate for everybody,

himself included, that idea of his did not pan out. The person who would

thoroughly upset his plan was no one but himself. His thwarted effort directly

led to the first distilled chaotic map and fueled much of the theoretical pursuit

of the chaos revolution in the last century.

Smale started out by considering all sufficiently smooth differential equations

on closed but bounded manifolds. Given our current understanding that our

visible universe is only finite his class of dynamical systems had rounded up

pretty much all the usual suspects of mathematical models. He also started

out by considering only equilibrium solutions of his differential equations. It is

true that if a differential equation has an equilibrium point either the point is

already isolated or one can give it a little shake to make it so. In a more precise

term every differential equation of his class has arbitrarily close neighbors which

have only finitely many equilibrium points. In this way his class of differential

equations can be neatly divided up into subsets each of which has only a finitely

many equilibrium points give-and-take those equations which are completely

surrounded by these stable and regular diffizens.

Inspired by this neat picture Smale took the next natural step. He conjec-

tured that the same result held for periodic solutions of his differential equa-

tions. In his own words many years later his conjecture was the same to say

“chaos doesn’t exist!”. That of course was when things got interesting. He was

promptly informed by Norman Levinson, an American mathematician, that

91
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a counterexample already existed in the work of two British mathematicians,

Mary Cartwright and John E. Littlewood. It was an differential equation about

radio waves that has infinite many periodic orbits which persist for all neighbor-

ing equations. Smale worked day and night while vacationing on the beaches

of Rio de Janeiro to translate the analysis of the trios to his topological way of

understanding. It turned out that the root cause of the infinite many periodic

orbits was the existence of a homoclinit orbit to a periodic solution, the same

tangled mess which confounded Poincaré. He succeeded in his translation. The

horseshoe map was discovered, and out came the most common definition of

chaos.

4.1 What Is Chaos

His horseshoe map lives up to its moniker, see Fig.4.1. Start with a rectangle.

You compress it in the vertical direction and stretch it in the horizontal direction.

The order of these operations is not important. You can first compress then

stretch or vice versa or simultaneously. After the contraction and expansion you

fold it at the middle into a horseshoe and then superimpose it to the original

rectangle. You get Smale’s configuration if the horseshoe horizontally lies on its

side and its two ends and bend stick out from the rectangle as shown. Embed the

rectangle, the horseshoe in the plane R2 and denote the rectangle by Q and the

point to point correspondence by h, we obtain his horseshoe map h : Q→ R2.

A lot of iterates do not stay in the rectangle. Whenever an iterate is cap-

tured by the white vertical strips of the rectangle its next iterate under h escapes

the rectangle. The set of those points which stay inside Q indefinitely in both

forward and backward iterations is referred to as the non-wandering set and is

denoted by Λ. Under some mild conditions on how much the rectangle con-

tracts and expands Smale demonstrated that the non-wandering set Λ contains

uncounterablly many points. Among many more properties Smale emphasized

the following three which many researchers now take to be a working definition

of chaos. The first property is what upset his grand plan the most.

Theorem 9 Under some typical and mild conditions on h the following prop-

erties hold for the non-wandering set Λ:

1. The set of periodic orbits is dense in Λ.

2. The map has a sensitive dependence on initial conditions.

3. There is a dense orbit in Λ.

A set A is dense in another set B if for every point x from B and any small
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Figure 4.1: Left: A deconstruction of the horseshoe map into a sequence of

four actions: contraction, expansion, fold, and return. The directionally shaded

vertical bars are mapped to the directionally shaded horizontal strips. Right:

Horseshoe arises from a homoclinit orbit to a fixed point. The stable and un-

stable manifolds of the fixed point provide with the contraction and expansion

directions for the rectangle around the stable manifold. The intersection of

the manifolds makes the compressed and elongated strip to fold and to return,

resulting in a horseshoe map.

number ε > 0 there is a point y from A whose distance to x is no greater

than ε: d(x, y) < ε. An orbit is dense in B if the set of iterates of the orbit

γ(x) = {xn : xn = hn(x), n = 0, 1, 2, 3, . . . } is dense in B. A map f has a

sensitive dependence on initial conditions in a set A (i.e. expansive) if there is

a fixed number δ0 > 0 so that no matter how close two distinct points are to

each other, d(x, y) < ε, there is an integer n > 0 so that their nth iterates are at

least δ0-distance apart: d(fn(x), fn(y)) > δ0, a precise way to state the Lorenz

butterfly effect.

The three properties of the theorem above consist of the working definition

of chaos we will adopt for the remainder of the book. Truth be told or rather

history be told, the word chaos was used first by Tien-Yien Li and James A.

Yorke in the 1970s that caught on fire for the then emerging field and now burnt

onto the doorway to the field. It came from the title of a paper they co-wrote.

It proclaimed ‘Period Three Implies Chaos’. Li was originally from Taiwan, and

Yorke was Li’s graduate advisor. The paper was the result of a small part of

Li’s graduate training. They did not think much of it and published it in a

pedagogical journal for mathematicians. The paper is about the logistic type

maps which says that if such a map has a period-three orbit then it must have

orbits of all periods. Little did they know their result was published by the

Ukraine mathematician Oleksandr Mikolaiovich Sharkovsky, a decade earlier,
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under an impenetrable title, and in its complete form than their partial result.

In fact, Sharkovsky rearranged the natural numbers in the following order now

bearing this name:

3 � 5 � 7 · · · � 2·3 � 2·5 � 2·7 � · · · 2k ·3 � 2k ·5 � 2k ·7 � · · · 23 � 22 � 2 � 1

and proved that if a map of the logistic family has a periodic orbit of period k

then it must have a periodic orbit of period ` for every ` below k in his ordering.

Li and Yorke proved the special k = 3 case. This piece of history just makes

you wonder had they known Sharkovsky’s work what would the field be called?

Would it still be called chaos? Would a different name be able to stoke the same

amount of creative fire, or capture the same level of public’s imagination?

We will not give a proof of the horseshoe theorem above because there is an

even simpler map and easier proof to use to illustrate the definition properties

of chaos. Consistent with our singular perturbations approach, we can start

the horseshoe map construction by compressing the rectangle vertically into a

horizontal line segment. That is, we can imagine the vertical variable is a fast

variable and the construction is done to the singular limit. In this simplified

scenario, the line segment is stretched, folded, and returned to the line again.

We can even further simplify the matter by assuming the reduced 1-dimensional

map is piecewise linear, and when it is graphed out it looks like a tent depicted

in Fig.4.2. Even the tent map is not the simplest. Its graph preserves the

interval orientation of the left half interval but reverses the interval orientation

of the right half interval, which can be a brain twister for the bookkeeping of

its non-wandering set. So we will replace it by the simplest chaotic map, the

baker’s map, as depicted in the figure. It is the same as the tent map except

that it preserves the orientation of the right half interval as well. The baker’s

map is not just a conjuring. In fact, the singular return map for the mockup

Lorenz attractor introduced in a previous chapter is of the same type.

4.1.1 Itinerary Of Non-Wanderer

We will take the definition interval of the baker’s map to be the unit interval

I = [0, 1]. We will denote it by B : I → R:

B(x) =

{
3x, 0 ≤ x < 1/2

3x− 2, 1/2 < x ≤ 1.

It is a line of slope 3 through the origin in the left half interval [0, 1/2] and a line

of slope 3 through the top-right corner point in the right half interval [1/2, 1].
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Figure 4.2: Top left: the tent map. Top right: the baker’s map. Bottom:

Cantor’s middle third construction of the non-wandering set Λ of the baker’s

map in the unit interval [0, 1]: it is what remains after the open middle third

interval is removed from every remaining interval ad infinitum.

We will work through some of the steps in the next section to see how simple

or hard it is to demonstrate the simplest chaos.

To make the case of chaos for the baker’s map it pretty much starts and

ends with a good bookkeeping of points in the unit interval I = [0, 1]. Any

point x of the interval is destined to one of two fates. Either one of its iterates

xk = Bk(x) enters the open middle third interval (1/3, 2/3) and then escape the

unit square forever, or all iterates manage to avoid the mid-third trap: some

or all fall inside the left third interval I0 = [0, 1/3] and some or all fall inside

the right third interval I1 = [2/3, 1]. Obviously the latter type points form the

non-wandering set Λ and the former type form everything else but Λ, i.e. the

compliment of Λ.

Of either type we can record the itinerary as the iterate travels in the interval.

Whenever the iterate enters the escaping mid-third interval we stop recording

the itinerary. If the iterate is in the left-third interval I0 we record a 0 and if

it is in the right-third interval I1 we record a 1. Thus, the itinerary, denoted

by ρ(x), is either a finite sequence or an infinite sequence in itinerary symbol
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0 and 1: ρ(x) = s0s1 . . . with si = 0 or 1. If a point is from the mid-third

interval, its itinerary is an empty sequence ρ(x) = ∅. Otherwise, if its itinerary

is a finite sequence ρ(x) = s0s1 . . . sn, then x = x0 is from Is0 , x1 = B(x) is

in Is1 , etc., and the nth iterate xn = Bn(x) is in Isn but the (n + 1)th iterate

Bn+1(x) is in the mid-third interval at which time the itinerary recording stops.

Such a point is from the compliment of the non-wandering set. So a point x

is from the non-wandering set if and only if its itinerary is an infinite binary

sequence ρ(x) = s0s1 . . . . If we denote B = {s : s = s0s1 . . . , si = 0 or 1} the

set of all infinite binary sequences then the itinerary map ρ is a map from the

non-wandering set to the infinite binary sequence set B. The questions are is

the itinerary map ρ a one-to-one map, and is it a onto map?

The answers to both questions are yes. But to see the answers we need to

get a better picture of the non-wandering set Λ. On the outset Λ is the fractal

Cantor set which is obtained by first removing the open mid-third interval of

the unit interval, then removing the open mid-third intervals of the left and

right intervals I0, I1, and then removing the open mid-third interval of every re-

maining interval, and so on, recursively forever, see Fig.4.2. To see the itinerary

map σ is one-to-one and onto, we go back to the itinerary idea once more.

4.1.2 Itinerary Of Set

This time around instead of individual point itineraries we define the itinerary

of any set of the unit interval. The set itinerary ρ(J) of a set J is again a

binary sequence ρ(J) = s0s1 . . . sn in 0s and 1s such that every point from J

shares exactly the same destination itineraries from iteration 0 to iteration n

and there must be at least two distinct points of J whose (n + 1)th itineraries

diverge. That is, the set itinerary is the maximally shared itinerary for all points

of J . For example, the set itinerary ρ(I) of the unit interval itself is the empty

sequence because its points do not share a common itinerary. Clearly the left-

third interval I0 has its set itinerary to be at least one length long with the

first itinerary s0 = 0 because every point shares the same initial start. Because

B expands I0 to the full interval I, some points of I0 are mapped to the left

interval I0, some to the right interval I1, and so on. That is, its first iterates

are everywhere, divergent. So s0 = 0 is the only shared point itinerary of its

points and ρ(I0) = s0 = 0, which is used for the interval’s subscript, a zip code,

so to speak, for the subset. The same explanation is for the right-third interval

I1 because of its set itinerary ρ(I1) = s0 = 1.

Let us now work out the set itineraries for the remaining subintervals at each
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step of the Cantor mid-third construction. Take the I0 interval for example. Its

length is 1/3. B expands I0 three folds to the full interval B(I0) = I. Because

B is a straight line on I0, the subinterval I0 is divided into three equal parts,

with the middle third interval mapped by B to the escaping mid-third of I. So

it must be removed for not containing the non-wandering set. Two subintervals

remaining, the left and the right third intervals of I0. Because the left-third of

I0 is mapped by B onto I0, all points receive one more shared itinerary 0. So we

denote it by I00 with B(I00) = I0. In fact, s0s1 = 00 is the maximally shared

point itinerary of I00 because the second iterate of the interval has diverging

point itineraries as B2(I00) = B(I0) = I. So ρ(I00) = 00 as anticipated. Exactly

the same arguments apply to the right-third interval of I0, whose set itinerary

is 01 and thus is denoted by I01, all is because B(I01) = I1. The same applies

to the subinterval I1 whose left-third and right-third subintervals are I10, I11

respectively, with their set itineraries being their subscript addresses. These

four subintervals, each of length 1/32, are the only subsets whose set itineraries

take up all the binary sequences of length 2.

The same method of bookkeeping can be used for all intervals from the

Cantor mid-third construction. More specifically, let us assume we have al-

ready constructed the 2n many closed subintervals of length 1/3n: Is with

s = s0s1 . . . sn−1 for all possible si = 0, 1. Each is nested inside the previous,

Is0s1...sn−1
⊂ Is0s1...sn−2

⊂ · · · ⊂ Is0s1 ⊂ Is0 . And the action of the map on it is:

Bn−1(Is) = Isn−1
and Bn(Is) = I. That is, the nth iterate Bn on Is is the line

of slope 3n. Thus, the image trio intervals of I have three equally partitioned

preimage subintervals of Is, each is of length 1/3n+1. The mid-third is not

given any more itinerary since it escapes at the nth iterate of B. The left-third

is given one more set itinerary 0 because it is mapped by Bn to the left-third

I0 of I. And its set itinerary is exactly s0 because the point itineraries diverge

by the (n+ 1)th iteration as Bn+1(Is0) = B(Bn(Is0)) = B(I0) = I. Hence the

subscript for this interval is its set itinerary s0. The right-third subinterval of

Is receives exactly one more set itinerary 1 for similarly reasons. In this way,

we obtain the 2n+1 many closed subintervals of length 1/3n+1 exhausting all

possible set itineraries s0s1 . . . sn of length n+ 1 for their address subscripts.

4.1.3 Bernoulli Shift And Conjugacy

We are now ready to give a complete description of the non-wandering set Λ.

For any point x from Λ with its point itinerary ρ(x) = s0s1 . . . sn . . . , it must

belong to the Cantor mid-third construction intervals Is0s1...sn of the shared set
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itinerary s0s1 . . . sn for all iterates n = 0, 1, 2, . . . . Because the nested intervals

contract to a unique point ∩∞n=0Is0s1...sn such a point x not only exists but

also is unique with the said point itinerary ρ(x) because the subinterval length

1/3n+1 converges to 0. This shows the itinerary map ρ : Λ → B is one-to-

one, i.e. no two points of Λ shares the same point itinerary. Conversely, for

every infinite binary sequence s = s0s1 . . . sn . . . from B, the nested subintervals

Is0s1...sn exists for the shared set itineraries with s. The unique intersection

point {x} = ∩∞n=0Is0s1...sn not only exits but also its point itinerary ρ(x) is

exactly the said binary sequence s. This shows the map ρ is onto, i.e. every

infinite binary sequence is the itinerary of a unique non-wandering point.

This is not it. The itinerary has automatically encoded the dynamics of

the baker’s map. Because of its definition, we have for every point from the

non-wandering set x ∈ Λ with itinerary ρ(x) = s0s1 . . . sn . . . , the image stays

in the set B(x) ∈ Λ and its itinerary is ρ(B(x)) = s1s2 . . . sn . . . , the same as

x’s except that the itinerary is shifted one position to the right. Let σ : B → B
denote the shift operation, σ(s0s1 . . . sn . . . ) = s1s2 . . . sn . . . . Then we see that

σ is an onto map, which is referred to as the Bernoulli shift on the symbolic

space B.

More importantly this identity holds: σ(ρ(x)) = ρ(B(x)) for all x ∈ Λ. In

picture, the following diagram commutes when following the arrows:

Λ
B−−−−→ Λ

ρ

y yρ
B −−−−→

σ
B

This relationship gives rise to the definition that the backer’s map B is conju-

gate to the Bernoulli shift σ. Because ρ is invertible, σ is also conjugate to B

by definition. Hence B and σ is said to be equivalent. This means that the

combinatoric property of B on Λ is identical to the combinatoric property of σ

on B.

4.1.4 Diagonalization For Uncountability Of Non-Wanderers

Here is a beautiful proof for the uncountability of the non-wandering set Λ,

making use of the conjugacy. It is referred to as Cantor’s diagonalization argu-

ment which was used for the uncountability of irrational numbers. The British

mathematician Alan Turing used the same idea to demonstrate that it is algo-

rithmically impossible to determine for all possible programs whether or not an
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arbitrarily given program will terminate or run forever, one of the most cele-

brated results in the history of mathematics. Now about the non-wandering set

Λ. Since it has a one-to-one correspondence with the set of all binary sequences

B, we only need to show that B is uncountable. Suppose on the contrary that

B is countable. Then all elements of B can be arranged as a sequence, counted

out by the natural number 1, 2, 3, ets. Since each element is a binary sequence,

we can list all elements of B vertically like below

s11s12s13 . . .

s21s22s23 . . .

s31s32s33 . . .
...

with each row a binary sequence of B. We next construct a binary sequence s̄

that is not on the list and hence the contradiction. All it takes is to flip the

bit of each diagonal entry, and call the flipped diagonal sequence s̄. That is, if

s̄ = s̄1s̄2s̄3 . . . , then s̄k = 1− skk for all k = 1, 2, 3, . . . . This sequence is in fact

excluded by the list because it differs from every sequence of the list at least

once at the diagonal position.

One may ask if the shift map also capture the metric property of the baker’s

map, namely the full dynamical property of B on its non-wandering set. The

answer is yes. Suffice it to say all we need is to define a distance between any

two itinerary sequences from the symbolic space. A full explanation is not very

complicated but it will send us onto a sidetrack. The diversion is unnecessary

as we are ready to demonstrate directly the baker’s map’s chaos in the next

section.

4.1.5 Sensitivity To Initial Conditions

Here is how to show the baker’s map has the property of sensitive dependence

on initial conditions. For any two different points x, y from the non-wandering

set, either they belong to the left-third and the right-third intervals I0, I1 re-

spectively or both are in one of the two intervals. In the first case they are

separated by the mid-third interval and thus they are at least 1/3 distance

apart: |x − y| ≥ δ0 = 1/3. In the second case they must share a common set

itinerary s = s0s1 . . . sn and diverge on the (n + 1)th itineraries. This means

of their (n+ 1)th iterates Bn+1(x) and Bn+1(y) one is in the left-third interval

I0 and the other is in the right-third interval I0, separated apart at least by

δ0 amount, i.e. |Bn+1(x) − Bn+1(y)| ≥ δ0. This completes the proof of the

expansive property for chaos.
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To show the set P of periodic points is dense in Λ, it is obvious that ev-

ery periodic point p has a periodic itinerary. Now for any point x from the

non-wandering set Λ and any arbitrarily small number ε > 0, let ρ(x) =

s0s1 . . . sn . . . be its itinerary and let an integer n be sufficiently large so that

1/3n ≤ ε. Let p be the point whose itinerary repeats indefinitely of the first

n + 1 itineraries of x, i.e. ρ(p) = s̄ with s = s0s1 . . . sn and s̄ means s repeats

itself indefinitely. Then p is a periodic point. Because x and p share their first

n+ 1 destinations both belong to the set Is of the same shared itinerary. Since

the length of Is is 1/3n+1 < 1/3n ≤ ε we have |x − p| < ε. This shows the

periodic set P is dense in Λ.

4.1.6 All For One And One For All: Dense Orbit

To show the last property that the non-wandering set has a dense orbit, we

adopt the following all-for-one-and-one-for-all construction. We first list all

finite binary sequences as

α1, α2, . . . , αn, . . .

so that the first two are the binary sequences of length one: 0, 1, the next four

are the binary sequences of length two: 00, 01, 10, 11, the next eight are the

binary sequences of length three, and so on. We then concatenate them all

into one sequence α = α1α2 . . . αn . . . to get an infinite itinerary. Let a be the

corresponding point in Λ with the constructed itinerary α, ρ(a) = α. Then the

orbit γ(a) = {a0, a1, a2, . . . } must be dense in Λ. This is because for any non-

wandering point x with itinerary ρ(x) = s0s1 . . . sn . . . and any arbitrarily small

number ε > 0, we can find n so that 1/3n ≤ ε and another integer k ≥ 1 so that

the kth iterate Bk(a) of the point a shares with x the same first n+1 itineraries

s = s0s1 . . . sn, which is either one of the α-sequence above or a subsequence of

such a longer α-sequence. As a result both belong to the interval Is of length

1/3n+1, i.e. |x − Bk(a)| ≤ 1/3n+1 < 1/3n ≤ ε, showing the orbit of a is dense

in Λ.

Notice that such iterate k are infinitely many as longer and longer α-sequences

will repeat any given shorter α-sequence. That is, the dense orbit will visit any

neighborhood of any point infinitely often, with irregularly spaced iterates k.

Notice also that dense orbits are infinitely many as there are different ways to

order all binary sequences of any given length. A dense orbit is everywhere in

the non-wandering set and forever present.
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4.1.7 Small Chaos Is Hard

We also note that a proof of chaos for the tent map is similar. The only difference

is that the location address of the daughter interval Is0s1...sn inside the mother

interval Is0s1...sn−1
does not follow the bookkeeping rule for the baker’s map.

Depending on whether the number of 1s in s0s1 . . . sn−1 is odd or even the left

daughter interval is given the additional itinerary 1 or 0 for its set itinerary and

the opposing itinerary is given to the right daughter interval. A proof of chaos

for the horseshoe map is also similar except that the itinerary of a point from

the horseshoe’s non-wandering set is a doubly infinitely sequence in the binary

symbols, with the backward itinerary, . . . s−n . . . s−1, for the backward orbit of

the point.

Proof of chaos for these systems may have a lot in common, but it is never

simple even for the simplest system. It involves a lot of intricate combinatoric

arguments and metrical estimations. Constructing a proof for chaos for a ran-

domly chosen mathematical model is never a simple task. Currently, it has been

done for the three-body problem Poincaré started but couldn’t quite finish, the

quadratic map family and a singular perturbed 2-d version. It has been done

in a limited fashion for the Lorenz equations. It has been done for the food

chain model of Eq.(1.2) at its singular limit and some perturbed state at which

a Shilnikov’s homoclinic orbit persists, and for a few system where a Shilnikov’s

orbit is demonstrated. And that is all we can count. None of these systems’

dimensions or effective dimensions exceeds three. For all other mathematical

models we resort to numerical simulations in order to allow us to say ‘look there

is a chaos’. Of course, for our mockup systems by singular perturbations most

chaoses can be proved because their components are constructed to make it so.

Two postscripts on Smale’s discovery of the horseshoe map. The first.

Within two months of finding his horseshoe map he also succeeded in finding

a solution to an outstanding Poincaré conjecture in the field of topology that

earned him in 1966 the Fields Medal, considered to be the Nobel Prize equiva-

lence in mathematics. Smale considered his horseshoe map discovery ‘an omen

of good luck’. The second. Smale revised his conjecture about all dynamical

systems to this picture instead: every dynamical system can be perturbed to

have the property that the non-wandering set has an exponentially contracting

foliation and an exponentially expanding foliation. His program for all dynam-

ical systems effectively reached an end when one of his students proved in the

1970s a result that says when the stable and unstable manifolds of a fixed point

intersect tangentially at one point then they must intersect tangentially at in-
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finitely many points and no small perturbations can make all these structurally

unstable sinks to go away.

4.2 Big Chaos Is Easy

In terms of structures chaos is at the top echelon of dynamical systems. Equilib-

rium solutions of differential equations are zeroes of the equations’ vector fields.

Periodic solutions are fixed points of the equations’ return maps. Chaos is an

entirely different beast, many folds more complicated. Chaos of the simplest

functional form, the logistic family, requires some of the most complex mathe-

matics to prove. Even the smallest chaos is hard to prove, as a rule of thumb,

unless of course we are talking about the spike renormalization. The renormal-

ization dynamics is big, infinitely big in dimension. Yet contrary to intuition it

is exceedingly simple to prove it to be chaotic.

4.2.1 The Stable Manifold Of Spike Renormalization

Recall from the previous chapter the renormalization map R. It is a map in the

renormalizable space U , of which any element is a map from the unit interval

[0, 1] into itself with these properties. Property number one, each map f has a

discontinuity point 0 < c0 ≤ 1 of which f is increasing, not below the diagonal

left of c0. Property number two, f ’s maximum in the right interval (c0, 1] is no

greater than f ’s minimum f(0) in the left interval. Property number three, the

critical point c0 has the immediate backward iterate c−1. For such a function

the return map rf is defined on the left interval [0, c0] because f maps [0, c−1]

into [0, c0] and it maps first (c−1, c0] into (c0, 1] and then (c0, 1] into [0, c0].

Scaling rf up into the unit interval [0, 1] completes the definition of R(f) as

below:

R(f)(x) =

{
1
c0
f(c0x), 0 ≤ x ≤ c−1

c0
1
c0
f(f(c0x)), c−1

c0
< x ≤ 1

(4.1)

As we have demonstrated in the previous chapter, the identity map ψ0(x) =

x is a fixed point and the ψ-family ψµ(x) = µ + x for 0 ≤ x ≤ 1 − µ and

ψ(x) = 0 for x ≥ 1−µ is an invariant expanding-center-manifold of the identity

fixed point. The orbit of any member ψµ under R is this generalized harmonic

sequence {ψµ/(1+nµ)} in backward iteration R−n(ψµ). We consider in this sec-

tion the stable manifold, denoted by W s, of the fixed point ψ0.

Actually we will relax the standard definition from asymptotic stability to

include stability of non-asymptotic type as well. Specifically we will define
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Figure 4.3: Partition of the stable manifold W s = X0 ∪ X1. Left: A member

of X0. Right: A member of X1 of which the right-most fixed point is not the

origin.

the stable manifold of the identity map to be the set of all maps which are

indefinitely renormalizable. That implies first for any element f of W s the

graph of f must not strictly lies above the diagonal line in its left interval

[0, c0]. Otherwise f ’s backward iterates {c−k} of c0 is a finite sequence and a

finite iterate of f by R will escape the renormalizable space U . This means,

the backward orbit {c−k} must be infinite and non-increasing. As a result the

limit lim c−k = x∗ exists and and the limit must be a fixed point f(x∗) = x∗

with 0 ≤ x∗ ≤ 1. This is only a necessary condition for an element f of U
to be indefinitely renormalizable. The remaining sufficient condition is for the

maximum of f in the right interval (c0, 1] to be no greater than the fixed point

x∗. Therefore, the stable manifold is

W s = {f ∈ U : there is a 0 ≤ x∗ ≤ c0 so that

f(x∗) = x∗ and max(c0,1] f ≤ x∗.}

For example, the u-family of maps at the limiting value µ = 0 consists of

a one-parameter family of fixed points, uλ,0, of the renormalization. Strictly

speaking this set is in the center manifold of the identity map ψ0 because the

renormalization has 1 to be its eigenvalue as this simple calculation shows:

‖R(uλ,0)−R(ψ0)− 1 · (uλ,0 − ψ0)‖ = 0 ∼ ‖uλ,0 − ψ0‖2.

Unlike the ψ-family the uλ,0-family is stable relative to the identity map ψ0.

A further natural partition of the stable manifold W s is self-evident: The

subset X0 of the manifold which consists of all elements for which the right-

most fixed point x∗ is the left end point 0, i.e. X0 = {f ∈ W s : x∗ = 0},
and the subset X1 for which the said right-most fixed point is not the zero,

i.e. X1 = {f ∈ W s : 0 < x∗ ≤ c0}. See Fig.4.3. Both subsets are mutually

complimentary for the stable manifold as W s = X0 ∪X1.
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4.2.2 Converging At Any Rate

The dynamical structure of R in the X1-subset is simple. First, every orbit

Rn(f) converges to a fixed point in X1 as n goes to infinity. One can see this

easily in R’s action which is this crop-enlarge operation on the box [0, c0]×[0, c0].

At the limit limRn(f) = f∗, f ’s right-most fixed point x∗ becomes the right-end

point x∗ = 1. The identity map ψ0 is one of infinitely such many points of the

X1-subset. Here is another family of fixed points vλ(x) = λ(x − 1) + 1 with

0 < λ ≤ 1 which is the line of slope λ through the upper-right corner point

(1, 1).

Second, there is a peculiar property above every fixed point f∗ in the X1-

subset: for every 0 < r < 1 there is a point fr so that Rn(fr) converges to f∗ at

the rate r. All it takes is to replace the function of f in the subinterval [x∗, 1]

by the line of slope 1/r from the diagonal point (x∗, x∗) to the top of the unit

square and fill the right of the new critical point by zero. This is easy to check

for the identity element ψ0. More specifically, if we start with the S-family’s

S0 map as such a function f , then fr’s graph in the right interval [0, c0] is the

diagonal line plus the 1/r-slope line with c0 = (1 + r)/2. By computing their

distances to the fixed point one can check the following limit holds

lim
n→∞

‖Rn(fr)− ψ0‖
‖Rn−1(fr)− ψ0‖

= r.

Here ‖f − g‖ =
∫ 1

0
|f(x)− g(x)|dx is the average distance between the function

values of f, g in the unit interval [0, 1].

4.2.3 Infinity Chaos

What is unexpected is the property that the other piece of the stable manifold

is chaotic under the renormalization operation, and even more so is the fact

that it takes practically very little to prove.

Theorem 10 The renormalization R is chaotic in the subset X0 of the stable

manifold of the fixed point ψ0.

Because the proof is simple we will give an illustration for the rest of the section.

The most advanced piece of mathematics required is the property that the ra-

tional numbers are countable, i.e. having a one-to-one and onto correspondence

with the natural numbers. This property will be needed to construct a dense

orbit in the X0-subset.

First, the property of sensitive dependence on initial conditions for R is

illustrated by the picture of Fig.4.4. It shows for any element f of X0 and any
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Figure 4.4: R’s sensitivity to initial conditions. For any f (blue) of X0 and any

small ε > 0, construct g (red) depending on two cases of f : c0 ≤ 1/2 (top-right)

and c0 ≥ 1/2 (bottom-right) with c0 being the discontinuity of Rn(f). Both

will be at least δ0 = 3/32 (the area of the small trapezoid in white) apart for

some large iteration n.

arbitrarily small ε > 0, we can always construct another element g to meet the

requirement for sensitive dependence on initial conditions. As g is identical to f

outside the small ε-box at the lower-left corner of the unit box they are ε-close to

each other ‖f−g‖ < ε. The ε-uncertainty is enough for us to construct anything

we want out of g. If we take the integer n as such that c−n−1 < ε ≤ c−n with

c−k being the backward iterates of f ’s critical point c0, then we know by the

nth iteration Rn, the ε-box is enlarged to contain at least the unit box. What

used to be covered up by the small ε-difference is now magnified to a full view.

If the magnified new c0 of f is left of the middle point 1/2, we can then match

up that with a discontinuity point of g which when under the Rn magnification

is beyond the point 3/4. The area difference between Rn(f) and Rn(g) is at

least of the trapezoid under the diagonal and over the interval [1/2, 3/4]. If on

the other hand the magnified new c0 of f is right of 1/2, we construct a g whose

magnified new c0 is below 1/4 so that the difference between their nth iterates

of R is at least of the trapezoid area under the diagonal and over the interval

[1/4, 1/2]. In either case, the difference is at least δ0 = 3/32, the area of the

latter trapezoid.
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4.2.4 Concatenation

The only loose end we need to tie up is to explain how to attach an arbitrary

piece to a given function f inside a prescribed lower-left corner box to get the

function g, all from the X0-subset. This idea is geometrical and straightforward.

The essential steps are illustrated in Fig.4.5. Take any f from X0 with its

backward orbit c−k of its discontinuity point c0. Let us say another element h

of X0 is needed to be attached to f inside the box [0, c−k] × [0, c−k]. We first

cut away the piece of f inside the box. We then scale down h to fit it inside the

box. Either the down-scaled h fits with the truncated f continuously or we only

need to join them by a small line-segment. Denote the concatenated function

by f ∨h which is the function g in the proof for R’s expansivity above. One can

see easily that either Rk(f ∨ h) = h or Rk+1(f ∨ h) = h. Let’s refer to this glue

operation the concatenation of f and g. Notice that the concatenation can be

glued with another element, and so on, even indefinitely so. In such cases we

denote them by f1 ∨ f2 ∨ f3 ∨ · · · , etc. Such operations will be called up below

for the construction of dense orbits.

The proof for the periodic set being dense in X0 is straightforward. In fact,

let f be any element of X0, and let f̄ = f ∨ f ∨ f · · · be the concatenation of

f with itself indefinitely and with a fixed choice c−k related to its discontinuity

point c0 for all its concatenating copies throughout the construction. Obviously

f̄ is either periodic k or periodic k+ 1 of R. This shows for any element f from

X0 and any arbitrarily small ε > 0 we can find a periodic orbit of R that is

within the ε distance from f if we make ε < c−k.

4.2.5 Countable Rational Numbers And Dense Orbit

So we are left with the only argument for the existence of a dense orbit in X0.

It is harder to prove than the last two properties of chaos above, but not by a

lot. We will still use the all-for-one-and-one-for-all type of argument as we did

for the baker’s map. The only short detour we have to take is about the fact

that the set of all rational numbers is countable and dense in the unit interval

[0, 1]. The set is countable because we can list all rational numbers in the array

of the quotient form p/q with integer p increasing in row and q increasing in
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Figure 4.5: The concatenation of f (blue) and g (red) in the X0-subset. This

illustration is for the case for which Rk+1(f ∨ g) = g.

column as below
1/1 1/2 → 1/3 1/4 →
↓ ↗ ↙ ↗ ···

2/1 2/2 2/3 2/4 ···
↙ ↗ ···

3/1 3/2 3/3 3/4 ···
↓ ↗ ···

4/1 4/2 4/3 4/4 ···
...

...
...

...
. . .

We then count them from the upper-left corner one forward-slash diagonal a

time. This is the classical argument for countability of the rationals. Using

decimal point expansion one can show that in every neighborhood of any real

number there are infinitely many rational numbers inside the neighborhood, a

standard argument for the denseness of the rationals. A set having a countable

and dense subset is called a separable space. It is based on the separability of

the real numbers that one can prove the set of all integrable functions in [0, 1]

is also separable. Here by definition integrable means the net area between

the graph of a function f and the x-axis as defined by the definite integral∫ 1

0
|f(x)|dx exists. This set of functions is the so-called L1[0, 1] space. As an

inherent property the X0-subset of the renormalizable space with the average

distance metric is also separable. This fact is the only nontrivial property we

will assume without detailed justification for the last part of the chaos proof for

R on X0.

We first list the dense subset of X0 as g1, g2, g3, . . . . For each gi denote

its discontinuity point by c0,i and its backward iterates by c−k,i. For each k,

we cut away its piece in the lower-left corner [0, c−k,i] for k = 1, 2, 3, . . . , and
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Figure 4.6: The non-hyperbolic split of the fixed point ψ0 in the renormalizable

space U with ψµ the expanding-center manifold and W s the stable manifold.

denote the truncated piece by gk,i. The set of all truncations of all gs is again

countable because gk,i can be arranged in an array with k being the row numbers

and i being the column numbers and count them as we has done the same for

the rational numbers above. We list the result as a sequence and denote it by

h1, h2, h3, . . . . Without further cut-aways the sequence concatenation

h = h1 ∨ h2 ∨ h3 ∨ · · · = ∨∞n=1hn

is the needed dense orbit. The reason is that for any n there is a k so that

Rk(h) = hn ∨ hn+1 ∨ hn+2 · · · , and hn can be the needed piece that is within

an arbitrarily small neighborhood of an arbitrary element f of X0.

Fig.4.6 gives a graphical summary for the map R in the space U . The line

through ψ0 in the X0 subset represents the family of fixed points given by the u-

family, i.e. uλ,0 for λ > 1. The line segment in the X1 subset represents the fixed

point family vλ for λ < 1. The rate of convergence to any fixed point in X1 can

be any number r between 0 and 1, the 0 included. The critical difference between

our renormalization and the Feigenbaum-Coullet-Tresser renormalization is the

fact that their fixed point is hyperbolic and ours is non-hyperbolic. A hyperbolic

structure is a rigid structure of which the non-wandering set is the fixed point

singleton. A non-hyperbolic structure can be flexible. In our case it is extremely

flexible to the point that the non-wandering set is infinitely dimensional and is

chaotic.
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Figure 4.7: Top: The renormalization in V of monotone increasing functions in

[0, 1]. It is the same crop-enlarge operation as R in U . Bottom: The conjugacy

map ρ from V into W s that commutes with the renormalizations in both U and

V.

4.2.6 Renormalization Without Spike

We end this section by asking the question that are there other chaotic and

infinitely dimensional non-wandering sets? The answer is yes but there is only

one that we can find and it is not that much different from our spike renormal-

ization map R. In fact, the new system is conjugate to R in W s but no bigger.

For the new system let V be the set of monotone increasing functions on [0, 1]

without discontinuity, see Fig.4.7. Such a function f can be the return map of

a periodic orbit of a two-dimensional differential equation. Let formally c1 = 1

and c−k be the backward iterates of c1. For such maps return maps can always

be defined. For example, the return map of f can always be defined on the in-

terval [0, c0]. Scale up this return map by 1/c0 and we obtain the renormalized

image R(f) in V. In this setting of return maps the Feigenbaum-Coullet-Tresser

renormalization, the spike renormalization, and this new type renormalization

are all of the same type. The only difference is in the type of renormalizable

space.

Dynamically the new renormalizable space is only a subspace of the spike

renormalizable space. In fact, we can construct a conjugate map ρ from V into
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W s, see Fig.4.7. It goes as follows. For any f from V we first modify it this

way: wherever f is below the diagonal we replace the point by its mirror image

of the diagonal. This will create a graph over the left interval [0, c0] and leave

the right subinterval (c0, 1] empty. All we need to do is to fill the void zero.

This defines the element ρ(f) in W s, and hence the map ρ : V → W s. Clearly

it is one-to-one. More importantly the backward iterates c−k of the point c0 are

preserved by the mirror-reflection. As a consequence the renormalizations are

preserved by the mirror-reflection as well. This means that the map ρ commutes

with the renormalizations, R(ρ(f)) = ρ(R(f)) for every f from V. That is, ρ

is a conjugacy. If we let Y0 be the preimage in V of X0 by ρ, then ρ is both

one-to-one and onto from Y0 to X0, and hence the renormalizations on them are

equivalent. The dynamics of R in Y0 is the same of R as in X0. As a result R

is chaotic on Y0 as well. As of this time these two systems are the only known

systems whose chaotic non-wandering sets are infinitely dimensional.

4.3 Defining God

On the issue of divine creation Newton and Darwin can be considered far apart

and similar at the same time. To Newton the Sun, the Moon, the falling apple

were all governed by the law of gravity and the universal law had to have a first

cause. To him that first cause must be the existence of a supernatural being.

To Darwin the immense order, diversity, and beauty of life could be explained

by the evolutionary process of selections, but he did acknowledge occasionally

the possibility of a first course by a creator who had set the process in motion

from a primitive common ancestor for all life forms on Earth. To many scholars

Newton was a theist but Darwin an atheist. Without changing their respective

views or positions no one could prove them right or wrong. Because both are

backed up by another great genius in the human history.

At the age of 25 Kurt Gödel published his incompleteness theorem in 1931.

Many consider his work one of the three greatest intellectual achievements of

the 20th century: the theory of relativity, the theory of quantum mechanics,

and his incompleteness theorem. In a nutshell he demonstrated that for any

formal mathematical system permitting the addition and multiplication of the

natural numbers, if it is self-consistent, i.e. without the possibility to generate

propositions which are both true and false at the same time, then there must be

propositions which cannot be proven either true or false within the system. He

further demonstrated that the consistency of such a system cannot be proved

within the system. It is not much a stretch to say his mathematics has provided
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the theoretical foundation for all religious systems.

4.3.1 The Mathematical Basis For All Religions

The only difference that separates the human race from other animals is the

written language. There would be no reason for its existence if it were not

used by us to capture, to express, and to reason with causality. Every writing

system can be considered to be a symbolic system of causality and hence logic

in extension. Mathematics happens to be the most formal of all. Without

symbolism would there be religions? The answer is probably not just by taking

a look at the animal kingdom. As far as we know no animal species practice

any religion by our definition, which perhaps is one of many consequences to the

written language difference between us and them. Without causality reasoning

can any proselytism be effective? It is probably not a stretch to argue that

without reasons or assumed logics there would be no religions. So if the most

rigorous symbolic system, the mathematics, is incomplete, why would systems

of lesser rigor be more complete? Would it be reasonable to argue that there are

statements, religious statements perhaps in particular, that cannot be proved

nor disapproved? Perhaps the proposition about the existence of God, defined

or not, is such a proposition that no human symbolic systems is capable of

demonstrating. Gödel, a theist, has given both theists and atheists the same

theoretical basis for their respective beliefs.

Gödel had solved the most burning issue, but not all the issues. For exam-

ples, his theorem cannot tell if a given proposition is provable or not provable.

Until it is proven one way or another the provability question remains perpet-

ually open. So you would never know if your God proposition can be proved

inside your system until you had. You may consider a shortcut to make your

God supposition an axiom. But you must proceed with caution because you

may assume too much to make your system inconsistent, proving something

both true and false at the same time. Besides you will not be able to solve the

problem that would allow you to brag because Gödel’s theorem also foretells

that you cannot prove your expanded system is consistent within the system.

Gödel has given every belief an egalitarian basis to start, as well as an egalitarian

basis to finish because none can be proved logically and therefore intellectually

superior than the others.
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4.3.2 Dense But Empty Or Dense And Full, That’s The Difference

If mathematics has this much to say about the basis of all religions, can it

have something more to say about God? If one has to give a mathematical

definition of God, what will it be? The one mathematical object that is the

closest parallel to the characteristics of an omnipotent being is the dense orbit.

A dense orbit is not just any orbit but one that can visit every point of a set

indefinitely frequent and arbitrarily close. It can be everywhere, at the least

opportune time, forever stalking every point. In limit it creates every member

of the set. It possesses this one-for-all and all-for-one quality. But not all dense

orbits are God-like. Size matters. For the smallest chaos, the non-wandering set

of the baker’s map is puny, practically nothing even though it is uncountably

numerous. It is the leftover after all the middle third intervals being removed,

first the one middle third of length 1/3, then the two middle thirds of length 1/32

each, and so on. At the nth step, there are 2n−1 many middle third intervals

of length 1/3n each that are removed. When one tallies up all the removed

intervals the total length is 1, the measure of the whole interval. When added

up the complimentary non-wandering set occupies a set of the length 0. The

set is also called the Cantor’s dust but in size it is measured less than anything.

So any orbit, dense or otherwise, is of no significance if it is only relevant to a

set of zero measure.

Unless, of course, it is about the spike renormalization map R. We know

it is chaotic in the X0-subset of the stable manifold of the identity map ψ0.

We know it has infinitely many dense orbits. To make these dense orbits God-

like the chaos set X0 has to be big. It has to be stupendously big to contain

all systems, deterministic or nondeterministic. It has to have the trajectory

of every atom of everybody, the trajectory of every subatomic particle of the

universe. We seem to ask too much. But the map has never disappointed, it

has always delivered. And it will come through once more. In fact we can prove

the following theorem.

Theorem 11 For every finite dimensional mapping F : Rk → Rk there is a

conjugacy ρ : Rk → X0 so that R(ρ(p)) = ρ(F (p)) for every point p from the

phase space Rk. The same holds for the infinite dimension case with k =∞.

It takes very little to prove this theorem, less than proving the existential

proof of dense orbit. It is so simple that we can get away with committing a

cardinal sin in mathematics — proof by example. That is, pick any of your fa-

vorite system, deterministic or otherwise, we can show you how to construct the

required conjugacy which embeds your system inside the X0-set of the renor-
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malization R so that the orbital structure of your system is perfectly preserved

by the renormalization. Once your example is done you will see how to scale

the argument up to get a formal proof for all systems. Let’s say your favorite

dynamical system is the Lorenz equations. Here below is what it takes to equate

it with a piece of the renormalization.

4.3.3 Time Your System

The Lorenz system has three equations, each defines one variable referred to

as phase variable and denoted by X,Y, Z respectively. Together these phase

variables define the so-called phase space which is the three-dimensional Eu-

clidean space R3. Let p = (X,Y, Z) denote a point in the phase space with

the corresponding phase variable coordinates, and pt denote the solution of the

equations at time t. As before p0 and p are interchangeable. When plotted out

in the phase space pt defines what is called the orbit of the system with the ini-

tial point p0. Although the ancient Greek philosophers believed the Euclidean

space exist independent of any reality, for a dynamical system its phase space

and its dynamics in the phase space are inseparable. Without the dynamics

there is no phase space and without the phase space there is no dynamics to

speak of. So the embedding to be constructed below is not only to find a place

for each phase point in the renormalizable space but also to find a place for the

orbit of each point the dynamics is represented by in the renormalizable space.

The idea starts by following an idea of Poincaré. When Poincaré tried to

tackle the three-body problem that started the modern era of dynamical sys-

tems, he also introduced another type of map to change a continuous flow-like

object, i.e. the orbit pt, to a discrete mapping. In this case you don’t even need

any cross section. You simple take and fix any time interval, say τ , and then

define for each point p the next point τ -time away on the orbit: F (p) = pτ .

In this way an orbit of the equations is an orbit of the map and vice versa.

More specifically, two phase points are related by the system if and only if the

two points are related by a time-τ Poincaré map for some infinitely many such

τs. Although different time interval τ defines a different map, but any two

of them are automatically conjugate to each other because of this time invari-

ance property (pt)s = pt+s which implies pτ = (p1)(τ−1) and symmetrically

p1 = (pτ )(1−τ). For this reason we only need to consider one of them, and for

definitiveness we may just take the unit to be the time interval, and call the

map the time-one map. We can even get away with calling any such a map the

time-one map because of the conjugacy. The important thing is the phase space
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defined by the system is perfectly preserved by the phase space defined by any

one of the maps. So if we can embed every orbit of the time-one map into the

renormalizable space then we can consider we have embedded the system into

the renormalizable space.

For aesthetic reasons we often fix a small τ and call the map the time-one

map F . With τ small enough the orbit of the map F does not appear to be

jumpy — the initial point p and its first iterate p1 = F (p) will not be too far

apart so that the trajectory of the map moves about like the trajectory of the

flow pt. With a large τ although the orbit of the map is always on the orbit of

the flow the adjacent iterates can be far apart. So from now on we will only

consider the time-one map F of such a fixed small time τ .

4.3.4 Everything Is A Vibrating String

We are now ready to start the construction of the embedding. It is based on

how we will represent each phase point of the map. We will break down the

construction or the explanation into three steps or three preparatory parts, all

are illustrated in Fig.4.8 and Fig.4.9. In step one, we first convert every phase

point p into a curve in a fixed interval, say [0, 1]. We call each of the end points

0, 1 a node. We pick and fix three points in the interval and call them the

antinodes. For definitiveness we space them apart equally. The vertical lines

through antinodes are called the antinode bars. The first from the left is the

X-antinode bar, the second the Y -antinode bar, and so on. For each phase

point p = (X,Y, Z) with the corresponding coordinates, we place a point on the

X-antinode bar with exactly the coordinate value X, a point on the Y -antinode

bar with the Y value, and so on. For the Lorenz system we end this placement

with the Z value on the Z-antinode bar. In general we will do this on all the

antinode bars with the corresponding coordinate values. We will always place

the (0, 0) point on the 0-node bar and the (1, 0) point on the 1-node bar, and call

them the end nodes interchangeably with the end points of the interval [0, 1].

We now complete the first step by connecting these points by line segments in

the assumed order: starting from the 0-node to the right adjacent X-antinode

point, then to the next right antinode point, and so on, ending at the right

1-node. This defines a polygonal curve with the end nodes always fixed.

As a consequence, as a phase point moves on an orbit {pn} with pn =

F (pn−1), the motion of the orbit becomes the motion of a standing wave with

two stationary nodes at the end. Its crest and trough occur only on the antinode

bars as the coordinate antinode points gliding up and down on the coordinate
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Figure 4.8: Top left: An orbit of 30 points on the Lorenz attractor. Top right:

the orbit is represented by a standing wave. Color codes the iterate point and

the corresponding wave profile. The colored segments of the antinode bars

represent the ranges of the attractor in its respective ordinates. Bottom: the

same except the orbit is 600 iterates long and its standing wave representation,

color coordinated, is also viewed along the iterative time dimension.

bars. When the iterative time dimension is added to the standing wave rep-

resentation an orbit of the map becomes an undulating surface. A plot of the

orbit in the phase space is one form of visualization. A plot of the orbit in the

standing wave space is another form of visualization. If the Cartesian coordi-

nate representation of the Lorenz system can invoke a picture of the fluttering

of a butterfly in the Amazon of Brazil, then the standing wave representation of

the system should surely complete the picture of the ensuing stormy wave of a

hurricane in the gulf of Mexico, a metaphor first used by Lorenz to describe his

newly discovered chaos phenomenon and had since found a place in the collec-

tive consciousness of the popular culture. The former visualization is limited by
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the spacial dimension of a system. The latter has none — we can always take

a look at the orbital wave of any system in one glance. So we can see and then

say every dynamics, deterministic or otherwise, is a vibrating string or wave.

4.3.5 Wave Running Up A Stair

Next, the step two of the construction, or the part two preparatory explanation

of the embedding, see Fig.4.9. Here we will represent each phase point p by a

point or member of the X0-subset of the center-unstable manifold of the identity

map ψ0. In fact, we will represent it in a neighborhood of the fixed point uλ,0

of the u-family for any λ > 1. Recall that for any λ > 1, the line through the

origin (0, 0) of slope λ defines the graph of uλ,0 in the active interval [0, 1/λ] and

the value of uλ,0 in the silent interval (1/λ, 1] is zero. For a simpler notation we

drop the subscript 0 and use uλ = uλ,0. We know uλ is in the chaotic set X0

and is a fixed point of the renormalization, R(uλ) = uλ. For each phase point

p, we will denote by g the element of X0 that is the outcome of this second

step. First, g is exactly uλ except on first backward interval [c−1, c0] of the

critical point, for which c0 = 1/λ and c−1 = 1/λ2. In this interval, we will

replicate the standing wave representation of the phase point with one essential

modification. First, instead of the horizontal line between the stationary nodes

we will tilt the line along the line of uλ, making the cobweb points (c−1, c0),

(c0, 1) the new stationary wave nodes. We still place three antinodes between

them. The essential difference is, instead of using the system’s native coordinate

ranges we first scale them all to a uniform small range, place them immediately

above the λ-sloped line. We will scale them short enough so that the new

antinode bars run like steps in a stair — the first coordinate’s antinode bar is

below the second coordinate’s antinode bar, and so on. Obviously, the more

antinodes are the shorter antinode bars need be to squiz them into a stair run

of a fixed height. It is doable always for any finite number of antinodes. In fact

one can even accommodate countably many antinodes. Finally, we use the same

scaling as for the antinode bars to scale and place the coordinates of the phase

point p on their corresponding antinode bars. Connect these antinode points

and the two end nodes with line segments, from the left node to the next right

antinode, and on and on to the last right node on the top of the unit square

box. Because the antinode bars run like a stair, the polygonal piece is monotone

increasing. Now the construction of the element g is completed by fixing this

monotone piece to the rest of g. Clearly g is in the chaotic subset X0.
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Figure 4.9: Top left: The renormalizable representations for the first 30 points

of the same orbit of the Lorenz equations as Fig.4.8, color coordinated with its

first two plots. Only the part in the subinterval [c−1, c0] is shown. The part of gn

not shown is the line segment λx in the rest left interval and gn = 0 in the right

interval (c0, 1]. Top right: The full view of the conjugate image of the initial

point p0 as the concatenation of the renormalizable elements, g0, g1, . . . , in the

forward orbital order of the system. Bottom: The same embedded elements

in X0 for the 35th and the 70th iterates. Only four different colors are used

to cycle through the concatenation construction. The conjugacy relationship

ρ(pn) = Rn(ρ(p)) always holds.

4.3.6 Zero Is The Origin Of Everything

Finally, the last step. This is to define the conjugacy ρ : Rk → X0. For every

phase point p = p0 from the phase space Rk of the system, we first generate

its orbit p0, p1, p2, . . . . For each iterate pn we generate its X0-counterpart gn

described above. The conjugating image of p0 point is not the g0 element because

in just one application of the renormalization every gn becomes the fixed point
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uλ. That is, all the g-elements are in the super stable manifold of the u-fixed

point. Instead, we complete the last step by defining the embedding ρ(p) as the

concatenation of the g-sequence as follows,

ρ(p) = g0 ∨ g1 ∨ g2 ∨ · · · = ∨∞n=0gn.

Because the node points of the gn elements are fixed on the cobweb points

of the critical point c0, the standing wave part of g1 is scaled down by the

concatenation to fit it inside the next backward interval [c−2, c−1], and that

part of g2 is inside the next [c−3, c−2] interval, and so on. That is, all the future

iterate representations are crammed toward and packed at the origin, and any

gn representation can be brought on to a full view by the crop and enlarge action

of the renormalization. Because of this construction, we see immediately that

the renormalization of the conjugate image of the point is exactly the embedding

of the iterate of the point. That is, R(ρ(p0)) = ρ(p1) = ρ(F (p0)), namely the

following conjugacy diagram commutes:

Rk F−−−−→ Rk

ρ

y yρ
X0 −−−−→

R
X0

This completes the representation of every dynamical system, large or small,

deterministic or nondeterministic, inside the chaotic space X0 of the spike renor-

malization R, and hence a proof of the theorem.

4.3.7 Forever Mystery

It is hard to not notice some of the metaphysical and metaphilosophical points

about the theorem. The first is somewhat obvious. At a first glance one may

think all physical laws or models described by partial differential equations are

not subject to the embedding because they are infinitely dimensional. But at a

second look one realizes there is no escape for them from the renormalization

square. In fact every continuous partial differential equation is an idealization of

some discrete process, and any implementation or simulation of such an equation

must take on a finite dimensional discretization as its numerical approximation.

Such discretization always results in a finite dimensional system or map which

in turn is the subject of the spike renormalization conjugation.

The second point is paradoxical. One may wonder if some infinite dimen-

sional partial differential equation is large enough to contain all finite dimen-

sional systems, and question should the embedding theorem be such a big deal.
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Figure 4.10: A summary of the dynamical structure of the renormalizable space

U . The identity element, the center-manifold, the first nature number are the

literal and metaphorical center of the renormalization.

Upon a momentary reflection one realizes that any partial differential equation

we know always has a definitive structure. Say it is very big, like the FitzHuge-

Nagumo equation capable of supporting infinitely many traveling waves but not

standing waves. Then it is not large enough because it will freeze out any sys-

tem of standing waves. That is, peculiar and definitive structure of a model is

a desirable thing which is also the undoing for all-encompassing. So one may

reach a conclusion that an all-inclusive system must be featureless, must lack

any definitive structure in order to be flexible. In contrary the exact opposite is

the case. As shown in Fig.4.10, the spike renormalization is full of structures.

All rates of convergence from r = 0 to r < 1 are represented. All rates of

divergence from r = 1 to r < ∞ are represented. All real numbers are univer-

sal, and all systems are represented inside the renormalization chaos. Strange

and intriguing of all is the spike generation S-family, whose electrical-dynamical

states enable us to make up this organization for all systems, that arises from

the boundary between the chaotic goo X0 and the dead space X1, as if it has

to have a bird eye view on both worlds.

The third point is metaphysical. We know that all laws of physics are time

reversible. That is, the present state of a physical system is determined by any

state in the past. Conversely, one can reserve the time and the laws hold per-
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fectly in symmetry. This means the present state of the system also determines

any past state as well as any future state. Or, any future state that is yet to

come has already determined the present state. On the other hand we know or

it appears to us that time unfolds only in one direction. Reality proceeds only

into the future not the past. Time is irreversible. This time irreversibility is

oddly consistent with the spike renormalization. It is an irreversible operation.

Also, the conjugacy which finds a place in the renormalization for every process

can only do so for the present and future states of the process not its past. It

favors the future-determines-the-present bias, a definitive break from the time

duplicity symmetry. When a phase point is embedded into the renormalization

space all the forward iterates must be used to determine its renormalization

representation. The more distant a future state is the closer to the origin the

renormalization counterpart locates, and the fuzzier or more blurry the future

state looks from the present. Yet, as the renormalization unfolds the future

state gets closer, looms larger like a freight train approaching. It is like I can

see my lunch menu while attending a snoozing morning meeting, or the state

that the meeting will adjourn at 12 o’clock is determined by the state that peo-

ple need to forage for food by noon. So we see the future coming, limited only

by its resolution near the origin from which all states rise. Once it has been

the present became the past, gone forever. We can say this about our daily life

as well as about the renormalization. Every present state has a unique past,

but the renormalization will not preserve it. It encodes only the future. Every

present state has a predetermined future but the renormalization will not reveal

it all at once. The future becomes so blurred near the origin that for all intents

and purposes we may just as well think the future to be uncertain, holding out

all the possibilities. The renormalization zero is the origin of everything. This is

perhaps the ramification of the renormalization chaos, the effect of the sensitive

dependence on initial conditions.

The fourth point is metacosmological. It jives with the parallel universe

hypothesis and the anthropic principle. We have already seen from the proof

above that the embedding of any dynamical system into the renormalization is

not unique. It can be put near the fixed point at the end of every u-family of the

renormalization. The u-family line never touch each other except at the origin.

If you view the origin as if it were at infinity then these λ-expansive lines would

appear to be parallel, all intersecting at the distant infinity. So every system has

infinite copies, each inside a parallel universe. Each universe distinguishes itself

from the others by a distinct expanding number, along the unstable-manifold

of the u-fixed point around which the parallel universe organizes. There are
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infinitely many expanding numbers, perhaps ours just makes our universe the

way it is.

The last point is mystical. If I follow around every atom of my body I can in

theory construct not one but infinitely many orbits inside the renormalization

chaos space. I can also in theory construct not one but infinitely many dense

orbits each connects all orbits in all universes. It seems we have known it all,

solved all mysteries. It even appears that we have figured out who or what God

is, having found out the dense orbit has infinitely many manifestations, more

than enough for everyone to start their own religion, for however many times

in their life time, and by Gödel’s logic one is perfectly as good as any others

in terms of provability, and that both the Newtonian and the Darwinian camps

about God can be perfectly at peace at last. Anything that sounds this good

always has a catch. Actually, it is a nuttier catch, a head-scratching type catch.

If you show me the life history of a renormalization orbit I would not know what

heck it is even though that orbit is of me but constructed by you. There is no

way for me to tell, at least not now and perhaps never, what does such an orbit

represent or mean, or if a dense orbit is currently near me. I would not even

recognize myself let alone anything else. I only know I am somewhere inside

that chaos square but I don’t know where. Life will always be a mystery.


