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Abstract. Spike number is the number of spikes per burst in neural systems.

A neural system is isospiking if the spike number is a constant integer for all

bursts. Some scaling laws are derived for the corresponding code partitioning

scheme. A new renormalization operator, R, is used to demonstrate that the

first natural number 1 is a universal number for the spike number code in the

sense that 1 is an expanding eigenvalue of R and the spike number code par-

titioning of an appropriate stimulus parameter of any neural model is related

to an approximating scheme for the eigenvalue. It is also demonstrated that

R has a super dynamical structure having these properties: all finite dimen-

sional dynamical systems can be conjugate embedded into the renormalization
dynamics R on an invariant set X0 in infinitely many ways and R is chaotic
in X0 which in particular has a dense orbit. It is also demonstrated that the
operator R can contract at any rate smaller than 1 and expand at any rate

greater than and equal to 1.

1. Introduction

Many neural systems can burst into spike-like activities for short periods of time.
Spike number is the terminology given for the number of spikes per burst. It may
vary with stimulatory control parameters as well as with bursts. Regarding a neural
system as a communication system, it seems not unreasonable to hypothesize that
the spike number can be treated as a neural discretization analog for stimulatory
parameters. In fact, this particular neural code was identified in [16] as one of
more than 43 other codes used by neurons, and was found as the response of a unit
in the lateral line nerve of a gymnotid electric fish ([3, 15]), and more recently in
the graded action potential response to glucose in pancreatic β-cells ([20]). The
purpose of this paper is to provide some quantitative analysis for this spike number
code from a dynamical system point of view.

Neural encoding and decoding is literally a dynamical process. It can be best
studied by dynamical system approach as neurons can be phenomenologicaly mod-
eled by systems of differential equations, following the seminal work of Hudgkin and
Huxley ([14]). Neural encoding problem is a bifurcation problem for which changes
in the stimulatory inputs or parameters cause changes in the dynamics of the sys-
tems. More specifically, consider a neural system with one stimulatory parameter
changing in a predetermined direction. The spike number discretization scheme
under consideration is closely related to two sequences {αn} and {ωn} defined as
follows. For parameter values immediately passing αn there are exactly n spikes
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for all bursts and it is the first of such values. In contrast, ωn is the first param-
eter value after αn that the spike number differs from n for at least one burst for
parameter values immediately passing ωn. We will refer to the interval In bounded
between αn and ωn the isospiking interval of length n. A neural system that does
not have a trivial structure in In for its stimulus parameters may well be a system
that encodes the parameters by their spike numbers.

In order for the bursting spike numbers to function as alphabets for an encoding
device, many criteria must be satisfied. The scope of this paper is limited to the
following two practical considerations. First, it is necessary to have a relatively
small set of rules which generates {αn} and {ωn}. Second, the set of non-isospiking
parameter values, i.e., those for which the spike number varies with bursts, should
be negligibly smaller than the isospiking ones. These criteria are certainly not
necessary, but only to reflect our heuristic belief that a complex and effective com-
munication system such as neurons may benefit greatly from having components
which are the simplest and optimal to the tasks. Admittedly, there should be other
criteria to consider, such as signal tuning, reliability, bandwidth efficiency. These
issues, and in particular, a broader issue regarding implementation are out of the
scope of this paper.

We will carry out our analysis in the context of mathematical models for neuron
cells. Such models are systems of ordinary differential equations with multiple time
scales, i.e., the rate of change for a subset of the equations (the fast subsystem) is
significantly faster in general than that of the others (the slow subsystem). The
rapid firing of spikes is associated with oscillations of the fast subsystem that vary
slowly through the phase space of the slow variables. Systems of two or more time
scales are singularly perturbed systems and they have been well accepted in the
literature for neural system modeling, see [4], [12], [19], [22], and [17].

We will primarily consider the type of models where the burst of spikes starts at
a saddle-node equilibrium point of the fast subsystem and the termination of spikes
occurs at a homoclinic orbit to a saddle point. Such are models for Tritonia neu-
rons, LP neurons, and pancreatic β cells, see e.g. [4], [12], [20]. The model under
consideration is taken from [8] and [9]. It was constructed phenomenologically by
a three-time-scale construction to mimic both qualitatively and quantitatively the
experimental recordings of pancreatic β cells from [20]. The system can be regarded
as a generic phenomenological model for its class. Our criterion for model selection
is based more on optimal mathematical simplicity than on up-to-date physiolog-
ical authenticity. We believe it is easier to use our model to extract qualitative
properties of its represented class as well as quantitative properties that are model
independent or universal. To the quantitative end, we will conclude by a fairly
complete renormalization argument that all the scaling laws about the code parti-
tioning sequences {In} of isospiking are universal in the sense that they are either
isomorphic between models or independent of any models.

Much of today’s neural communication theory is build on Adrian’s discoveries
of rate code (i.e. spike frequency), spike timing code, and spike frequency adapta-
tion phenomenon ([1]), see [18], which also contains a number of descriptions on
experiments demonstrating the utilization of rate code and timing code in various
neural systems. With the exception of timing code, the rate encoding and spike
number encoding can be related for some cases in that the stimulus parameters are
impinged differently to an otherwise same neuron model. Because of this relation,
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the result of this paper can be extended to these rate encoding mechanisms. We
will deal with this connection somewhere else since a detailed treatment will take
us too far from the main purpose of this paper.

Our approach is based on the theory of dynamical systems and bifurcations.
The main strategy is to reduce the dynamics of our model system to a family of
one-dimensional Poincaré return maps to which our renormalization theory can be
applied. More specifically, Sec.2 is a brief mathematical derivation of the return
map following the same approach as in [9]. We normalize it to a map on the unit
interval [0, 1] with one discontinuity c ∈ (0, 1). The map is monotone increasing
on the left sub-interval [0, c) which corresponds to the progression of spikes. The
point of discontinuity c is related to the homoclinic orbit for spike termination. The
right sub-interval [c, 1] is associated with the quiescent phase between bursts. For
parameter values from the isospiking interval In and for every initial point from the
quiescent interval [c, 1], there must be exactly n subsequent iterates in the spiking
interval [0, c). For parameter values from a non-isospiking interval, there are initial
points of [c, 1] that have different numbers of subsequent iterates in [0, c). In other
words, spike number in terms of the return map means the number of subsequent
iterates in [0, c) for points from [c, 1]. This symbolic formulation for spike number
gives rise to bifurcation equations for the isospiking end points αn, ωn in Sec.3.
In Sec.4, we will focus on the family of Poincaré return maps parameterized by
the singular parameter ε which usually corresponds to the slow activation rate of
intracellular calcium Ca2+ concentration and appears in all two-time-scale models
in the literature. To fix αn and ωn, we choose the decreasing direction of ε ↘ 0+

so that ωn < αn. Main numerical findings from this section can be summarized as
follows.

Sequence {αn} and {ωn} are monotone decreasing to 0+ as ε↘ 0+ and αn+1 <
ωn. This means the ordering in the isospiking intervals I1 > I2 > I3 > · · · coincides
with the natural number progression ordering in their corresponding spike numbers
1, 2, 3, . . . . Quantitatively, these proportional scaling laws hold

ωn ∼
1

n
, |In| = αn − ωn ∼

1

n2
, ωn − αn+1 ∼

1

n
e−K/ωn ,

where K > 0 is a constant, and only the proportionalities are model dependent.
However the limit for the length ratio

|In+1|

|In|
≈ 1−

2

n
→ 1 as ε↘ 0+,

is model independent.
Sec.5 is the main theoretical section, which is very much independent from other

sections. Two theorems will be proved in this section. The Universal Number 1
Theorem will give conditions such that the natural number 1 as in the limit

1 = lim
n→∞

|In+1|

|In|
= lim

n→∞

ωn+1 − ωn
ωn − ωn−1

is indeed a universal constant, and so is any rational number p/q as in

p

q
= lim

n→∞

ωn+q − ωn+q+p

ωn − ωn+q
.

The arguments are based on a new renormalization operator, R, in some functional
space. We will demonstrate that the linearization of the operator at a fixed point
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ψ0 has an eigenvalue equal to 1 and that the quotient limit (ωn+1 − ωn+2)/(ωn −
ωn+1) → 1 is an approximation algorithm for the eigenvalue. The Superchaos
Theorem also shows that (i) R can contract at any rate 0 < % < 1 and can expand
at any rate % ≥ 1; (ii) there are infinitely many ways to conjugate any finite
dimensional system to a sub-dynamics of R in an invariant set X0; and (iii) the
dynamical system {R, X0} is chaotic in the sense that the set of periodic orbits is
dense in X0, it has sensitive dependence on initial conditions, and it has a dense
orbit.

2. One-Dimensional Return Map

We start with the following phenomenological model for the class of neural and
excitable cells for which the bursting of spikes terminates at a homoclinic orbit to
a saddle point.

Ċ = ε(V − %)

ςṅ = (n− nmin)(nmax − n)[(V − Vmax) + r1(n− nmin)]− η1(n− r2)

V̇ = (nmax − n)[(V − Vmin)(V − Vmin − r3(C − Cmin)) + η2]

− w(n− nmin),

with r1 =
Vmax − Vspk

nmax − nmin
, r2 =

nmax + nmin

2
, r3 =

Vspk − Vmin

Ccpt − Cmin
.

(2.1)

Here, C is the slow variable for small 0 < ε << 1; n and V are the fast variables of
which n is faster for small 0 < ς << 1. w, nmin, nmax, Vmin, Vspk, Vmax, Cmin, Ccpt, %,
η1, η2 are parameters. In particular, η1, η2, ε, ς are non-negative small parameters
which control the multiple time scale processes and nmin < nmax, Vmin < Vspk <
Vmax, Cmin < Ccpt. We will only consider in this paper the % parameter regime

Vmin < % < Vspk

for which no bursts last for ever. We note that in the case of modeling the pancreatic
β cells as originally motivated in [8] and [9], variable C corresponds to the intra-
cellular calcium Ca2+ concentration, variable n measures the percentage of open
potassium channels, and variable V corresponds to the cell’s membrane potential.
Fig.1 is a comparison between some experimental recordings on cross-membrane
potentials of an islet of β-cells exposed to graded glucose concentrations and cor-
responding numerical simulations of the phenomenological model (2.1), mimicking
the experimental data. More details on the experiment and simulation can be found
in [20, 8].

Our one-dimensional map will be defined as a flow induced limiting map with
ς = 0. By the asymptotic theory of singular perturbations, the dynamics of the
perturbed full system with 0 < ς << 1 is well approximated by that of the map-
ping. For this reason, only the limiting system with ς = 0 is considered below. A
detailed derivation for the map is postponed to the Appendix in order to keep our
presentation more focused here. In what follows we will only describe the spiking
mechanism geometrically and its relation to the map. Fig.2 is essential in guiding
through the discussion.

Starting with any point near the horizontal branch of the V -shaped nullcline for
the V -equation on S1, a typical trajectory moves in the decreasing C-direction with
V barely evolving (i.e. V (t) ≈ Vmin.) The time series of variable V would show
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Figure 1. Experimental recordings (a) from [20] and numerical
simulations (b) of the phenomenological model Eq.(2.1) from [8].

little change during this period of event which is referred to as the silent or quiescent
phase. As soon as it clears the turning knee point K, the fast V -dynamics takes
over, sending the trajectory upward quickly to the turning edge T1. This burst
would be identified as the beginning of the first spike on the V -time series. The
faster n-dynamics takes over at the T1 turning point, projecting the trajectory
instantaneously to a point on S2. The trajectory then heads downward on S2 and
connects to a point on the turning edge T2. The connection would be near vertical
if w is near infinity, which we will assume for simplification. The last point is finally
connected to a point on the junction line J1 = {V = Vspk, n = nmin} ⊂ S1. The
net effect of the last three jumps, with the assumption that w is infinity, simply
takes the trajectory’s T1-turning point vertically down to the junction line J1. This
would complete the first spike on the V -time series. If the junction point lies left
to the orbit Γ∗, or equivalently left to the spike termination point c = Γ∗∩J1, then
another spike is born, giving rise to the repetitive spiking activities on the V -time
series. Because Ċ = ε(V − %) > 0 when Vmin < % < Vspk ≤ V during spiking,
C(t) increases with a strictly non-zero speed. Thus, the spiking trajectory will
eventually land on the right side of the termination point c on J1 and not be able
to hit the turning edge T1 to produce another spike before being pulled down to the
horizontal branch of the V -nullcline. This would terminate the spiking activities on
the V -time series and set the system to the quiescent phase again. Note that the
number of spikes is exactly the number of points the trajectory hits the half interval
of J1 left to the termination point c. Also, c↗ Ccpt as ε↘ 0+ and the termination
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Figure 2. Left: Phase portrait of the limiting slow and fast sub-
systems. Right: A geometric graph for the return map Π.

of spikes takes place at the homoclinic orbit to Ccpt of the fast nV -system when
ε = 0.

Since the reduced vector field on S2 are pointing downward, any line V = const. ∈
(Vspk, Vmax) on S2 is transversal to the flow and the Poincaré return can be defined.
For the purpose of a simpler illustration, we move the cross section to the junction
line J1 on S1. Although it is not transversal to the S1 flow, an equivalent return
map is nevertheless well-defined. Specifically, a point starting on J1 is considered
returning to J1 if and only if the trajectory returns by hitting J1 from T2. Thus, the
return hit of a point originated between c and Ccpt is not the first two intersection
points of the CV -orbit. Instead, it is the limiting point of the continued n-orbit
from T2. Similar comment also applies to points above Ccpt. Note that the CV -
orbit is tangent to J1 at Ccpt. We will denote by Π the return map and normalize
it over the unit interval [0, 1], i.e., Rmin ⇒ 0, Ccpt ⇒ .5, Rmax ⇒ 1. We also set
Vspk = 0 from now on.

We point out a few properties which are characteristic about the map. Π is
monotone increasing on [Rmin, c) which corresponds to the spiking dynamics. It
is discontinuous at the spike termination point c with the right continuous value
Rmin and the left limit Rmax. Ccpt is the only critical point in interval [c,Rmax]
and it is a local maximum, i.e., the map is increasing in [c, Ccpt] and decreasing in
[Ccpt, Rmax]. The graph is illustrated qualitatively in Fig.2.
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To pursue our quantitative analysis on the spiking dynamics, we phenomenolog-
ically fit the return map Π as follows

(2.2) Π(x) =



































ε(`0 − `1%) + x+
[

1− (ε(`0 − `1%) + c)
]

×

εb1 |%|b2
1− |x− c|1+a1ε%

εb1 |%|b2 + |x− c|
, 0 ≤ x < c

e−b3/ε
(

1−
∣

∣

∣

x− .5

c− .5

∣

∣

∣

1+a2ε|%|)
, c ≤ x < .5

e−b3/ε
(

1− `2

∣

∣

∣

x

.5
− 1

∣

∣

∣

1+a2ε|%|)
, .5 ≤ x ≤ 1

where all symbols except for % are positive parameters subject to these constraints:

Vmin < % < Vspk = 0, 0 < `2 < 1, b1 > 1, and c = .5 + `3ε%.

A justification for the form (2.2) is given in the Appendix. Listed below are some
important properties needed for the remainder sections.

The first property is that

(2.3) Π(0) = ε(`0 − `1%) + h.o.t.,

where h.o.t denotes terms of higher order than the preceding one and in the case
above it is due to the constraint b1 > 1. That is, Π(0) decreases as ε↘ 0+ with a
nonzero asymptotic rate Π(0)/ε = (`0 − `1%) + h.o.t. > `0. It also increases with

decreasing %. This follows the fact that Ċ = ε(V −%) for the solution through Rmin.
The second property is that the graph of Π over [0, c) must lie above the diagonal

line {xi+1 = xi} because Ċ = ε(V − %) > 0 for Vmin < % < Vspk ≤ V during the
active phase of spiking. The third property is that

(2.4) lim
ε↘0+

Π(x) =

{

x, 0 ≤ x < .5
0, .5 ≤ x ≤ 1.

It accounts for the fact that at the singular limit ε = 0, every point from [Rmin, Ccpt)
returns to itself and the asymptotic limit of all the return points of [Ccpt, Rmax]
goes to Rmin. The fourth property is that the upper bound of Π over [c,Rmax]
decays exponentially as ε↘ 0+:

max{|Π(x)| : x ∈ [c, 1]} = O(e−b3/ε). (2.5)

This exponential scale is due to the fact that points of [Ccpt, Rmax] is pulled ex-
ponentially to the quiescent branch of the V -nullcline in variable V and the time
required to pass the turning point in variable C is uniformly bounded from below
by an order of 1/ε.

3. Isospiking Bifurcations

As concluded from Section 2 above, there is no persistent spiking activities for
Vmin < % < Vspk = 0. Also, if there are n spikes for a given burst, then there
are precisely n iterates of Π that are in [0, c), between two iterates in [c, 1] which
correspond to the beginning and termination of the burst. The system is said to be
isospiking if all points of [c, 1] have the same spike number, i.e., the same number
of subsequent iterates in [0, c).

A criterion for isospiking can be derived by following the orbits through the spike
termination point c and the local maximum point Ccpt. To be more precise, let
ximin = Πi(c), ximax = Πi(Ccpt) for i ≥ 1. Because Π is monotone increasing in
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Figure 3. Referring clockwise from the top left phase portrait,
n = m + 1 for the first and the third portrait and n = m for the
second and the fourth portrait. The systems are isospiking when
n = m but otherwise when n = m + 1. As ε descending through
ω1 > α2 > ω2, isospiking occurs only when ω2 ≤ ε < α2. Spike
bifurcations with other spike length are qualitative the same near
the spike termination point c. All parameters except for ε are fixed
for all numerical simulations. % = −0.5, `0 = 0.75, `1 = 0.5, `2 =
0.75, `3 = 0.5, a1 = a2 = 1, b1 = 1.1, b2 = 0.5, b3 = 0.75.

[c, Ccpt], we have x1
min = 0 < x1

max. We may assume from now on that x2
min =

Π(0) = ε(`0 − `1%) + ... > x1
max = Π(Ccpt) = O(e−b3/ε), the maximum value of Π

in [c, 1]. Note that the interval [c, 1] is mapped onto [0, x1
max] ⊂ [0, x2

min]. Let n be
the first largest integer of i so that ximin < c and m be the first largest integer of i
so that ximax < c. Because of the monotonicity of Π on the spiking interval [0, c),
we must have xmmin < xmmax, that is n ≥ m. Fig.3 shows distinct spiking patterns
for various combinations in n ≥ m and the spike termination point c. For the case
n = m, the spike number for each point of [c, 1] must be exactly n. This is because
all the kth iterates for k ≤ n are in the spiking interval [0, c) for being bounded by
xnmax < c and the n+1st iterate is in the quiescent interval [c, 1] for being no lesser
than xn+1

min ≥ c. For the other case n > m, we must have n = m+1. This is because

the relation x1
max < x2

min implies xm+1
max < xm+2

min which in turn implies n < m + 2
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Isospiking Bifurcation Diagram
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Figure 4. The top figure is the spike bifurcation diagram. The
gray vertical lines are through ωn below which non-isospiking sets
in. The solid vertical lines are through αn below which isospiking
starts. These two types of lines are barely distinguishable from
α3 onward. The sloped gray line is the location of the spike ter-
mination point c. For parameter αn+1 < ε ≤ αn, the first n + 1
iterates are plotted for each of the boundary points 0 = fε(c) and
x1

max = fε(Ccpt). The bolder dots are for x
i
max and the smaller dots

are for ximin. In α2 < ε < ω1, non-isospiking is self-evident: there
are two spikes following c and one spike following Ccpt. Starting
from α3, these two orbits are indistinguishably close to each other,
or to any other orbit. So the bottom graph only plots the last 25
of the first 50 iterates of 0.

for xmmax < c ≤ xm+1
max by definition. Thus the number of iterates in [0, c) differs at

least for c and Ccpt. We can now conclude the following criterion.

Isospiking Criterion. The system is isospiking if and only if n = m which is also
equivalent to

xmmax < c ≤ xn+1
min .
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We note that the system is non-isospiking if and only if n = m+1, i.e., xnmin < c ≤
xnmax.

From this point on, we will consider that all parameters but ε are fixed for the
return map (2.2) and denote the one-parameter family by fε. We will choose the
decreasing direction of ε↘ 0+ as preferred for bifurcation analyses. As introduced
in the Introduction, the parameter values ωn < αn, if exist, mean that the system
must be isospiking of length n for every ωn ≤ ε < αn, i.e., x

n
max < c ≤ xn+1

min . See
Fig.3. Also by definition, the parameter interval [ωn, αn) is maximum with respect
to isospiking. Because the smaller is the parameter ε > 0, the more spikes there are
per burst. So we expect that for any given n with the property xnmax < xn+1

min , the

iterates xnmax, x
n+1
min decrease with decrease in ε↘ 0+. In particular, we expect that

each xnmax and xn+1
min crosses the spike termination point c in succession as ε > 0

decreases. Thus, the parameter value at which xnmax first crosses c from above is
precisely the bifurcation point ε = αn where the nth isospiking begins as ε enters
the interval [ωn, αn) from above. Similarly, the parameter value at which xn+1

min

passes through c from above is the bifurcation point ωn where the nth isospiking
ends as ε leaves [ωn, αn) from below. Hence, we can conclude that the points αn
and ωn are determined by the following bifurcation equations:

(3.1) fnαn(Ccpt) = c, fn+1
ωn (c) = c, respectively.

See Fig.3 and Fig.4 for illustrations.

4. Scaling Laws

The isospiking boundary points αn and ωn can be found numerically based on
the bifurcation equations (3.1). For the one-parameter family fε with the other
parameters fixed at the values as in Fig.3, αn and ωn are monotone decreasing to
0 and αn+1 < ωn as shown in Fig.4. To elucidate quantitative laws that determine
the sequences αn, ωn, we further simplify the return map Π in (2.2) by dropping
the term L(x) in Π(x) = O(ε) + x + L(x) over the spiking interval [0, c). This
is motivated by the fact that for b1 > 2 and outside a radius of some order εσ

with 1 < σ < b1 − 1 from c, L(x) is in the order εb1−σ higher than ε. Denote
such a simplification by gε for which gε(x) = ε + x for x ∈ [0, .5), gε(.5) = 0, and
max{gε(x) : x ∈ [.5, 1]} = e−K/ε for some constant K > 0. By using (3.1), ωn can
be calculated explicitly:

gn+1
ε (.5) = .5 =⇒ gnε (0) = .5 =⇒ nε = .5.

Hence we must have ωn = 1
2

1
n for the gε-family, i.e., in general we should expect

(4.1) ωn ∼
1

n
.

Similarly, to calculate the (n + 1)-isospiking starting point αn+1, equation (3.1)
gives

gn+1
ε (Cmax) = .5 =⇒ gnε (e

−K/ε) = .5 =⇒ nε+ e−K/ε = .5,

where Cmax denotes any global maximum point of gε in [.5, 1]. Thus, αn+1 can be
approximated as

αn+1 =
1

2

1

n
−

1

n
e−2Kn + h.o.t.
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Figure 5. αn and ωn are generated for the same parameter values
as in Fig.3. A program in Mathematica was written for this pur-
pose. The strategy can be loosely described as a type of predictor-
adaptation shooting method, by which one only needs to give an
initial guess, minimum accuracy, and the total number of points
needed. For the graph of ωn v.s. |ωn − αn+1|, the nth non-
isospiking interval length, points αn and ωn are accurate up to
10−(n+5). Because the parameter K is estimated around 3/2 for
the exponentially small order of separation between αn+1 and ωn,
these points can be numerically separated up to n = 16 with the
minimum margin of error. A more practically reliable guess puts
the value about n = 12. Increasing the minimum accuracy 5 should
result in separations for a larger n. The ωn for the other two scaling
graphs are accurate up to 10−4.

Therefore the length of the nth non-isospiking interval is of an exponentially small
order:

ωn − αn+1 ∼
1

n
e−2Kn + h.o.t.
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Thus, in general we expect

(4.2)
−1

ln(n(ωn − αn+1))
∼

1

n
∼ ωn.

These two scalings imply the following interval length ratios:

(4.3)
ωn+1 − ωn+2

ωn − ωn+1
,

αn+2 − ωn+2

αn+1 − ωn+1
= 1−

2

n+ 2
+ h.o.t. = 1−

2

n
+ h.o.t.

Here we note that 2/n− 2/(n+ 2) = O(1/n2).
For the ε-parameter family fε, these theoretical predictions are verified numeri-

cally in Fig.5 which shows the plots for ωn v.s. 1/n, ωn v.s. −1/ ln(n(ωn−αn+1)),
and ωn v.s.δn = (ωn+1 − ωn+2)/(ωn − ωn+1) in small dots and δn + 2/(n + 2) in
bold dots. Only the first 12 non-isospiking intervals are sampled for the scaling law
(4.2) for a numerical reason that the length for the 13th non-isospiking interval and
beyond is no greater than 10−16 in magnitude.

We note that our return maps are not circle maps. They are not continuous
either. For some diffeomorphisms on the unit circle, a bifurcation sequence similar
to ωn for the rotation numbers was studied in [2].

5. Renormalization Universality

This is the main section of the paper. The goal is to give a theoretical understand-
ing on the universal scaling laws numerically obtained above for our neuroencode
hypothesis that the per-burst spike number is coded information for neuron-to-
neuron communication. Two theorems will be proved. The Universal Number 1
Theorem gives conditions for individual neural family of 1-dimensional maps that
guarantee the limit

(5.1)
ωn+1 − ωn+2

ωn − ωn+1
→ 1 as n→∞,

for the isospiking bifurcation sequence {ωn} defined by Isospiking Criterion. In fact,
it is demonstrated more generally that all positive rational numbers are universal
in a similar sense. A dynamical system explanation on why this scaling law is
universal leads to the introduction of a renormalization operator R for which 1 is
a weakly expanding eigenvalue of the operator at a fixed point ψ0 and the limit
above is an approximation scheme for that eigenvalue, much in the same spirit of
Feigenbaum’s renormalization paradigm ([10, 11]), except that among other things
ψ0 is a nonhyperbolic fixed point and 1 is the universal number. The Superchaos
Theorem shows that the stable set of ψ0 contains an invariant set X0 into which
any finite dimensional dynamical systems can be embedded infinitely many times
and X0 has a dense orbit. It also shows that R can contract at any rate 0 < % < 1
and can expand at any rate % ≥ 1.

5.1. Universal Number 1. We start by introducing the renormalization operator
R and its several properties that are intended to motivate our dynamical system
approach to the first theorem.

Definition 5.1. Y is the set of mappings g : [0, 1]→ [0, 1] satisfying the following
conditions (a–d):

(a) For each g ∈ Y there is a constant cg0 ∈ (0, 1] such that g is continuous
everywhere except at x = cg0.
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c0

g 1
c0

g c0

Figure 6. A geometric illustration for R.

(b) g is strictly increasing in interval [0, cg0).
(c) g(x) ≥ x for x ∈ [0, cg0).
(d) g(x) ≤ g(0) for cg0 < x ≤ 1.

Y is equipped with the L1 norm, hence it is a subset of the L1 Banach space.

Remark 5.1. The value of g at the point of discontinuity cg0 is not important because
of the L1-topology. For convenience one can set g(c) = g(c−) = limx→c− g(x) with
c = cg0 since the left limit always exists by the monotonicity of g in the left interval
[0, cg0]. Because of this reason, any continuous increasing function g in [0, 1] with
g(x) ≥ x belongs to Y since one can consider cg0 = 1. In particular, the identity
function y = id(x) = x is in Y . We also note that by the L1 norm, ‖g − h‖ simply
measures the average distance |g(x) − h(x)| over interval [0, 1] between the two
curves y = g(x), y = h(x). If there is no confusion we will use c0 to denote the
point of discontinuity cg0 of g.

Definition 5.2. Let

D = {g ∈ Y : ∃c−1 ∈ (0, c0) such that g(c−1) = c0}.

Define an operator R : D → Y as follows

(5.2) g ∈ D −→ R[g](x) =



















1

c0
g(c0x), 0 ≤ x <

c−1

c0

1

c0
g ◦ g(c0x),

c−1

c0
≤ x ≤ 1.

Remark 5.2. Though it looks like a doubling map of R[g] over the right interval
c−1/c0 < x ≤ 1, it is actually a composition of the left half gl = g|[0,c0) of the map
with the right half gr = g|(c0,1] of the map, i.e.,

1

c0
g ◦ g(c0x) =

1

c0
gr ◦ gl(c0x), for

c−1

c0
≤ x ≤ 1.

Describing it in words, one iterates g twice over the interval (c−1, c0), with the
graph still below g(0), and then finish the renormalization by scaling the iterated
graph over (c−1, c0] together with the original one over [0, c−1) to the unit interval
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[0, 1]. See Fig.6. In terms of the Poincaré map Π as defined in (2.2), Fig.2, the
renormalized R[Π] is the same as the flow induced Poincaré return map on the
shorter interval [Rmin, c], requiring only a rescaling. Two immediate properties are
collected by two propositions below with the first characterizing the range and the
second the iterates of R.

Proposition 5.1. Let R = {g ∈ Y : g(c0) = 1}. Then, R[D] = R.

Proof. For any g ∈ R, we need to construct an h ∈ D such that g = R[h]. To this
end, we need to define a scale down operation which is an inverse operation to R
over a sub-interval immediately left to the point of discontinuity. More specifically,
for any 0 < d < 1 and every g ∈ R, denote

Sd[g](x) = dg(
1

d
x), 0 ≤ x ≤ dc0.

Now let

ch0 :=
1

2− c0
and define

(5.3) h(x) :=



































Sch0 [g](x) = ch0g(
1

ch0
x), 0 ≤ x < c0c

h
0

l(x) = (x− c0c
h
0 ) + ch0 , c0c

h
0 ≤ x < ch0

ch0g(
1− c0
1− ch0

(x− ch0 ) + c0), ch0 ≤ x ≤ 1.

Figure 7 illustrates the construction of h. It is straightforward to verify that ch−1 =

c0c
h
0 since h(ch−1) = l(ch−1) = ch0 ; Sch0 [g](c

h
−1) = ch0g(c0) = ch0 = l(ch−1);

1

ch0
h(ch0x) =

g(x) for x ∈ [0, c0);
1

ch0
h ◦ h(ch0x) = g(x) for x ∈ [c0, 1], and h(c

h
0 ) = 1, both using

that ch0 = 1/(2− c0). Hence R[h] = g. ¤

Proposition 5.2.

Rk[g](x) =



















1

c−k+1
g(c−k+1x), 0 ≤ x <

c−k
c−k+1

1

c−k+1
gk+1(c−k+1x),

c−k
c−k+1

≤ x ≤ 1,

where c−i = g−i(c0) ∈ [0, c0) for all i = 0, 1, ..., k. More specifically, if c0 has n
backward iterates c−i = g−i ∈ [0, c0) for i = 1, ..., n, then the new point c−1/c0
which partitions the graph of R[g] into parts above the diagonal and below the point
c−1/c0 has n − 1 backward iterates c−j−1/c0 = R[g]−j(c−1/c0) in [0, c−1/c0) for
j = 1, ..., n− 1.

Proof. It follows by induction. ¤

A subset U ⊂ D is forward invariant if R[U ] ⊂ U . It is backward invariant if
there is a subset V ⊂ U such that R[V ] = U . It is invariant if it is both forward
and backward invariant, i.e., R[U ] = U .
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Figure 7. The preimage h of g is constructed by scaling g down
(Sch0 [g]), attaching a line segment l of slope 1, and scaling the right

half of g accordingly over the right interval of h.

Proposition 5.3. Let

X = {g ∈ Y : ∃x∗ ∈ [0, c0] such that g(x
−
∗ ) = x∗}

Σn = {g ∈ R ⊂ Y : g−k(c0) = c−k ∈ [0, c0) for 1 ≤ k ≤ n such that

0 = c−n < c−n+1 < · · · < c0},

where g(x−∗ ) = limx→x−
∗

g(x)}. Then

(a) X ⊂ D is forward invariant and R[X] is invariant, i.e., R2[X] = R[X].
(b) X contains all forward invariant subsets of Y under R.
(c) Σn+1 = R−n[Σ1] and more generally, R

k[Σn+k] = Σn.

Proof. For g ∈ X, let xg = sup{x∗ ∈ [0, c0] : x∗ = g(x−∗ )}. Then we also have
xg = g(x−g ). So without loss of generality, assume x∗ = xg is the largest fixed point
of g in [0, c0] for statement (a). If x∗ < c0, then g(x) > x for x∗ < x ≤ c0. So
ck = g−k(c0) exist for all k ≥ 1 and c0 > c−1 > · · · → x∗. Thus g ∈ D andR[g] ∈ X
with the scaled fixed point x∗/c0. If x∗ = c0, then R[g] has 1 as its fixed point.
In either cases we have R[g] ∈ X and X is forward invariant. Hence, R2[X] ⊂
R[X] ⊂ X. To show R[X] is backward invariant, take any g ∈ R[X] ⊂ R = R[D].
By Proposition 5.1 there is an h ∈ D such that R[h] = g. By the construction of h
from (5.3), we see that h has a scaled-down fixed point x∗c

h
0 . Thus, h ∈ X. Since

h(ch0 ) = 1 from the construction in Proposition 5.1, we have h ∈ R and h ∈ R[X].
Hence, (a) holds.

If g ∈ U and U is forward invariant, then Rk[g] exists for all k ≥ 0. That is,
g−k(c0) = c−k exist for all k ≥ 1 with 0 ≤ · · · < c−k ≤ c−k+1 ≤ · · · ≤ c0. Thus
limk→∞ ck = x∗ ∈ [0, c0] exists and g(x∗) = x∗. So g ∈ X and U ⊂ X holds. This
shows (b).

If g ∈ Σn+1, then 0 = c−n−1 ≤ c−n ≤ · · · ≤ c−1 ≤ c0. By Proposition 5.2, Rn[g]
exists with the discontinuity at c−n/c−n+1 and the discontinuity’s perimage at
c−n−1/c−n+1 = 0. This shows Rn[g] ∈ Σ1 by definition. Thus, Σn+1 ⊂ R

−n[Σ1].
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To show Σn+1 ⊃ R
−n[Σ1], we need to show that for any g ∈ Σ1, there is an

h̄ ∈ Σn+1 such that Rn[h̄] = g. Since g ∈ Σ1 ⊂ R, we can construct an h by
(5.3) of Proposition 5.1 for which R[h] = g. From the construction of h we can
conclude that ch0 = 1/(2− cg0), c

h
−1 = cg0c

h
0 , and c

h
−2 = cg−1c

h
0 = 0 since g ∈ Σ1. Also,

h(ch0 ) = 1. So h ∈ Σ2. Applying the same inverse procedure to h recursively we
can find h̄ ∈ Σn+1 such that Rn[h̄] = g. So Σn+1 ⊃ R

−n[Σ1]. The general identity
of (c) can be verified similarly. This completes (c). ¤

The following result simply says that {Σn} converges to X point-wise uniformly
over [0, 1].

Proposition 5.4. For each g ∈ X, there is a sequence gn ∈ Σn such that gn → g
uniformly in [0, 1].

Proof. Let g ∈ X. Define

gµ(x) :=







g(x), when g(x) ≥ x+ µ and x ∈ [0, c0)
x+ µ, when g(x) ≤ x+ µ and x ∈ [0, c0)
g(x), x ∈ (c0, 1].

It is straightforward to verify that gµ(x) ∈ x for small µ > 0 for x ∈ [0, c0). By
intermediate value theorem there exists a decreasing sequence {µn} for sufficiently
large n such that µn → 0 and gnµn(0) = c0, i.e., gµn ∈ Σn. The convergence that
gµn → g is obviously uniformly over the interval [0, 1]. ¤

Proposition 5.5. Let

Wu
id := {ψµ : 0 ≤ µ ≤ 1/2} with ψµ(x) =

{

µ+ x, 0 ≤ x < 1− µ
0, 1− µ ≤ x ≤ 1.

Then

(a) id = ψ0 is a fixed point of R.
(b) Wu

id is backward invariant with R[ψµ] = ψµ/(1−µ).
(c) R is weakly expanding along W u

id in the sense that

‖R[ψµ]− ψ0‖ > ‖ψµ − ψ0‖.

(d) 1 is an eigenvalue of R’s linearization at ψ0 and the unit eigenvector is
given as

u0(x) :=
1

2
s1(x)−

1

2
δ1(x),

where s1(x) = 1, 0 ≤ x < 1 and s1(1) = 0, i.e. s1 ≡ 1 in L1, and δ1
is the delta distribution function, i.e., δ1(x) = 0, x 6= 1, δ1(1) = ∞, and
∫ 1+a

1−a
φ(x)δ1(x)dx = φ(1) for any C0 test function φ, and any 0 < a ≤ ∞.

Proof. It is straightforward to verify (a) as well as (b):

R[ψµ] = ψµ/(1−µ), and equivalently, R−1[ψµ] = ψµ/(1+µ).

It is not forward invariant because it requires µ/(1 − µ) < 1/2, or µ < 1/3. That
is, with V = {ψµ : 0 ≤ µ < 1/3} ⊂W u

id we have R[V ] =W u
id.

To show (c), a more general relation holds as follows

‖ψµ − ψ0‖ > ‖ψζ − ψ0‖ if µ > ζ ≥ 0.
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In fact, since in general ‖ψµ − ψλ‖ is the area between the two curves that consists of
the area of a parallelogram and the area of a trapezoid, we have thus by elementary
calculations

(5.4) ‖ψµ − ψλ‖ = (µ− λ)
(4 + λ− 3µ

2

)

∼ (µ− λ), assuming µ > λ ≥ 0.

In particular, with λ = 0, we have

‖ψµ − ψ0‖ = µ
4− 3µ

2
,

which is increasing in µ ∈ [0, 2/3] ⊃ [0, 1/2]. Since R[ψµ] = ψµ/(1−µ) by (b), (c) is
verified.

Again by (b) and expression (5.4), we have

‖R[ψµ]−R[ψ0]− 1 · (ψµ − ψ0)‖ = ‖ψµ/(1−µ) − ψµ‖

=
( µ

1− µ
− µ

)4− 3µ

2

∼ µ2 ∼ ‖ψµ − ψ0‖
2
,

showing the derivative of R at ψ0 in the direction of W u
id is the unitary operator in

L1, and 1 is the eigenvalue. As for the unit eigenvector u0 we have

uµ :=
ψµ − ψ0

‖ψµ − ψ0‖
=



















2

4− 3µ
, 0 ≤ x < 1− µ

−2x

µ(4− 3µ)
, 1− µ < x ≤ 1

=











2

4− 3µ
, 0 ≤ x < 1− µ

0, 1− µ < x ≤ 1

+











0, 0 ≤ x < 1− µ

−2x

µ(4− 3µ)
, 1− µ < x ≤ 1

→
1

2
s1(x)−

1

2
δ1(x) = u0(x), as µ→ 0.

This proves (d). ¤

Proposition 5.6. (a) γ = {ψ1/n}, n ≥ 2, is a backward orbit of R starting at
ψ1/2.

(b) ψnµ(0) = c0 = 1− µ if and only if µ = 1/(n+ 1), i.e., ψ1/(n+1) ∈ Σn.
(c) ωn = αn+1 = 1/(n + 1), that is, ψµ is isospiking of length n if and only if

1/(n+ 1) ≤ µ < 1/n.
(d)

ωn+1 − ωn+2

ωn − ωn+1
= 1−

2

n
+ h.o.t→ 1 as n→∞.

(e)

‖ψ1/n − ψ0‖ =
1

n
(2−

3

2n
), and

‖ψ1/(n+2) − ψ1/(n+1)‖

‖ψ1/(n+1) − ψ1/n‖
= 1−

2

n+ 2
+ h.o.t

= 1−
2

n
+ h.o.t→ 1 as n→∞.
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Proof. Statement (a) holds because by the proof of Proposition 5.5 we haveR[ψµ] =
ψµ/(1−µ) and the identity

1
n

1 + 1
n

=
1

n+ 1
.

Statement (b) holds because ψnµ(0) = nµ = c0 = 1−µ iff µ = 1/(n+1). Statement
(c) follows from the Isospiking Criterion of Sec.3. Statement (d) is straightforward.
Finally, (e) follows from the expression (5.4). ¤

Notice that by the expression (5.4), ‖ψ1/(n+1) − ψ1/n‖ ∼ (1/n − 1/(n + 1)) =
ωn−1−ωn. Thus (d) and (e) are essentially the same. Also statement (e) re-confirms
the fact that 1 is the eigenvalue along the direction W u

id and taking the limit of the
quotient difference

ωn+1 − ωn+2

ωn − ωn+1
→ 1

is an approximation scheme for the eigenvalue.

Universal Number 1 Theorem. Let {fµ} with 0 ≤ µ ≤ m0 ¿ 1 be a one-
parameter family in Y , where m0 is a sufficiently small constant and fµ ∈ Y for

all µ ∈ [0,m0]. Let c
µ
0 = c

fµ
0 ∈ (0, 1] with µ ∈ [0,m0] denote the discontinuity of fµ

and cµ−k = f−kµ (cµ0 ) be the kth back iterate of c
µ
0 . Assume the following conditions

are satisfied

(a) There exist an integer k0 ≥ 1 and a constant c1 such that

cµ−k0+1 = c00 + c1µ+ o(µ)

for µ ∈ [0,m0].
(b) There exist some constants a1 > 0, a2 such that

fµ(x) = x+ a1µ+ a2µ
2 + o(µ2) for x ∈ [0, cµ−k0

] and µ ∈ [0,m0].

Then there exists a unique monotone decreasing sequence {ωn} with ωn → 0 such
that

(5.5) fωn ∈ Σn and
ωn+1 − ωn+2

ωn − ωn+1
→ 1 as n→∞.

More generally, for any pair of integers p ≥ 0 and q > 0 we have

(5.6)
ωn+q − ωn+q+p

ωn − ωn+q
→

p

q
as n→∞.

Remark 5.3. By the assumptions (a,b) above, neural families are distinguished by
the parameters cµ0 , c1, a1, a2, and the higher order terms in their expansion at µ = 0.
They all share the same property that fµ(x)→ x as µ→ 0, which is the main cause
for the stated universality.

Proof. The proof will be done by mainly considering the k0th renormalized family
gµ = Rk0 [fµ]. Consider gµ(x) in the left half interval x ∈ [0, c̄µ0 ] only, we have by
Proposition 5.2 and both hypotheses (a, b),

gµ(x) = x+
1

cµ−k0+1

(a1µ+ a2µ
2 + o(µ2))

= x+ ā1µ+ ā2µ
2 + o(µ2)
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where ā1 = a1/c
0
0 > 0 and ā2 is a constant depending on a1, a2, c

0
0, c1, obtained

by collecting the coefficients of µ-term and µ2-term respectively in gµ. Denote the
discontinuity of gµ by

c̄µ0 =
cµ−k0

cµ−k0+1

.

Then from the expression of gµ and the equation gµ(c̄
µ
0 ) = 1 we obtain

c̄µ0 = 1− (ā1µ+ ā2µ
2 + o(µ2)) := 1 + b1µ+ o(µ),

where b1 = −ā1.
By definition, gµ ∈ Σn if and only if gnµ(0) = c̄µ0 = 1 + b1µ + o(µ). It is by

induction to get
gnµ(0) = n(ā1µ+ ā2µ

2 + o(µ2)).

Thus solving gnµ(0) = c̄µ0 is equivalent to solving

θ(µ) : = gnµ(0)− c̄
µ
0

= n(ā1µ+ ā2µ
2 + o(µ2))− (1 + b1µ+ o(µ)) = 0

This is done by showing that for each sufficiently large n, θ is increasing in µ with
the property that θ(0) = −1 < 0 and θ(m0) > 0. Therefore there is a unique
solution denoted by

µ = ω̄n.

To approximate ω̄n, we assume it takes the following form

ω̄n =
r1
n

+
r2
n2

+ o(
1

n2
).

Substituting this form into the equation gnµ(0) = c̄µ0 , approximating the equation

to order o( 1
n ) by equating the constant and 1/n terms on both sides, we find

r1 =
1

ā1
and r2 =

b1r1 − ā2r
2
1

ā1
.

Now for any integer pair p ≥ 0 and q > 0 we have by elementary simplification

ω̄n+q − ω̄n+q+p

ω̄n − ω̄n+q
=

r1
n+ q

+
r2

(n+ q)2
+ o(

1

n2
)−

( r1
n+ q + p

+
r2

(n+ q + p)2
+ o(

1

n2
)
)

r1
n

+
r2
n2

+ o(
1

n2
)−

( r1
n+ q

+
r2

(n+ q)2
+ o(

1

n2
)
)

=
n(n+ q)

(n+ q)(n+ q + p)

pr1 + r2
p(2n+ 2q + p)

(n+ q)(n+ p+ q)
+ o(1)

qr1 + r2
q(2n+ q)

n(n+ q)
+ o(1)

→
p

q
as n→∞.

Finally, we notice that due to renormalization, gµ = Rk0 [fµ] ∈ Σn if and only if
fµ ∈ Σn+k0

by Proposition 5.3. Therefore we can conclude that ωn+k0
= ω̄n and

the limit
ωn+q − ωn+q+p

ωn − ωn+q
→

p

q
as n→∞

holds as desired. This proves the theorem. ¤

Proposition 5.7. The universality (5.5) implies the universality (5.6).
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Proof. In fact, the limit (5.5) implies the following two limits: For any fixed integers
m ≥ 0, k > 0, we have

ωn+m − ωn+m+1

ωn − ωn+1
=

m
∏

i=1

ωn+i − ωn+i+1

ωn + (i− 1)− ωn+i
→

m
∏

i=1

1 as n→∞,

and

ωn+m − ωn+m+k

ωn − ωn+1
=

k−1
∑

j=0

ωn+m+j − ωn+m+j+1

ωn − ωn+1
→

k−1
∑

j=0

1 = k as n→∞.

Hence, we have the universality limit (5.6):

ωn+q − ωn+q+p

ωn − ωn+q
=

(ωn+q − ωn+q+p)/(ωn − ωn+1)

(ωn − ωn+q)/(ωn − ωn+1)
→

p

q
as n→∞.

¤

We note that X contains id = ψ0 and is forward invariant. It is large enough to
contain infinitely many co-dimension-one subspaces of Y . For example, let Ex0

:
Y → R be the functional such that Ex0

(g) = g(x0) − x0. Then the subspace
{g ∈ Y : Ex0

(g) = 0} is at least of co-dimension-one in X. On the other hand,
Wu

id is a 1-dimensional manifold that is not in X. So X is a subset of Y that is
not smaller than co-dimension-one space but smaller than the full space. In any
case, X is the center-stable set and W u

id is the (weak) unstable manifold of the non-
hyperbolic fixed point id = ψ0. Thus, similar to λ-lemmas of non-hyperbolic fixed
points from [7], we should expect the following: For any continuous one-parameter
family {fµ} ⊂ Y of mappings that intersects the stable set X transversely at f0, if
Rn[f0] → id = ψ0, then R

n[{fµ}] must converge to the unstable manifold W u
id as

n→∞. The following result is a weaker form of such λ-lemmas.

Inclination Lemma. Let {fµ} with 0 ≤ µ ≤ m0 ¿ 1 be a one-parameter family
in Y , where m0 is a sufficiently small constant and fµ ∈ Y for all µ ∈ [0,m0]. Let

cµ0 = c
fµ
0 ∈ (0, 1] with µ ∈ [0,m0] denote the discontinuity of fµ and c

µ
−k = f−kµ (cµ0 )

be the kth back iterate of cµ0 . Assume the following conditions are satisfied

(a) There exist an integer k0 ≥ 1 and a constant c1 such that

cµ−k0+1 = c00 + c1µ+ o(µ)

for µ ∈ [0,m0].
(b) There exists a constant a1 > 0 such that

fµ(x) = x+ a1µ+ o(µ) for x ∈ [0, cµ−k0
] and µ ∈ [0,m0].

(c)

fµ(x) = O(µ) for x ∈ (cµ0 , 1] and µ ∈ [0,m0].

Then for any µ0, and any ε > 0, there is an integer N0 such that for any iterate
n > N0, there is a µ ∈ (0,m0] sufficiently small satisfying the following

‖Rn[fµ]− ψµ0
‖ < ε,

where ψµ defines the backward invariant, expanding family through id constructed
in Proposition 5.5.
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Figure 8. A geometric view of the dynamics near the fixed point
ψ0. Notice that the closer fωn is to W = X, the closer Rn−1[fωn ]
is to the point ψ1/2 on U =W u

id. See also Fig.9.

Proof. Figure 8 gives a graphical illustration for the lemma. Similar to the proof
of the Universal Number 1 Theorem, the proof is carried out by mainly considering
the k0th renormalized family gµ = Rk0 [fµ]. Denote the discontinuity of gµ by c̄µ0 .
By Proposition 5.2 and hypotheses (a, c), we have

gµ(x) = O(µ) for x ∈ (c̄µ0 , 1] and µ ∈ [0,m0],

because the outer most composition in fk0+1
µ (cµ−k0+1x)/c

µ
−k0+1 is of order O(µ) and

cµ−k0+1 = O(1). Consider gµ(x) in the left half interval x ∈ [0, c̄µ0 ] next, we have by

Proposition 5.2 and both hypotheses (a, b),

gµ(x) = x+
1

cµ−k0+1

(a1µ+ o(µ))

= x+ ā1µ+ o(µ)

where ā1 = a1/c
0
0 > 0 is a constant similar to the proof of the preceding theorem.

Denote

c̄µ−k = g−kµ (c̄µ0 ),

whenever defined. For simpler notation we denote

c−k = c̄µ−k for k = 0, 1, 2, . . . ,

and

a = ā1.

Since gµ ∈ R[D] = R, gµ(c0) = 1 (using the simplified notation c0 = c̄µ0 ), and thus

gk+1
µ (c−k) = c−k + (k + 1)(aµ+ o(µ)) = 1.
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Thus

c−k = 1− (k + 1)(aµ+ o(µ)) and c0 = 1− (aµ+ o(µ)).

By Proposition 5.2,

Rk[gµ](x) = x+
aµ+ o(µ)

c−k+1
for 0 ≤ x ≤

c−k
c−k+1

.

The rest of the proof is to show that a µ satisfying the following equation

(5.7)
aµ

c−k+1
= µ0

is what we look for. By using the expression for c−k, the equation above is solved
to give

µ =
µ0

a+ kµ0(a+ o(1))
= O(

1

k
)→ 0 as k →∞.

We are now ready to estimate ‖Rk[g]− ψµ0
‖. The difference is the area between

the two curves h = Rk[gµ] and ψµ0
which can be divided into three regions for

consideration: (i) The parallelogram between h = Rk[gµ] and ψµ0
over the interval

[0,min{ch0 , 1 − µ0}]; (ii) the trapezoid-like region between the two curves over the
interval [min{ch0 , 1 − µ0},max{ch0 , 1 − µ0}]; (iii) the region between h and the x-
axis over the interval [max{ch0 , 1 − µ0}, 1] for which the height of the curve h is
of order O(µ). Our task is to show that each of the three areas is of order o(1)
as µ = O(1/k) → 0. First there is no additional argument needed for the region
(iii) because h = O(µ) over the corresponding sub-interval of [0, 1]. For region (i),
because of the choice of µ from the equation aµ/c−k+1 = µ0, we have that the
difference between the two curves h and ψµ0

over that interval is

|h(x)− ψµ0
| = |

aµ+ o(µ)

c−k+1
− µ0| =

o(µ)

c−k+1

=
aµ

c−k+1

o(µ)

aµ
= µ0o(1) (because

aµ

c−k+1
= µ0 by Eq.(5.7))

= o(1) as µ→ 0.

For region (ii), the function difference between h and ψµ0
is of order O(1). However,

the length of the interval [min{ch0 , 1 − µ0},max{ch0 , 1 − µ0}] is small. In fact, the
length of the interval is

|ch0 − 1 + µ0| = |
c−k
c−k+1

− 1 + µ0| = |
c−k − c−k+1 + µ0c−k+1

c−k+1
|

= |
c−k − c−k+1 + aµ

c−k+1
| (because µ0c−k+1 = aµ by Eq.(5.7))

= |
−aµ− o(µ)− aµ

c−k+1
| (because c−k+1 = gµ(c−k) = c−k + aµ+ o(µ))

= |
o(µ)

c−k+1
| = o(1),

where the last estimate follows from the same argument as above for region (i).
Combining the three estimates together, we can conclude that

‖Rk[gµ]− ψµ0
‖ = o(1) as µ = O(

1

k
)→ 0.
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Figure 9. Same parameter values as in Fig.3 and ε = ω100. The
saddle-effect of the fixed point id = ψ0 is clear visible: Rk(f)
moves closer to the fixed point ψ0 before moving away from it.
Also, R99[fω100

] is visually identical to ψ1/2, another consequence
to the saddle-effect.

Hence, there exists a sufficiently large K0 so that for k > K0 we have

‖Rk[gµ]− ψµ0
‖ < ε

for µ defined as in Eq.(5.7). Since Rk[gµ] = R
k+k0 [fµ], the lemma is proved by

choosing N0 = K0 + k0. ¤

Recall fε, the ε-parameter family of mapping (2.2) considered in the previous
sections. Then the singular limit

f0(x) = lim
ε→0

fε(x) =

{

x, 0 ≤ x < .5
0, .5 ≤ x ≤ 1

∈ X

is attracted to ψ0 because R[f0] = ψ0. We believe the conditions of both the
Universal Number 1 Theorem and the Inclination Lemma are satisfied and therefore
both conclusions apply. The dynamical structure of R near ψ0 as well as the family
fε are depicted in Fig.8. A numerical simulation is shown in Fig.9 from which
the saddle structure near the fixed point id and the inclination phenomenon are
graphically demonstrated.

We end this subsection with some other backward invariant weakly expanding
families through the fixed point id = ψ0. They are similar to ψµ except with non-
vanishing part over the right half interval. More specifically, consider families of
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the following form

gµ,q(x) =

{

x+ µ, 0 ≤ x < 1− µ
qµ(x), 1− µ ≤ x ≤ 1,

where qµ(x) ≥ 0 and max[1−µ,1] qµ ≤ µ. It is straightforward to verify that the set
Wu

id,q := {gµ,q : 0 ≤ µ < 1/2} is backward invariant if and only if

q µ
1−µ

(x) =
1

1− µ
qµ((1− µ)x+ µ),

1− 2µ

1− µ
≤ x ≤ 1.

For example, consider qµ to be the logistic family qµ = 4λ(x − 1 + µ)(x − 1).
The x-intercepts are x = 1 − µ = c0 and x = 1. The maximum takes place
at 1 − µ/2 with λµ the maximum value. Because gµ,q is linear on the left half
interval [0, c0) = [0, 1 − µ), the renormalization R[gµ,q] on the right half interval
[(1 − 2µ)/(1 − µ), 1] is again a quadratic function which goes through the zero
at x = (1 − 2µ)/(1 − µ) = 1 − µ/(1 − µ) and x = 1 respectively and have the
maximum value λµ/(1 − µ) at x = (1 − µ/2)/(1 − µ) = 1 − µ/[2(1 − µ)]. It is
precisely the quadratic function qµ/(1−µ). Thus, W u

id,q is backward invariant. One
can construct other backward invariant families as well, e.g., replacing the logistic
family by the tent map family gives rise to such a family. One can also show by
the same argument as for Proposition 5.5 that such a backward invariant family is
also tangent to u0 at the fixed point id = ψ0, i.e.,

lim
µ→0

gµ,q − ψ0

‖gµ,q − ψ0‖
= u0,

where u0 is the eigenvector of eigenvalue 1 as in Proposition 5.5. One can also show
that if minx∈[c0,1] qµ(x) = 0, then the same scaling laws as Proposition 5.6(c,d,e)
hold for gµ,q as well by exactly the same argument of that proposition. We note
also that whether or not a mapping g ∈ F [0, 1] is isospiking has little to do with
its dynamics on the interval [0, 1]. For example, for the family {gµ,q} with qµ =
4λ(x − 1 + µ)(x − 1), its dynamics is determined by the logistic map. In fact, for
gωn,q ∈ Σn, R

n[gωn,q](x) = λx(1 − x) is the logistic map. Also, for any fixed µ,
the bifurcation diagram for {gµ,q} with varying λ ∈ (0, 1) is essentially the diagram
for the logistic family. Finally, we point out that for the neuron family fε of (2.2),
fε|[c(ε),1] is of order exp(−1/ε). Thus, the dynamics of each mapping is very much
regular. The exp(−1/ε) order estimate over its right interval results in the exp(−n)
order estimate for the length of the nth nonisospiking interval.

5.2. Superchaos. We recall that

X = {g ∈ Y : ∃x∗ ∈ [0, c0], s.t. x∗ = g(x−∗ )}

where g(x−∗ ) = limx→x−
∗

g(x)}. For g ∈ X, let xg = sup{x∗ ∈ [0, c0] : x∗ = g(x−∗ )}.

Then we also have xg = g(x−g ). Define

X0 = {g ∈ X : xg = 0} and X1 = {g ∈ X : xg > 0}.

Naturally we have X = X0 ∪X1.

Superchaos Theorem. (1) For any 0 < % < 1, there is an element s% ∈ X1

such that the orbit {Rn[s%]} converges to the fixed point id = ψ0 at the rate
of %.

(2) For any % > 1, there is a fixed point r% ∈ X0 and a backward invariant
family U% ⊂ Y through r% on which R expands at the rate of %.
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(3) The set of periodic-n points of R in X0 is infinite dimensional.
(4) The set of periodic points of R in X0 is dense in X0.
(5) The closure of the stable set of any h ∈ X0 is X0. More specifically, for any

pair g ∈ X0, h ∈ X0 and any ε > 0, there is an element fh,g ∈ X0 from the
ε-neighborhood of g, i.e., ‖fh,g − g‖ < ε, so that Rn[fh,g] = R[h] for some
n ≥ 0.

(6) R has the property of sensitive dependence on initial conditions. That is,
there is a constant δ0 > 0 such that for any g ∈ X0 and any small ε > 0,
there is an h ∈ X0 and n > 0 satisfying ‖h− g‖ < ε and ‖Rn[h]−Rn[g]‖ ≥
δ0.

(7) Any finite dimensional mapping is conjugate to R on a subset of X0 and
there are infinitely many such subsets of X0. More precisely, for any finite
dimensional mapping θ : R

n → R
n, there are infinitely many conjugate

mappings φ : R
n → X0 such that R ◦ φ = φ ◦ θ.

(8) There is a dense orbit {Rn[g∗]}
∞
n=0 in X0.

Proof. 1) This is done by construction. For each 0 < % < 1, let

s%(x) =







































x, 0 ≤ x ≤
1

2

1

%
(x−

1

2
) +

1

2
,

1

2
≤ x ≤

1 + %

2

0,
1 + %

2
< x ≤ 1.

Thus, we have c0 = (1+ %)/2, and x = 1/2 is the largest fixed point of s%. Since s%
is increasing with slope 1/% in [1/2, (1 + %)/2], c−k = s−k% (c0) exists for all k and
c−k ↘ 1/2 as k →∞. Also because s% is linear in [1/2, (1 + %)/2], we have

1

%

(

c−k − c−(k+1)

)

= (c−k+1 − c−k)

for all k ≥ 0, with c0 = (1 + %)/2 and extending the notation to c1 = 1. Solving
this equation gives

c−k =
1

2

[

%k+1 + 1
]

for k ≥ 0 and c−k →
1

2
as k →∞.

By Proposition 5.2,

Rk[s%](x) =











































x, 0 ≤ x ≤
1

2c−k+1

1

%
(x−

1

2c−k+1
) +

1

2c−k+1
,

1

2c−k+1
≤ x ≤

c−k
c−k+1

0,
c−k
c−k+1

< x ≤ 1.

It is easy to see Rk[s%] → id as k → ∞. To demonstrate the convergence rate,
we consider ‖Rk[s%]− id‖ which consists of calculating the area of the triangle be-
tween s% and the diagonal over the interval [1/(2c−k+1), c−k/c−k+1] and the trape-
zoid bounded between the diagonal and the x-axis over the interval [c−k/c−k+1, 1].
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Therefore,

‖Rk[s%]− id‖ =
1

2

[ c−k
c−k+1

−
1

2c−k+1

][

1−
c−k
c−k+1

]

+
1

2

[

1−
c−k
c−k+1

][

1 +
c−k
c−k+1

]

=
1

2

%k(1− %)

1 + %k
[

2
c−k
c−k+1

−
1

2c−k+1

]

∼ O(%k) as k →∞.

This proves statement 1).
Statement 2) is proved similarly. More precisely, for each % > 1, let r% be the

fixed point which is the line of slope % through the origin that is clipped at c0 = 1/%.
That is,

r%(x) =



















%x, 0 ≤ x ≤
1

%

0,
1

%
< x ≤ 1.

Because of the linearity, r% is a fixed point of R. Define Uµ as

Uµ(x) =



















µ+ %x, 0 ≤ x ≤
1− µ

%

0,
1− µ

%
< x ≤ 1.

It is the same ray but translated upward by µ amount and clipped at c0 = (1−µ)/%.
Again, since Uµ is linear in [0, (1− µ)/%], Uµ is a backward invariant family with

R[Uµ] = U %µ
1−µ

.

To show the statement, we only need to show that

lim
µ↘0

‖R[Uµ]−R[U0]‖

‖Uµ − U0‖
= %,

as we note that U0 = r% and Uµ is a backward invariant family. The norm ‖Uµ − U0‖
consists of the area of the parallelogram between Uµ and U0 over the interval [0, (1−
µ)/%] and the area of the trapezoid between Uµ and U0 over the interval [(1 −
µ)/%, 1/%]. We have

‖Uµ − U0‖ = µ
1− µ

%
+

1

2

[1

%
−

1− µ

%

][

1 + %
1− µ

%

]

=
µ

%

[

2−
3µ

2

]

.

Therefore

‖R[Uµ]−R[U0]‖

‖Uµ − U0‖
=

%

1− µ

2−
3

2

%µ

1− µ

2−
3

2
µ
→ %, as µ↘ 0.

This proves 2).
To show the rest statements 3)–8), we need to define a concatenation operation,

denoted by
∨

. Let g be any function over an interval [c−k−1, c0] ⊂ (0, 1) with these
properties: (i) g(x) > x for x ∈ [c−k−1, c0]; (ii) g is increasing; (iii) g−k−1(c0) =
c−k−1, i.e., g(c−i) = c−i+1, i = 1, 2, . . . , k+1. Here we certainly assume c−i depend
on the individual function g. Let h be a function over [d1, d0] ⊂ [0, 1) such that
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Figure 10. A schematic illustration for the definition of the con-
catenation operation

∨

. (a) The case when c−kd0 = c−k−1. (b)
The other case when c−kd0 6= c−k−1.

h(x) ≥ x, x ∈ [d1, d0] and h(d0) = 1. With a pair of such function g, h, we first
scale down h by the factor of c−k, and denote

Sc−k [h](x) = c−kh(
1

c−k
x), c−kd1 ≤ x ≤ c−kd0.

The operation
∨

is defined as follows. (a) If c−kd0 = c−k−1, then we define

g
∨

h(x) =

{

Sc−k [h](x), c−kd1 ≤ x ≤ c−kd0 = c−k−1

g(x), c−k−1 ≤ x ≤ c0,

see Fig.10(a). It is straightforward to check in this case that g
∨

h(x) ≥ x and

g
∨

h is continuous as Sc−k [h](c−k−1) = c−kh(
1

c−k
c−kd0) = c−k · 1 = g(c−k−1). (b)

If c−kd0 6= c−k−1, then we consider

Sc−k−1
[h](x) = c−k−1h(

1

c−k−1
x), c−k−1d1 ≤ x ≤ c−k−1d0 < c−k−1.

Since c−k−1d0 < c−k−1 the domains of Sc−k−1
[h] and g do not overlap. Also since

Sc−k−1
[h](c−k−1d0) = c−k−1 < c−k = g(c−k−1), Sc−k−1

[h] lies below y = c−k and
g lies above y = c−k. We define g

∨

h by joining the points (c−k−1d0, c−k−1) and
(c−k−1, c−k) in the box [0, 1]× [0, 1] by a line denoted by l. That is, we define

g
∨

h(x) =























Sc−k−1
[h](x), c−k−1d1 ≤ x ≤ c−k−1d0 < c−k−1

l(x), c−k−1d0 ≤ x ≤ c−k−1

g(x), c−k−1 ≤ x ≤ c0,
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with

l(x) =
c−k − c−k−1

c−k−1 − c−k−1d0
(x− c−k−1d0) + c−k−1,

see Fig.10(b). Again, it is easy to see that g
∨

h is continuous and lies above the
diagonal in this case as well. Other properties that are important for the rest of
the proof are the following

• If h satisfies properties (i,ii,iii) as g does, then g
∨

h belongs to the same
class as both g and h do.
• By definition, we already have g

∨

h(x) = g(x), x ∈ [c−k−1, c0]. We also
have

Ri[g
∨

h](x) = h(x) over x ∈ [d1, d0]

for i = k if c−kd0 = c−k−1 and i = k + 1 if c−kd0 6= c−k−1. Here we abuse
the notation a little by treating g

∨

h as an element in X0, which indeed
can be the case by properly extending it to the rest of interval of [0, 1]. This
property is based on the fact that the scaling down operation Sc[h] and the
scaling up operation R are inverse operations of each other.
• The operation is associative, i.e., g

∨

(h
∨

f) = (g
∨

h)
∨

f . Thus, we de-
note

g
∨

h
∨

f = g
∨

(h
∨

f).

• If all defined, we use the following notation

∞
∨

i=1

gi = lim
n→∞

n
∨

i=1

gi = g1
∨

g2
∨

g3 · · · .

Also, we will use the fact that the limit limx→0+

∨∞
i=1 g(x) = 0 exists and

equals 0. In fact, we note that for any n ≥ 1, the function
∨n
i=1 g is

defined over an interval [an, c0] whose left end point an is bounded from
above by c−k−1c

n−1
−k by the definition of

∨

. Thus, an → 0 as n → ∞

and limx→0+

∨∞
i=1 gi(x) = 0 follows by the monotonicity of the infinite

concatenation.

We are now ready to show 3). Let % > 1 be any fixed number and consider the
fixed point r%(x) = %x, 0 ≤ x ≤ 1/% and r% = 0, x > 1/% that was considered in
the proof of statement 2). Let c0 = 1/%. Then by the linearity of r% over [0, c0],
we have c−k = 1/%k+1. For any fixed natural number n ≥ 1, let h1, h2, . . . , hn be n
distinct increasing functions over [c−1, c0] such that for all i = 1, 2, . . . , n we have
hi(x) > x, x ∈ [c−1, c0], hi(c−1) = c0, and hi(c0) = 1. We construct h =

∨n
i=1 hi(x)

and then concatenate h indefinitely to get

pn(x) =

{ ∨∞
j=1 h =

∨∞
j=1

∨n
i=1 hi(x), 0 < x ≤ c0

0, either x = 0 or c0 < x ≤ 1,

It is straightforward to verify that pn ∈ X0 and Rn[pn] =
∨∞
i=2 h = pn but

Rk[pn] 6= pn for 1 ≤ k < n. So pn is a period-n point of R in X0. Because
hi are arbitrary functions with the described properties, the set of period-n points
is infinite dimensional. This proves statement 3).

To show statement 4), we need to show that for any g ∈ X0, we can find a
sequence of periodic points pk such that pk → g as k → ∞. To construct pk, we
begin with the fact that since g(x) > x for 0 < x ≤ c0, g(0) = 0, and g is increasing
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in [0, c0], thus c−k = g−k(c0) must exists for all k ≥ 1 and c−k → 0 as k → ∞. If
g(c0) = 1, then we let g̃k = g|[c−k−1,c0]. If g(c0) < 1, then for large k we let

g̃k(x) =

{

g(x), c−k−1 ≤ x ≤ c0 −
1
k

k[1− g(c0 −
1
k )](x− c0) + 1, c0 −

1
k ≤ x ≤ c0.

That is, g̃k in this case is constructed to be g over [0, c0−1/k] and the line connecting
the point (c0 − 1/k, g(c0 − 1/k)) on the graph of g and the point (c0, 1) on the top
edge of the box [0, 1] × [0, 1]. In both cases g̃k satisfies the conditions (i,ii,iii) for
the concatenation operation

∨

. Hence, if we let

pk(x) =

{
∨∞
i=1 g̃k(x), 0 < x ≤ c0

0, x = 0 or c0 < x ≤ 1,

then we see pk is continuous at x = 0 by the last property we listed above after
the definition of

∨

. Moreover, pk ∈ X0 and either Rk[pk] = pk or Rk+1[pk] = pk,
depending on whether or not c−kc0 = c−k−1. Thus, pk is a periodic point of R.
Since pk and g differ only on [0, c−k] and possibly on [c0 − 1/k, c0], we have

‖pk − g‖ = O(max{
1

k
, c−k})→ 0 as k →∞.

This proves statement 4).
To show 5), let g ∈ X0 and h ∈ X0. As in the proof of 4) above, c−k = g−k(cg0)→

0 as k → ∞. Let gk = g|[c−k−1,1]. Then gk and R[h] satisfy the conditions for the
concatenation operation

∨

, and we define fh,g = gk
∨

R[h]. Clearly fh,g ∈ X0.
Since fh,g and g differ only possibly on [0, c−k−1], we have ‖fh,g − g‖ = O(c−k−1).
Also, by a property of

∨

, either Rk[fh,g] = R[h] or R
k+1[fh,g] = R[h] depending

on whether or not c−kc
h
0 = c−k−1. Thus, for any ε > 0, there is an integer n ≥ 1

so that ‖fh,g − g‖ < ε and Rn[fh,g] = R[h]. This proves statement 5).
To show 6), we need to construct an h ∈ X0 for each g ∈ X0 that satisfies

the stated properties. To this end, we first demonstrate that any g ∈ X0 can be
properly separated from some element ` ∈ X0 by construction. More specifically,
let c0 ∈ [0, 1] be the point of discontinuity of g. Then there is always a point in
(0, 1) denoted by c`0 that is no less than 1/4 apart from c0:

|c`0 − c0| ≥
1

4
.

Let ` be the line through the origin (0, 0) and (c`0, 1) over [0, c
`
0] and 0 over (c`0, 1].

Then ‖`− g‖ must be greater than the area of the trapezoid below the diagonal
and over the interval [c`0, c0] if c

`
0 < c0 and [c0, c

`
0] if c0 < c`0. This area is in turn

greater than the area of the equal lateral right triangle which is the top part of the
trapezoid. Since the area of that triangle is

1

2
|c`0 − c0||c

`
0 − c0| ≥

1

2
×

1

4
×

1

4
=

1

32
:= δ0,

it follows that

‖`− g‖ > δ0 =
1

32
.

We are now ready to show the property of sensitive dependence on initial conditions.
For each g ∈ X0, we have c−k = g−k(c0) → 0 as k → ∞. For each k, let `k
be such a function associated with Rk+1[g] that is separated from Rk+1[g] by at
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Figure 11. A schematic illustration for conjugating a 2-
dimensional map θ : R

2 → R
2 to a sub-dynamics of R.

least δ0 amount. Moreover, we impose the condition that c`k0 c−k 6= c−k−1 in the
construction of `k. Let gk = g|[c−k−1,1] and define

hk = gk
∨

`k.

It is obvious that ‖hk − g‖ ≤ c−k−1 → 0 since hk and g differ only in the interval

[0, c−k−1] with hk|[c−k−1,1] = gk = g|[c−k−1,1]. However, because c`k0 c−k 6= c−k−1,
we have by the definition of

∨

that

‖Rk+1[hk]−R
k+1[g]‖ = ‖`k −R

k+1[g]‖ > δ0.

This proves 6).
To show 7) we need to construct a conjugacy φ for each mapping θ : R

n →
R
n that maps any point y ∈ R

n to a corresponding element φ(y) ∈ X0 so that
R ◦ φ(y) = φ ◦ θ(y). The construction to be used below will shows that there are
infinitely many such φ for every mapping θ.

We start by fixing any % > 1 and the ray r% considered in the proof of statement
2) above. Here r%(x) = %x, 0 ≤ x < 1/% and r%(x) = 0, 1/% < x ≤ 1. The point of
discontinuity is c0 = 1/% and c−k = 1/%k+1 with r−1(c−k) = c−k−1, k = 0, 1, 2, . . . .
The goal is to construct for each y ∈ R

n an element g = φ(y) ∈ X0 with the property
that cg−k = c−k = 1/%k+1, k = 0, 1, 2, . . . , and R ◦ φ(y) = R[g](y) = φ ◦ θ(y), see
Fig.11. In fact, we will construct g to be a piecewise linear curve from X0 having
exactly n+ 1 line segments over each interval [c−k−1, c−k], k = 0, 1, 2, . . . . The key
step is in constructing the piece over the first interval [c−1, c0] by embedding R

n

into the space of piecewise linear functions from [c−1, c0] to [c0, 1].
To this end, we first arbitrarily pick and fix n points c−1 < d1 < d2 < · · · <

dn < c0. Denote the images of di under r% by ai = r%(di) = %di, 1 ≤ i ≤ n. By
r%’s monotonicity, this gives c0 = r%(c−1) < a1 < a2 < · · · < an < 1 = r%(c0).
We then arbitrarily pick and fix bi so that ai < bi < ai+1, i = 1, 2, . . . , n with
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an+1 = 1. We are now ready to embed R
n into the space of piecewise linear func-

tions from [c−1, c0] to [c0, 1]. More specifically, let βi : R → (ai, bi) be any 1-to-1
and onto map and let y = (y1, y2, . . . , yn) ∈ R

n with yi being the ith coordinate.
We then define hy to be the graph over interval [c−1, c0] that connects the vertex
points (c−1, c0), (d1, β1(y1)), . . . , (di, βi(yi)), . . . , (dn, βn(yn)), and (c0, 1) with line
segments. Because of the choice that βi(yi) < bi < ai+1 < βi+1(yi+1), each line
through (di, βi(yi)) and (di+1, βi+1(yi+1)) must be increasing. Hence hy is increas-
ing in [c−1, c0]. It is continuous by construction and hy(c−1) = c0, hy(c0) = 1.
It lies above the diagonal because it lies above the ray r%. Therefore hy

∨

hz is
well-defined with any y, z ∈ R

n, in particular, with z = θ(y). We now complete our
construction for g = φ(y) by defining

g = φ(y) =

{
∨∞
i=0 hθi(y)(x), 0 < x ≤ c0

0, x = 0 or c0 < x ≤ 1,

see Fig.11. By the definition of
∨

we haveR[φ(y)](x) =
∨∞
i=1 hθi(y)(x) = φ(θ(y))(x)

for x ∈ [0, c0) and 0 otherwise. That is, R[φ(y)] = φ(θ(y)) as desired. Finally, we
point out that there are infinitely many ways to construct the conjugacy φ above by,
e.g., starting with distinct rays r% for % > 1, or by varying the parameters di, ai, bi.
This proves 7). (Also, it is easy to see by the construction above that this result
can be generalized to include mappings on product spaces, e.g., R

ω, which include
shift maps.)

The proof of statement 8) is based on the fact that the L1[0, 1] space is sepa-
rable, i.e., having a countable dense set. To be precise, let D1 denote the subset
of L1[0, 1] that contains piecewise continuous and piecewise-linear functions con-
necting vertexes of rational coordinates, in particular, with vertexes having the
x-coordinates in the form of i/n for 0 ≤ i ≤ n and n ≥ 2. Clearly D1 is countable
and dense. For each g ∈ X0, we can certainly approximate it by a sequence of
functions gn from D1 each of which is i) continuously increasing over [0, cgn0 ], i.e.,
gn(x1) < gn(x2), 0 ≤ x1 < x2 ≤ cgn0 ; ii) above the diagonal y = x over [0, cgn0 ], i.e.,
gn(x) > x, 0 < x ≤ cgn0 ; iii) vanishing at 0 and in (cgn0 , 1]. In other words, such a
sequence can come from X0. That is, X0 itself is separable with the countable dense
set D2 = X0 ∩ D1. Next for each g ∈ D2 we modify it to get a sequence by taking
the following two steps. (1) If g(cg0) = 1, we do nothing about the discontinuity
point cg0 and set gn = g. (2) Otherwise, g(cg0) < 1. Then we construct a sequence
gn with i) cgn0 = cg0 + 1/n; ii) gn(x) = g(x) for 0 ≤ x ≤ cg0 and cg0 + 1/n < x ≤ 1;
iii) gn is the line connecting (cg0, g(c

g
0)) and (cgn0 , 1). It is trivial to see that gn ∈ D2

and gn → g in L1. That is, gn is everything of any other D2 elements except that
gn(c

gn
0 ) = 1. Denote this subset of D2 by D3 ⊂ D2 ⊂ X0. Then we know D3 is

countable and dense in D2, so is dense in X0. We further modify D3 as follows.
For each g ∈ D3, we have c−k = g−k(c0) → 0 as k → ∞ as x = 0 is the only
fixed point of g. We construct a sequence hk each is the function g restricted on
[c−k, c0], i.e., hk = g|[c−k,c0]. This sequence {hk} has the property that by making

any L1-extension of hk to the left-over interval [0, c−k], we will always have

‖hk − g‖L1[0,c0]
≤ c−k → 0 as k →∞.

Denote by D4 the set of all hk = g|[c−k,c0] for all g ∈ D3. Then D4 is a countable
set. Also, although D4 is not a subset of X0, it can be treated to be dense in
X0 because for each g ∈ X0 there is a sequence {gnk} from D4 such that with
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an arbitrary extension to [0, ak] and 0 to [c
gnk
0 , 1] for each gnk with [ak, c

gnk
0 ] the

domain of gnk , we have gnk → g as k →∞.
We are now ready to construct a dense orbit in X0. Since D4 is countable, we

have

D4 = {g1, g2, . . . , }.

We now construct

g∗ =

{
∨∞
i=1 gi(x), 0 < x ≤ cg10

0, x = 0 or cg10 < x ≤ 1.

It is obvious that by the definition of the concatenation operation
∨

, g∗ is con-
tinuous and increasing over the left open interval (0, cg10 ). Let c0 = cg∗0 and
c−k = g−k∗ (c0). It is obvious that c−k ∈ [0, c0) exist for all k ≥ 0 by the defi-
nition of infinite concatenation as in

∨∞
i=1 gi. Therefore, c−k ↘ x∗ exists as k →∞

and x∗ ∈ [0, c0) is a fixed point of g∗. To show g∗ is continuous at x = 0 and
g∗ ∈ X0, we only need to show that x∗ = 0. Suppose otherwise that x∗ > 0. Then,
g0 = limk→∞R

k[g∗] must exist and g0 is a fixed point of R with g0(1
−) = 1. On

the other hand, by the definition of
∨

we have gn(x) = R
k[g∗](x) for some k ≥ 0,

with k depending on n, and for all x from gn’s domain of definition [an, c
gn
0 ]. The

existence of the limit g0 = limk→∞R
k[g∗] forces the conclusion that cgn0 → 1 as

n → ∞. Since D4 = {gn} can be regarded as a dense set of X0, the existence of
the limit cgn0 → 1 would imply that every element g ∈ X0 must have the property
that g(1−) = 1. This is certainly a contradiction to the fact that x = 0 is the only
fixed point for every element g ∈ X0. This completes the proof that g∗ ∈ X0.

We are now ready to show that the orbit through g∗ is dense in X0. In fact,
for any g ∈ X0 and any ε > 0, there is a gk ∈ D4 that is ε-close to g with any
arbitrary X0-extension of gk to the left of its domain and 0 extension to the right of
its domain. By the definition of the concatenation operation

∨

there is an integer
n such Rn[g∗] = gk

∨∨∞
i=k+1 gi over [0, cgk0 ] and 0 over [cgk0 , 1]. Hence, Rn[g∗] is

ε-close to g. This shows that the orbit {Rn[g∗]} is dense in X0. ¤

We end this section by pointing out the structure ofX1 is completely understood.
In fact for every g ∈ X1, there is a non-vanishing left fixed point g(x−∗ ) = x∗ > 0.
From the proof above we know that the limit h = limk→∞R

k[g] exists and it is a
fixed point of R for which x = 1 is a fixed point of h. Also, it is straightforward
to show that an element from the stable set of such a fixed point h must be in X1.
Therefore, we can conclude the following.

Proposition 5.8. X1 consists all fixed points h of R satisfying h(1) = 1 and all
their stable sets.

6. Summary

We started with one hypothesis that the per-burst spike number of excitable
cells is coded information in a possible encoding scheme for neuron-to-neuron com-
munications. We derived a one-parameter family of interval mappings fε, phe-
nomenologically modeling the bursting-spiking behaviours of excitable cells, which
include pancreatic β-cells. We derived bifurcation criterion for the model map to
be isospiking. Scaling laws governing the isospiking intervals were obtained. A new
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renormalization operator R was used to explain these scaling laws. By this ap-
proach, the phenomenological family presents a curve in the renormalization space
Y that ends on the stable set X of the renormalization fixed point ψ0 at ε = 0.
From this renormalization point of views, other excitable and neuron cell models,
conceivably, and more importantly, the physiological kind, can be treated as ele-
ments or curves in the renormalization space Y . As such they must obey the same
universality laws as the phenomenological family does. This is the value and justi-
fication to use our phenomenological model for excitable cell modeling. Based on
the neuroencode hypothesis, we discovered that the first natural number 1 is a uni-
versal constant, in a similar sense as Feigenbaum’s. We also discovered that every
finite dimensional systems can be conjugate to a sub-system of the renormalization
operator R in a subset X0 of the stable set X of ψ0, and the conjugation can be
done in infinitely many ways. Also, we showed that there is an orbit from X0 that
is dense in X0. It is rather interesting that these three elements — neuroencode hy-
pothesis, universal number 1, superchaos — come together in one renormalization
paradigm. Each separate from the others would be less so.

Appendix A. Further Justification of the Return Map (2.2)

The slow subsystem of Eq.(2.1) with ς = 0 is a 2-dimensional system restricted
on the nullcline of the faster variable n:

0 = (n− nmin)(nmax − n)[(V − Vmax) + r1(n− nmin)]− η1(n− r2).

For η1 = 0, it consists of three planes n = nmin, n = nmax, and V = Vmax + r1(n−
nmin). For η1 > 0, these planes are perturbed to become three disjoint surfaces of
which only the Z-shaped hysteresis surface, referred to as the Z-switch, is relevant
to our consideration, see Fig.12(a). Divide the switch into three branches: the front
branch S1, the middle branch S3, and the back branch S2 as in Fig.2 and Fig.12(a).
Both S1 and S2 consist of stable equilibrium points for the faster n-equation and
the middle branch S3 unstable points. The common boundary T1 of S1 and S3, and
T2 of S2 and S3 respectively are the turning points of the Z-switch, or saddle-node
bifurcation points of the faster n-equation when C and V are viewed as parameters.
At the limit η1 = 0, S1 and S2 become half planes given by n = nmin, V < Vmax and
n = nmax, V > Vspk, respectively. The middle branch becomes a planar section.
Also for η1 = 0, the turning edges T1 = {n = nmin, V = Vmax} and T2 = {n =
nmax, V = Vspk} are lines. For a simpler presentation, we will treat the perturbed
Z-switch with η1 > 0 the same as the unperturbed one with η1 = 0. In this way, all
the components Si and Tj are linear objects and many notations introduced below
will be greatly simplified. For this simplification to work, we only need to assume
that the turning edges Tj do not touch any other part of the n-equilibrium set,
i.e., there are small openings near Ti so that all the faster n-solutions immediately
above T1 are attracted to the back branch S2 and those immediately below T2 are
attracted to the front branch S1 respectively. It is important to note that this
simplification does not affect the return map defined in (2.2).

To motivate the definition, we now describe some essential phase portrait feature
for the reduced CV dynamics on the Z-switch. On S1, Eq.(2.1) with our simplistic
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assumption η1 = 0 becomes

Ċ = ε(V − %)

V̇ = (nmax − nmin)[(V − Vmin)(V − Vmin − r3(C − Cmin)) + η2],

which is a singularly perturbed system with 0 < ε << 1. The V -nullcline

0 = (nmax − nmin)[(V − Vmin)(V − Vmin − r3(C − Cmin)) + η2]

consists of two lines V = Vmin and V = Vmin + r3(C−Cmin) for η2 = 0. For η2 > 0,
it splits into two disjoint V -shaped curves pointed sideways, see Fig.12(b). We will
ignore the left one and restrict our model to the right half plane of a vertical line
which separates the two curves. We will refer to the right half of the V -nullcline
the V -nullcline for simplicity. Equilibrium points of the horizontal branch of the V -
nullcline are asymptotically stable and those of the diagonal branch are unstable.
The knee point is a saddle-node bifurcation point of the V -equation when C is
viewed as a parameter with ε = 0. The C-nullcline is V = % which intersects the
V -nullcline at a unique point (C∗, %) for Vmin < % < Vmax, where C∗ → Ccpt as
η2 → 0. For a more transparent presentation, we will simply set C∗ = Ccpt by
assuming that the part of the V -nullcline that intersects the C-nullcline remains
unchanged for all small η2 ≥ 0. For ε > 0, (Ccpt, %) is the only equilibrium point of
the CV -system and it is a source. All nonstationary solutions converge to the source
backward in time and more importantly, they all escape the surface S1 through the
turning edged T1. More specifically, let Γ∗ denote the orbit through the point
labeled as p∗ in Fig.2. Unlike all other T1 turning points, p∗ is the only point at
which the CV -vector field is tangent to T1. Also, let Γ∗ be the orbit through the
knee point of the V -nullcline. Then for sufficiently small ε > 0, all nonstationary
solutions started below Γ∗∪Γ

∗ will be first attracted to the horizontal branch of the
V -nullcline, only to evolve slowly along the branch in the decreasing C-direction
before clearing the knee point and heading upward to the turning edge V = Vmax.
The fate for other nonstationary solutions is the same. Note that they all escape
through the half line of T1 left to the tangential turning point p∗.

When restricted to S2, the reduced CV -dynamics is relatively simple:

Ċ = ε(V − %), V̇ = −w(nmax − nmin).

That is, Vspk ∈ (Vmin, Vmax) is the lower bound of the V -component, and every
solution on S2 escapes through the turning edge T2 = {V = Vspk} in a finite time.
For simplification, we will assume that w > 0 is infinity so that solutions on S2

reach the turning edge T2 instantaneously in the fast V direction. In this way, we
will only use the essential role of the S2-dynamics that it takes points downward to
the turning edge T2, keeping other complications of S2 to minimum in defining the
return map. This simplification again does not affect the map in any significant
way.

We begin by fixing the domain and range of definition. They are completely
determined by the tangential turning point p∗ and here is why. Unlike transversal
turning points, there are two ways to start an orbit from p∗. One way follows the
CV -orbit on S1 first and continues on in the manner of defining the return map
until it hits J1, i.e., the concactation orbit has to hit J1 from T2. The junction point
is labeled as Rmin in Fig.2 and we set Rmin ⇒ 0, the left end point of the map’s
domain. The other way to associate an orbit with p∗ is to follow the faster n-flow
to S2 and then return to J1. The junction point is labeled as Rmax in Fig.2. Note
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(a) (b)

Figure 12. (a) The nV -cross section view of the Z-switch for
η1 > 0. (b) For η2 > 0, the nullcline for variable V consists of
two V -shaped curves. All light colored nullclines are outside a
neighborhood for the bursting-spiking region, thus can be dropped
from consideration.

that by our assumption on S2, Rmax is directly below p∗. We set it to Rmax ⇒ 1,
the right end point of domain. We set Ccpt ⇒ .5, the middle point of the domain.

We now explain why Π maps [0, 1] into itself. We start with the end points. For

the case of Rmin, the return point must lie above Rmin because Ċ = ε(V −%) > 0 for
V (t) ≥ Vspk > %. Also, observe that the return map is monotone increasing on the
interval [Rmin, c) and its left limit at c is Rmax. These facts combined imply Rmin is
mapped into (Rmin, Rmax). For the case of Rmax, the point is directly below p∗ and
Rmin’s defining CV -orbit Γ∗ through p∗ is horizontal, implying the first intersection
P (not return!) of Γ∗ with J1 must be above Rmax. Because the orientation of
the interval [Rmax, P ] is reversed by the CV -flow when first intersecting the half
of J1 left to c and then preserved afterwards when hitting J1 from T2, we must
have Rmin = Π(P ) < Π(Rmax) < Rmax. To explain Π maps the entire interval
[Rmin, Rmax] into itself, we only need do so for the three subintervals partitioned by
points c and Ccpt. We already demonstrated the case with [Rmin, c) above. The case
with [Ccpt, Rmax] follows the same argument as for [Rmax, P ]. In fact, Π is monotone
decreasing on [Ccpt, Rmax]. As for the case with [c, Ccpt), the interval is first taken
by the CV -flow onto (Ccpt, Rmax], reversing its orientation, and then taken by the
action of Π on [Ccpt, Rmax], reversing its orientation back again. Therefore, Π is
monotone increasing on [c, Ccpt), mapping c to Rmin.

Analytical forms more accurate than (2.2) exist for Π. However they must all
satisfy the properties (2.3–2.5) and those we now describe.

The termination point c must coincide with Ccpt = .5 when either ε = 0 or
% = 0. The order estimate for c in ε and % could be actually higher than linear as
assumed in (2.2) but a more accurate estimate matters little to our analysis.

As for the left limit at point c, Π must map a small neighborhood left to c
to a greater portion of the right half interval [.5, 1] and the graph of Π must be
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asymptotically tangent to the vertical line through c. This can be seen by a sim-
plistic argument as follows. Assume the CV -flows on n = nmin are a collection of
parabola-like curves near p∗ and are given as

V = −|C − p∗|σ + Vmax + q, with C < p∗,

where σ > 1 and q ≥ 0 parameterizes the collection with q = 0 corresponding to
the curve tangent to V = Vmax at p∗. Let C0 and C1 be points on the curve with a
given q so that V (C0) = Vspk and V (C1) = Vmax. Then we can solve explicitly as

(C0 − p
∗)σ − Vmax = q, C1 = p∗ + q1/σ.

Differentiating C1 in C0 gives

dC1

dC0
= q(1/σ)−1(p∗ − C0)

σ−1

which goes to infinity at the point C0 for which q = 0 and (p∗ − C0) = V
1/σ
max .

The order of divergence is q(1/σ)−1. This explains the choice of a smaller than 1
exponent for |x− c| in

L(x) = Π(x)− ε(`0 − `1%)− x

=
[

1− (ε(`0 − `1%) + c)
]

εb1 |%|b2
1− |x− c|1+a1ε%

εb1 |%|b2 + |x− c|
.

The factor % in the exponent accounts for the property that the further % is below
Vspk, the orbit through c becomes flatter at p∗. The other property that L(x)
must decay rapidly as x moves away from the left side of c is accounted for by
the factor εb1 |%|b2 . The property that L(x) = 0 at % = 0 is consistent with the
fact that Ccpt is a source for the CV -dynamics and the return of the upper branch
of the strong unstable manifold defines the upper bound of Π instead of Rmax.
The section wedged between the strong unstable manifold and the V -nullcline is
instantaneously blocked out for orbits through [Rmin, Ccpt] at % = 0.

As concluded above, Π is increasing in [c, .5] and decreasing in [.5, 1], that is
Ccpt = .5 is the only critical point in [c, 1] and it is a local maximum. The reason
that Π has a horizontal tangent line at Ccpt = .5 follows the same argument as
above for the relationship between points C0 and C1 near p∗ except that C0 is
treated as dependent on C1 in the case. The constraint 0 < `2 < 1 implies that
Π(1) = e−b3/ε(1 − `3) > 0, consistent with the fact that by following the defining
CV - and nV -orbits for Π, point Rmax returns to J1 above Rmin.

One shortcoming of the analytic model (2.2) is the absence of the property that
at % = 0, the derivative of Π should also have a limiting infinity at .5− because Ccpt

is a source for the CV -equations and the left limit .5− corresponds to the upper
strong unstable manifold of the source. In fact, Π(x) = O(|x− .5|1−ε/λ) for x near
.5, where constant λ > 0 is one eigenvalue of the linearization of the CV -vector field
at the source Ccpt assuming ε is the other one. The same comment also applies to
the right limit .5+. We could make modifications to accommodate this property
but the complications are not worthwhile and unnecessary for this paper.
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