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Biological control does not imply paradox
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Abstract

Is the classical predator–prey theory inherently pathological? Defenders of the theory are losing ground
in the debate. We will demonstrate that detractors’ main argument is based on a faulty model, and that the
conceptual and predictive bases of the theory are fundamentally sound.
� 2007 Published by Elsevier Inc.
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Biological control is to introduce natural predators or parasites to ecosystems for pest control.
It works when the pest populations are either eradicated or kept at a stable and low density equi-
librium or low density cycle. There are numerous examples of successful biological control. A par-
adox was raised in [18] when a classical predator–prey model was used to solve the biological
control problem. The model assumes the logistic growth for the prey (the pest), the Holling Type
II predation for the predator (the control agent), and a constant per-capita death rate of the pred-
ator. Such a model cannot have a stable and arbitrarily low prey density equilibrium [21]. At-
tempts have been made to find alternative models that can exhibit controlled stable and low
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density states [4,6]. One proposal is to replace the prey-dependent Holling Type II predation form
[14] by the ratio-dependent functional form [4]. It has been controversial ever since largely because
the ratio-dependent form lacks a mechanistic derivation at a level comparable to Holling’s work
[5,1,3]. Nevertheless it has been steadily gaining acceptance in the field of population ecology
[4,2,16,8,15]. The key justification by its proponents lies in a perceived predictive attribute that
the ratio-dependent model is able to phenomenologically produce arbitrarily small and stable equi-
librium for both predator and prey [4]. Hence, ‘in a biological sense, it is the prey-dependent mod-
el that shows pathological behavior’ [2]. Without its predictive power, the usefulness and
consequently the validity of the classical theory are seriously diminished. Traditionalists are losing
ground in the debate and the predator–prey research is seemingly back to the days prior to Hol-
ling’s 1959 seminal work on predation.

We argue that the suggestion that the classical theory is in a fundamental crisis is unfounded for
a reason that its detractors’ argument is based on a faulty model. The root of problem lies in the
overly simplistic assumption that the predator dies at a constant per-capita rate. In theory it is in
consistent with Verhulst’s logistic modelling principle [24,17,25] that species per-capita death rate
should be density dependent. As a consequence it produces a vertical per-capita nullcline for the
predator. It in turn leads to an absurdity that if one can fix, at least conceptually, the prey density
at a level greater than the nullcline, the predator population would grow exponentially to infinity.
The fundamental contribution of Lotka, Volterra, and Verhulst from the first quarter of last cen-
tury taught us that one should always take into account the effect of intraspecific interference at
high density levels unless such a consideration is justifiably not warranted. This complete version
of the classical theory was used by Rosensweig [19, pp. 564–565] to settle yet another well-known
‘paradox’ – the paradox of enrichment [11,21]. He called such predators ‘squabbling’. The logistic
predator model can exhibit enrichment paradox as he originally raised in [21], not as a case
against the classical theory, rather as a case for caution out of a biologically counterintuitive
yet mathematical valid principle, though not biologically as universal as the first impression his
original work was likely to leave. More specifically, for a large squabbling coefficient, the enrich-
ment paradox phenomenon does not occur, thus accommodating the class of ecosystems for
which enrichment does not lead to destabilizing cycles. This latter part of his work from [19] is
commonly overlooked, especially when the enrichment paradox is cited in the literature as an-
other pathology of the classical theory, in addition to the biological control paradox.

The difference between the exponential predator–prey model, which the proponents of ratio-
dependent predation use to question the mechanistic theory, and the logistic predator–prey mod-
el, which they overlooked, cannot be greater [7]. For the former, there can be no more than one
non-trivial equilibrium which cannot be small for both predator and prey and stable at the same
time. For the latter, there can be 1, 2, and 3 non-trivial equilibrium points, with the 2-equilibrium
state being a bifurcation state between the 1-equilibrium and 3-equilibrium states. If there is only
one equilibrium point, it can be stable independent of where it is. If there are three, then the right
most and the left most equilibrium points can be stable, one sits on each side of the prey nullcline
hump. All that the stability requires is to have a sufficiently large reproductive ratio of the pred-
ator over the prey (the predator-to-prey prolific ratio). Furthermore a small cycle can be born
from the left most equilibrium point if the point is to the left of the prey nullcline hump and
the ratio decreases and crosses a Hopf bifurcation point. The amplitude of the limit cycle increases
with decrease in the ratio, giving way to the destabilizing regime of ‘enrichment paradox’.
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See Appendixes A and B, and Fig. 1(a). These predictions are perfectly consistent with what is
expected for an effective biological control. In addition, when the left most equilibrium is near
the origin, the prey density is in the order of d/[c(b � hd)], and the predator density is in the order
of r/c, where r is the intrinsic prey growth rate, b is predator’s birth-to-consumption ratio, c is
predator’s rate of discovery, d is predator’s intrinsic death rate, h is predator’s handling time,
all measured in per-capita rate. As an example, a high predator discovery rate, c, can result in
low equilibrium density for both species. Other combinations of the parameters can result in
the same phenomenon of low density and stable states. Those are self-evident from the formula.
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Fig. 1. (a) Parameter values for Eq. (2) � = 100, b = 0.05, d = 0.2, r = 0.2. The solution starts near the scaled prey
capacity (1, 0). (b) Same as (a) except that a = 0.3 in Eq. (5).
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The exponential predator–prey model is a poor choice for biology and for control. It is a rea-
sonable model only if the prey out-reproduces the predator, presumably the case for many natural
systems. It is not an appropriate model if the predator must dominate the prey as in pest control
situations we typically envision. The logistic predator–prey model on the other hand is the basis
for both. With respect to control in practice, management strategies can be modelled and incor-
porated into the model mechanistically. One can supply a system with a constant influx of pred-
ator, or artificially sustain a high level of predator density by supplying it with an alternative food
source. In the latter case, assuming the predator consumes the pest prey and the alternative prey
or nutrient indiscriminately, then it can be shown that for high enough densities of the alternative
prey the per-capita nullclines of the pest prey and the controlling predator do not intersect. In-
stead, a globally attracting, non-vanishing, predator-only equilibrium appears that is supported
by the alternative prey with the pest prey extinct. See Appendix C and Fig. 1(b). In a true control
sense the predator can be eliminated, if desired, by withdrawing the alternative prey once the pest
prey is eradicated.

In conclusion, the classical theory is not intrinsically pathological. Its conceptual and predictive
bases remain fundamentally sound. Justification for replacing Holling’s Type II predation form in
predator–prey modelling by ad hoc and phenomenological forms cannot be made on the ground
that it leads to paradoxes.
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Appendix A. The logistic predator–prey model

The classical predator–prey model based on the logistic growth principle and Holling’s preda-
tion theory is as follows:
_X ¼ X r 1� X
K

� �
� pY

H þ X

� �
;

_Y ¼ Y
bpX

H þ X
� ðd þ sY Þ

� �
;

ð1Þ
where r is prey’s intrinsic growth rate, K is prey’s carrying capacity, p is predator’s per-capita sat-
uration capture rate, H is the semi-saturation density, b is predator’s birth-to-consumption ratio,
d is predator’s intrinsic death rate, s is predator’s intraspecific death rate coefficient, the‘squab-
bling’ coefficient. Also p = 1/h, H = 1/(ch) with h being predator’s per-prey handling time and
c predator’s per-capita prey-discovery rate.

Using the following rescaling [10] for the variables:
x ¼ X=K; y ¼ Y =ðrK=pÞ; t :¼ bpt
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and parameters
� ¼ bp=r; b ¼ H=K; d ¼ d=bp; r ¼ rKs=p
we get the following dimensionless form:
� _x ¼ x 1� x� y
bþ x

� �
;

_y ¼ y
x

bþ x
� ðdþ ryÞ

� �
.

ð2Þ
For r > 0, predator’s per-capita nullcline has the same predation disc form: y = [x/(b + x) � d]/r,
Fig. 1(a). It is monotonically increasing in x with saturation (1 � d)/r. It represents the prey-sup-
ported carrying capacity for the predator. One of the important features of this form is that it can
segregate the system into different time scales. Specifically, if the predator-to-prey prolific ratio � is
sufficiently large, then the temporal change in x is negligible if y is not near its capacity nullcline
state and becomes significant if and only if y is so. Therefore solutions will first quickly converge
to the y-capacity nullcline and then slowly develop along the capacity curve to the non-trivial
equilibrium, wherever it locates. If on the other hand � is small, the time scales for the species
are reversed: x changes faster than y does. In such a case solutions congregate near the x-null-
clines. It matters little whether or not the per-capita y-nullcline is vertical or monotonically
increasing in x. Consequently, the exponential model works as well as the logistic model.

The same results apply to models based on various Holling Type II expanded functional forms
[9,23] for which predator’s intraspecific interference is considered in the context of spacial inter-
ference of predation. All these forms will generate a non-vertical prey-supported capacity nullcline
for the predator whether or not the death rate coefficient, s, of the predator is zero. Consequently,
the non-trivial equilibrium point near the origin is always generically stable for sufficiently large
predator-to-prey prolific parameter �.

On the magnitude of the xy-equilibrium point for the logistic predator–prey model above, we
see that when the equilibrium is near the origin it is near both axes. Specifically, the x-intercept of
the y-nullcline is x* = bd/(1 � d), and the y-intercept of the x-nullcline is y* = b. In the dimen-
sional form, the corresponding equilibrium point ðX ; Y Þ is approximately X � Kx� ¼ d=½cðb�
hdÞ� and Y � rKy�=p ¼ r=c. This approximation is better if the squabbling coefficient s is small
since the y-nullcline will become more vertical.
Appendix B. Proof of stability

The stability of the equilibrium point can be established alternatively. Let f and g be the right
hand of the x-equation and y-equation respective in Eq. (2) and let
� _u ¼ f1uþ f2v;

_v ¼ g1uþ g2v;
ð3Þ
where f1 = of/ox evaluated at an/the xy-equilibrium point and so on. The corresponding u-null-
cline f1u + f2v = 0 is the tangent line to the humped x-nullcline at the equilibrium point. Thus



B. Deng et al. / Mathematical Biosciences 208 (2007) 26–32 31
we always have f2 < 0, and f1 > 0 if the equilibrium point is left of the hump and f1 < 0 if it is right
of the hump. Similarly, g1 > 0, g2 < 0 no matter where the equilibrium is. These conditions imply
that the equilibrium point right of the hump is always stable. For the equilibrium point left of the
hump and closest to the origin, the slope of the v-nullcline is greater than the slope of the u-null-
cline: �g1/g2 > �f1/f2. Using this property it is straightforward to show that for sufficiently large �
the eigenvalues of Eq. (3) always have a negative real part. Moreover, by decreasing � the eigen-
values will cross the imaginary axis so that the stable equilibrium point will give way to a stable
limit cycle via Hopf bifurcation. This result is not model-specific. It applies to systems with qual-
itatively similar per-capita nullclines of prey and predator.

We note that the stabilizing effect of such predator interference has been fully explored for dis-
crete-time models, the so-called Nicholson–Bailey type for biological control as well. See [12], also
[22,13,20] for the modelling of intraspecific interference functional forms.
Appendix C. Biological control with alternative prey

Let Z be the alternative prey of predator Y, and assume Y feeds on X, Z indiscriminately. Then
Holling’s disc functions for the per-predator capture rates are cX/(1 + chX + czhzZ) on X and
czZ/(1 + chX + czhzZ) on Z, with cz, hz being predator’s discovery rate and handling time on Z
respectively. The per-capita birth rate is bcX/(1 + chX + czhzZ) + bzczZ/(1 + chX + czhzZ) with
bz being predator’s birth-to-consumption ratio on Z. Assuming Z is maintained at a constant le-
vel, then with proper regroup of parameters Eq. (1) takes the following form:
_X ¼ X r 1� X
K

� �
� pY

H þ X

� �
;

_Y ¼ Y
Aþ bpX
H þ X

� ðd þ sY Þ
� �

.

ð4Þ
It is the same form as Eq. (1) except that the composition of H is expanded accordingly and that
the inclusion of A is due to the constant supply from prey Z. TheY-intercept of the per-capita Y-
nullcline is Y ¼ ðA=H � dÞ=s. For A/H � d > 0, a Y-equilibrium point ð0; Y Þ is born. For
Y ¼ ðA=H � dÞ=s > r=c, the Y-intercept of the per-capita prey nullcline, the ð0; Y Þ equilibrium
is always stable. Under the same condition and for small enough s, the per-capita nullclines for
both prey and predator do not intersect, thus all solutions converge to ð0; Y Þ, eliminating the prey.
Also, using the same scalings as for Eq. (2), the equations are cast in the same form except for the
y-equation:
_y ¼ y
aþ x
bþ x

� ðdþ ryÞ
� �

; ð5Þ
with a = A/(bpK).
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