
OUTBREAK-CRASH DYNAMICS AND CHAOTIC

INTERACTIONS OF COMPETITION, PREDATION,

PROLIFICACY IN SPECIALIST FOOD WEBS

BRIAN BOCKELMAN, BO DENG, ELIZABETH GREEN, GWENDOLEN HINES, LESLIE

LIPPITT, AND JASON SHERMAN

Abstract. A basic food web of 4 species is considered, of which there is a

bottom prey X, two predators Y, Z on X, and a super predator W only on

Y . The study concerns with classifying long-term trophic dynamics and short-
term population outbreaks/crashes in terms of species characteristics in com-
petitiveness, predatory efficiency, and reproductive prolificacy relative to the

web. It also concerns with the interplay between mathematics and ecology in
developing a set of holistic principles complementary to the technical method of
singular orbit analysis which we use. The main finding is that enhancement in

Z’s reproductive prolificity alone can lead to long-term trophic destabilization
from equilibrium to cycle to chaos, and short-term outbreak/crash phenomena

in the web.

1. Introduction

Competition, predation, and proliferation are fundamental forces that drive eco-
logical systems. Understanding how these forces come to shape basic food webs
that contain some minimum numbers of species is no doubt a necessary step to
unravel ecocomplexity.

When isolated, each factor is known to play a unique role in population dy-
namics. With one predator and one prey, Rosenzweig’s Enrichment Paradox ([25])
leads to population destabilization. With one prey and two predator, the coexist-
ing states are prescribed by the Competition Exclusion Principle ([14]). With non-
overlapping population dynamics, enhancement in prolificity leads to the phenome-
non of period-doubling to chaos ([18]). By some much less understood mechanisms
chaotic dynamics occurs in 3-trophic food chains and polyphagous predator-prey
webs ([13, 11]). The purpose of this paper is to give a comprehensive and unified
treatment to the interplay of these factors in the context of a basic food web model.

This is a theoretical attempt. Selection of generic models is critical to the plau-
sibility of the result. Although ecological systems follow few laws and rules that
are subject to first principle derivation, there are two well-accepted modelling prin-
ciples on which our models will be solely based. Like others before us, we will
use Verhulst’s logistic growth principle ([28, 17, 29]) for the bottom prey, denoted
by X in density, by assuming that X’s per-capita birth rate is constant b0, and
its per-capita death rate is quasi linear: d + d0X with d, d0 > 0, which is likely
the result of environmental limitations, interspecific competition, to name just two
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situations. The rate balance equation gives rise to prey’s per-capita growth rate
equation: 1

X
dX
dt

= b0 − d − d0X. With the maximum per-capital growth rate
r = b0−d and the carrying capacity K = r/d0, we have the standard logistic model
dX
dt

= rX(1− X
K
) for the prey.

The second modelling principle is based on Holling’s seminal work on species
predation ([12]). In his original set up, let T be a given period of time, let Y be the
population density of a predator of the preyX, and letXT be the captured prey unit
per unit predator during the T period of time. Holling identified two important
factors intrinsic to most predations: predator’s handling time Th for capturing,
killing, consuming, and digesting one unit prey; and the discovery probability rate
a which is the product of the search rate s and the probability A of finding a
prey. Then, the following simple relations must hold: the time left for searching
T − ThXT , and the balance equation

XT = a× (T − ThXT )×X.

Solving the last equation gives rise to

XT =
aTX

1 + aThX
and

XT

T
=

aX

1 + aThX
,

with the last being the per-capita predation rate for the predator. Imposing further
assumptions on Th and a lead to more specific forms. Assuming Th = 0 results in
Holling Type-I predation form aX. This zero handling time assumption is not
completely unrealistic. It can be used as a good approximation for, e.g., filter
feeders ([24]) as well as parasitoid predation. Assuming a constant discovery rate a
results in the most common form of Holling Type-II. Assuming a density dependent
discovery rate a = aXn, n > 0 results in the Holling Type-III form, which, e.g., was
used for birds-insects predation ([16]). In this paper, we will only use the Holling
Type-II form, the most common form of the three, in the following equivalent
format

aX

1 + aThX
=

pX

H +X
with p =

1

Th
, H =

1

aTh
.

Here p represents the saturation (maximum) predation rate when X is abundant
(X →∞), and H the half-saturation density which when X = H the predation is
half the saturation rate p.

Hence, the simplest predator-prey web model based on these two modelling prin-
ciple is the following equation











dX

dt
= rX

(

1−
X

K

)

−
pX

H +X
Y

dY

dt
=

bpX

H +X
Y − dY ,

where bpX
H+X

Y is the predator’s birth rate with b being the birth-to-consumption
ratio. Except for the prey X, we will only assume constant per-capita death rates
for all predators, instead of Verhulst’s logistic for a reason to be explained later. The
long term behaviors of this model are well-understood (see [25, 18]). It can either
have a global stable equilibrium or a global stable limit cycle. The Enrichment
Paradox states that increasing prey’s carrying capacity K can drive the system
from a steady equilibrium state to a limit cycle state. We will call Y a weak
predator if the XY asymptotic state is the coexisting equilibrium and an efficient
one if the asymptotic state is the limiting cycle.
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A basic food web with two predators competing for the same prey but otherwise
free of other forms of competition can then be modelled as follows:



























dX

dt
= rX

(

1−
X

K

)

−
p1X

H1 +X
Y −

p2X

H2 +X
Z

dY

dt
=

b1p1X

H1 +X
Y − d1Y

dZ

dt
=

b2p2X

H2 +X
Z − d2Z.

In this case, predation is an indirect form of competition, and Holling’s functional
forms play the dual roles of both predation and competition. A fair amount is
known about this system but by no means complete. Competitor Z is said to be
competitive if the XY -attractor (either the stable equilibrium state or the stable
limit cycle of the XY -predator-prey system with Z = 0) is unstable with respect
to the full XY Z-web. Z is said to be dominant if its XZ-attractor is globally
attracting for the XY Z-web. Extend similar definitions to Y . Then the following
three alternatives are known so far: (i) If both Y and Z are weak predators, then
either Y or Z is dominant and the other must die out; (ii) If both are competitive
with at least one being efficient, then they will coexist, not in the form of a steady
state but only known in the form of a limit cycle, see [14, 30, 15]. These results are
referred to as the Competition Exclusion Principle.

A basic tritrophic food chain model takes the following form due to Rosenzweig-
MacArthur ([26])



























dX

dt
= rX

(

1−
X

K

)

−
p1X

H1 +X
Y

dY

dt
=

b1p1X

H1 +X
Y − d1Y −

p3Y

H3 + Y
W

dW

dt
=

b3p3Y

H3 + Y
W − d3W,

with the addition of a top-predatorW above Y . Though not completely understood,
substantial progress has been made recently ([5, 6, 7, 8]). The following dynamics
are known to exist. (i) If Y is a weak predator, then either a coexisting stable
steady state or a coexisting limit cycle is possible ([20]). The limit cycle is referred
to as X-slow with less variation in X than Y and W . (ii) If Y is efficient, (i) may
still apply. In addition, it is also possible to have a so-called XY -fast limit cycle
with less variation in W than X and Y . More distinctively, when both Y and W
are efficient, it is possible to have 4 different types of chaotic attractors ([5, 6, 7, 8])
and extremely complex bifurcations from one type to another.

We consider in this paper a web consisting of an XYW -chain and a mid-level
competing predator Z which (1) competes with Y for the same prey X according
to Holling Type-II predation, (2) does not engage in any other form of competition
with Y , (3) is not a prey of W . It can also be viewed as a competing web XY Z
with the addition of the top-predator W to Y . It contains the minimum number of
species with which we can study the combined effects of predation and competition.
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Such a system is modelled by equations below:

(1)











































dX

dt
= rX

(

1−
X

K

)

−
p1X

H1 +X
Y −

p2X

H2 +X
Z

dY

dt
=

b1p1X

H1 +X
Y − d1Y −

p3Y

H3 + Y
W

dZ

dt
=

b2p2X

H2 +X
Z − d2Z

dW

dt
=

b3p3Y

H3 + Y
W − d3W

Appendix A gives a formal and generalized treatment to the concepts of chain, web,
weak predation, and competitiveness in terms of system dynamics.

The relative competitiveness between Y and Z is determined by their predation
characteristics on X in terms of weak and efficient predation assumption. Another
important factor determining patterns of their interactions is the ratio of their max-
imum per-capita growth rates. We refer to the ratio as the prolificacy parameter.
For example, the X-to-Y ratio is the XY -prolificacy. This leads to a basic as-
sumption we will adopt for this paper. That is, the chain prolificacy diversification
assumption for all predator-prey chains regardless of length: in the XY Z-web the
per-capita maximum reproductive rate for X is much greater than those of Y,Z,
and along the XYW -chain the per-capita maximum reproductive rates for X,Y,W
range from high, moderate, to low. In contrast, there should not be an obvious rate
preference for the competing Y,Z. However, if the prolificity of Z is greater than
that of Y , then Z should be viewed as becoming more competitive against Y .

The main question we are interested in can be posted from two different angles.
From a view point of the XYW chain, we ask how its dynamics are affected by
including a competing predator Z at the mid-lateral level? Rephrasing the same
question from an XY Z web perspective, how do web dynamics change when a
top-predator W is introduced? What roles do efficiency, competitiveness, and pro-
lificacy play in the full web dynamics? We will exam in this paper a simpler case
when both Y and Z are weak competitors in the XY Z-web for which either Y or
Z must die out according to the Competition Exclusion Principle. By imposing W
on Y , we expect that the competitive edge of Z is enhanced. Therefore, if Y is
not XY Z-competitive, it should remain so and Z will drive out the 2 species YW
chain with the XZ equilibrium remaining. However, if Z is not XY Z-competitive
(i.e., it must die out in the XY Z environment since both Y and Z are weak), then
under what conditions does Z become XY ZW -competitive, and in what dynamical
forms can all species coexist? Since Y is weak, the XYW -chain dynamics can only
be steady state or an X-slow limit cycle. Can a weak and XY Z-noncompetitive
predator Z break in and survive in the expanded XY ZW community? If yes,
could the coexistence state be an equilibrium, which the Competition Exclusion
Principle prohibits for the XY Z web? Must it be a limit cycle? Would it permit
structures more complex than steady states and limit cycles? Concerning short-
term cyclic dynamics, can it have periods of outbreaks and crashes? How low can
the populations crash to?

Some main findings are summarized as follows: (a) Top-predation on a single
predator in an exclusionary competing web always creates coexisting space for the
other predator to be competitive; (b) Top-predatory efficiency and the competitor-
to-midprey prolificacy enhancement destabilize coexisting equilibrium state into
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cyclic and chaotic states; (c) Outbreak/crash dynamics are the result of prolificity
diversification between week competitors or prolificity diversification between effi-
cient predator and prey. More specifically,

(1) If all the predators Y,Z,W are respectively weak, the full system can have
an attracting XY ZW equilibrium state if the ZY -prolificacy, ε1, is small,
or an attracting XY ZW limit cycle if ε1 is moderate, or a chaotic attractor
if ε1 is large. All these structures are critically dependent of the presence
of W . Without it, the dynamics is reduced to the XYW -equilibrium with
Z extinct.

(2) If Y,Z are weak but W efficient, the full system for small ε1 can have two
coexisting XY ZW attractors, one is an equilibrium state, the other a limit
cycle, each has its own basin of attraction.

(3) For the same predator profiles as (2) above, the full system undergoes a
sequence of bifurcations in XY ZW attractors with increasing ε1: from
steady state to limit cycle and to chaotic attractor. The type of chaotic
attractors in this case is significantly different from the case of (1) in that
it has a greater dynamical variability.

The principle of predation inclusion and the route of prolificity enhancement to
chaos are unique. They do not have lower dimensional analogues in systems of
predator-prey, prey-predator-superpredator, and prey-predators/competitors. The
principle of prolificacy outbreak/crash is ubiquitous for all system. Long-term dy-
namics in terms of equilibrium, limit cycle, chaos, and short-term phenomena in
terms of cyclic outbreaks, crashes are recurrent throughout all trophic levels when
viewed according to our classification scheme. Thus we argue that all these newly
discovered principles should become part of our understanding on population dy-
namics side by side with other well-known principles such as the Enrichment Para-
dox, the Competition Exclusion Principle, to form a basis for practical prediction.
For example, chaos is invariably linked to predation, competition, and prolificacy
enhancement, whereas equilibrium state is strongly associated with weakness in
all. Also, population outbreaks and crashes are strongly linked to diverging growth
rates.

To our best knowledge dynamics of combined chain predation and web compe-
tition have not been systematically analyzed in the literature. There are a few
understandable reasons. First, systems of dimensions higher than 3 are formida-
ble mathematically, and our XY Z,XYW,XY ZW equations are no exceptions.
Second, the full XY ZW system contains 14 parameters, which can become un-
manageable if an effective classification scheme is not in place. Because of the lack
of such a scheme or as a result of it, we did not have a mathematically concise,
ecologically meaningful language to formulate questions or answers. We believe we
have succeeded in all these aspects. We developed a minimum number of dynam-
ically defined ecological concepts to classify most if not all dynamical behaviors
of the models. These concepts are: weak and efficient predation, competitive and
noncompetitive competition, trophic prolificacy for growth. We will demonstrate
how these concepts are used to frame trophic interactions and partition the 14 pa-
rameter space accordingly. We will carry out our analysis not only mathematically,
but more importantly, we will do so by developing a set of equivalent, holistic, prac-
ticable principles and rules and using them complementarily to the mathematical
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analysis. The effectiveness of this approach should become more apparent as more
non-aggregatable species are incorporated into a larger web.

The paper is organized as follows. In Sec.2 we will scale the model to a non-
dimensional system for which the prolificacy parameters of all species against Y
become exactly the time scales for the dimensionless system. We will summarize
some important results in terms of numerical simulations in Sec.3. The remaining
sections are more analytical. We will derive in these sections the main results both
mathematically and holistically. More specifically, Sec.4 gives an introduction to the
methodology of singular orbit analysis, a survey over other methods, and a catalog
of mathematically-based ecological principles that will be used later. Sec.5 and
Sec.6 summarize some important known results for the competing XY Z-web and
the XYW -chain that will not only provide a platform to build the full XY ZW -
web results but also contrast dynamical behaviors of the full system against its
parts. Sec.7 is devoted to classify, analyze, interpret the main results for the full
system. Last we will end the paper with a discussion on the conclusions and future
directions in Sec.8.

2. Weak, Competitive Predators and Chain Prolificacy

As a necessary first step of mathematical analysis, we non-dimensionalize Eq.(1)
so that the scaled system contains a minimum number of parameters for simpler
manipulation, for uncovering equivalent dynamical behaviors with changes in dif-
ferent dimensional parameters. Using the same scaling ideas of [5] and the following
specific substitutions for variables and parameters

(2)

t→ b1p1t, x =
X

K
, y =

Y

Y0
, z =

Z

Z0
, w =

W

W0

Y0 =
rK

p1
, Z0 =

rK

p2
, W0 =

b1p1Y0

p3

ζ =
b1p1

r
, ε1 =

b2p2

b3p3
, ε2 =

b3p3

b1p1

β1 =
H1

K
, β2 =

H2

K
, β3 =

H3

Y0

δ1 =
d1

b1p1
, δ2 =

d2

b2p2
, δ3 =

d3

b3p3
,

Eq.(1) is changed to this dimensionless form:

(3)















































ζ
dx

dt
= x

(

1− x−
y

β1 + x
−

z

β2 + x

)

:= xf(x, y, z)

dy

dt
= y

(

x

β1 + x
−

w

β3 + y
− δ1

)

:= yg(x, y, w)

dz

dt
= ε1z

(

x

β2 + x
− δ2

)

:= zh(x)

dw

dt
= ε2w

(

y

β3 + y
− δ3

)

:= wk(y)

The choice of these parameters can be explained as follows. The prey density X
is scaled against its carrying capacity K, leaving x a dimensionless scalar. The
predator is scaled against Y0, which can be viewed as the predation carrying capac-
ity of the predator. The choice of Y0 is motivated by the relation p1Y0 = rK, i.e.,
the rate of capture by Y0, p1Y0, is equal to the capacity growth of the prey, rK.
The scaling, y = Y

Y0
gives y a scalar dimension. The scaling of the competitor Z is
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Table 1. Trophic Characteristic in Reproductive Rate Ratios

Max. Reproductive Rate Ratios

Food Chains ζ =
b1p1

r
ε2 =

b3p3

b1p1

plant-herbivore-carnivore small (¿ 1) moderate or small
plankton-zooplankton-fish small small
resource-host-parasitoid small small to large
tree-insect-bird large small
prey-predator-virous – large
. . . . . . . . .

done with a similar motivation. The top-predator is scaled against it’s predation
carrying capacity, W0, at which p3W0 = b1p1Y0 with b1p1 the maximum growth
rate and Y0 the Y -predation capacity.

The remaining parameters need to be explained a bit more as well. Parameters
β1, β2, and β3 are the ratios between the semi-saturation constant of the respective
predator versus the carrying capacity of the respective prey. They are dimensionless
semi-saturation constants in the scaled system (3). Because a decent predator is
expected to reach half of its maximum predation rate before its prey reaches its
capacity, nature provides us with a reasonable interval: 0 < βi < 1, which we
will use for this paper unless said otherwise. The parameters δ1, δ2, and δ3 are
relative death rates, each is the ratio of a respective predator’s death rate to its
maximum birth rate. As a necessary condition for species survival, the predator’s
death rate must less than its maximum reproductive rate. Therefore we make a
default assumption that 0 < δi < 1 for nontriviality.

The remaining parameters, 1/ζ, ε1, ε2, are relative maximum growth rates of
X,Z,W to Y , i.e., the XY -prolificacy, ZY -prolificacy, and the WY -prolificacy
respectively. By the theory of allometry ([2, 3]), these ratios correlate reciprocally
well with the 4th roots of the ratios of X,Z,W ’s body masses to that of Y ’s. Thus
they may be of order 1 when predator’s and prey’s body masses are comparable
or of smaller order if, as in plankton-zooplankton-fish, and most plant-herbivore-
carnivore chains, the body masses are progressively becoming heavier in magnitude
so that ζ and ε2 are small parameters. In any case, a given web will find its
corresponding prolificacy characteristics in parameters ζ, εi which are now isolated
in plain view in Eq.(3). Table 1 lists some examples in terms of their trophic
reproductive rate ratios.

For this paper, we will assume the “chain prolificacy hypothesis” (previously
referred to as “trophic time diversification hypothesis” in [20, 5]): the maximum
per-capita growth rate decreases from the bottom to the top along a food chain.
And we will further assume the difference between the rates is drastic:

0¿ b3p3 ¿ b1p1 ¿ r, equivalently, 0 < ζ ¿ 1, 0 < ε2 ¿ 1,

referred to as the chain prolificacy diversification. For the ZY -prolificacy parameter
ε1, it is not obvious that the prolificacy hypothesis should or should not apply since
Y,Z are competitors rather than chain predators. It may range from very small to
very large. We will exam all the cases.

Referring to Sec.4 for justification, we state here the definitions of predatory
efficiencies in two progressive levels. With respect to its minimum food chain XY ,
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predator Y is said to be predatory efficient if

(4) β1 < 1.

It simply means it can reach half of the maximum predation rate at a prey density
smaller than its carrying capacity. It is said to be efficient if it is predatory efficient
and 0 < β1δ1/(1−δ1) < (1−β1)/2, which automatically implies predatory efficiency
β1 < 1. It is said to be weak if it is not efficient:

(5)
β1δ1
1− δ1

>
1− β1

2
.

It is said to be predatory weak if it is not predatory efficient. The same definitions
extend to Z. Notice that the last inequality holds either β1 is too big or δ1 is
too large. In practical terms we already know that greater β1 means greater semi-
saturation constant H1 relative to X’s carrying capacity K, and the predator needs
a greater amount of prey to reach half of its maximum predation rate. For δ1 =
d1/(b1p1) to be large, the mortality rate d1 may be relatively too high, or the
maximum predation rate p1 is too low, or the reproduction-to-consumption ratio
b1 is too low, or a combination of all. All such conditions are associated with
inefficiency on the predator part or/and deficiency on the environment when K
is small. Although an explicit expression as (5) is not available at this point for
predator W , we know qualitatively that W is predatory efficient if β3 is sufficiently
small, and weak if β3δ3/(1 − δ3) is somewhat too large. It is associated with
inefficiency and deficiency for W in the same ecological sense.

Referring to Sec.5 for derivation, we state here the definition of competitiveness.
Competitor Z is said to be competitive if the irreducible XY -attractor is asymp-
totically unstable with respect to the food web XY Z. If the XY attractor is an
equilibrium point, this definition is equivalent to

h(xp) > 0,

with (xp, yp) denoting the equilibrium XY equilibrium point. If the XY attractor
is a limit cycle (xc(t), yc(t)), then the definition is equivalent to

(6)

∫ Tc

0

h(xc(t))dt > 0, with Tc the period of the cycle.

Generalizations of these criteria to any ecosystem as well as to attractors which are
not equilibrium nor periodic are given in Appendix A. In the case of a weak predator
Y (i.e. the XY irreducible attractor is an equilibrium), the Z-competitiveness
h(xp) > 0 is equivalent to this expression

β1δ1
1− δ1

>
β2δ2
1− δ2

,

deferring its derivation to Sec.4. It holds if β2 or δ2 or both are small relative
to β1, δ1 in the sense above. In ecological terms competitor Z must increase its
efficiency as we noted above for the meanings of β2 and δ2. The same qualitative
statement holds if the XY attractor is a limit cycle although a precise expression is
not all available at this point since we usually do not have an analytical expression

for limit cycles or the integral
∫ Tc

0
h(xc(t))dt is often transcendental.
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Figure 1. (a) In the absence of top-predator w, a none xy-
competitive z dies out in a y-weak, z-weak xyz-web. Initial values:
x0 = 0.35, y0 = 0.3, z0 = 0.18, w0 = 0. The parameter values are
ζ = 0.01, ε1 = 0.01, ε2 = 0.01, β1 = 0.35, β2 = 0.51, β3 = 0.3, δ1 =
0.6, δ2 = 0.57, δ3 = 0.3. (b) With z = 0, w0 = 0.05, the system
settles down to an xyw-cycle. (c) With the addition of z to the
same xyw-system, all 4 species tend to a coexisting equilibrium.
(d) But with ε1 = 0.065. The system settles down to an xyzw-
cycle.
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Figure 2. With parameter values ζ = 0.1, ε1 = 0.1, ε2 =
0.085, β1 = 0.3, β2 = 0.57, β3 = 0.2, δ1 = 0.6, δ2 = 0.52, δ3 = 0.54,
the dynamics is a chaotic attractor, projected to the yzw space in
(a). The surface is part of the y-nullcline, the red curve on the
surface is part of the z-nullcline, and the light green curve on the
surface is part of the w-nullcline. The yzw-space shown is also a
part of the x-nullcline. These objects are to be explained in sub-
sequent sections. (b) The time series of the attractor. (c) With
the absence of competitor z (z = 0), the xyw asymptotic state
is an equilibrium point because w is also weak. The creation of
this chaos is through the enhancement of the zy-prolificacy: from
steady state for small ε1, to limit cycles via a Hopf bifurcation by
increasing ε1 modestly, the same phenomenon as in Fig.1(d), and
to chaos by further increasing ε1.
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Figure 3. With y and z weak, but w efficient, the system may
settle down on either a stable limit cycle or a stable equilibrium
point, depending on the initial amount of z. (a) It is attracted
to a cycle with an initial value z = 0.02 and parameter values
ζ = 0.01, ε1 = 0.005, ε2 = 0.01, β1 = 0.35, β2 = 0.51, β3 = 0.3, δ1 =
0.6, δ2 = 0.62, δ3 = 0.25. (b) It is attracted to an equilibrium with
a larger initial value z = 0.15.

3. Numerical Results

We now include a short section that will serve as a numerical simulation overview
for some of the main results. All simulations are done on Matlab, using the numeri-
cal solver ode15s with double precision and BDF (backward differentiation formula)
option.

Figure 1 demonstrates the phenomenon that top-predation over a dominating
competitor can help an extinction-bound competitor compete. Without w, z dies
out. With the addition of w > 0, it can coexist with others. It does so at coex-
isting equilibria for small zy-prolificacy ε1 and at limit cycles as the zy-prolificacy
improves via Hopf bifurcation, that the stable coexistence equilibrium becomes un-
stable, giving way to a cycle in a small neighborhood of the unstable equilibrium.
Explaining it holistically, the addition of w increases y’s death rate in a nonlinear
fashing, hence decreases its competitive edge against z, and eliminates its total
domination over z. Also, increasing z’s competitiveness by increasing its in pro-
lificity against y takes effect only in the presence of w, and destabilizes the dynamics
from equilibrium to cycle.

Improving the zy-prolificacy further the system can be kicked into chaotic regime
even if all predators are respectively weak as shown in Fig.2. It demonstrates that
prolificity enhancement alone can have dramatic destabilizing effect. Again, without
the top-predation, this scenario cannot take place. Due to its own peculiarity this
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Figure 4. With parameter values ζ = 0.1, ε1 = 0.1, ε2 =
0.004, β1 = 0.3, β2 = 0.57, β3 = 0.2, δ1 = 0.6, δ2 = 0.54, δ3 = 0.3,
the dynamics is a rather wild chaotic attractor, showing both in
(a) the yzw-projected view and in (b) the time series. Without
the z-species (z = 0), the dynamics is an xyw limit cycle as shown
in (c) because w is efficient.

is the only case we will not attempt to give a complete analytical explanation to
the numerical result.

Making w an efficient predator, but keeping y and z weak, there are two possible
coexisting attractors. With a small initial amount of z, the solution curve may go
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to a cycle. This solution curve is near the xyw-cycle, and the z species stays close
to the initial condition. However, if a sizable initial amount of z is introduced to
the system, it may send the entire system to a coexistence equilibrium. This phe-
nomenon is shown in Fig.3. On one hand, increasing z would seem to enhance w’s
predatoriness against y and thus further destabilize the system into a greater cycle.
This seemingly counter-intuitive phenomenon can be explained by the Enrichment
Paradox. In fact, the competition from z depletes the existing amount of y, de-
creasing the food supply for the top-predator, hence the opposite to destabilization
occurs: the system settles down on a steady state equilibrium instead.

In contrasting to the phenomenon of prolificity enhancement to chaos from Fig.2,
we can further destabilize such a mild chaos by making w more efficient. The result
is presented in Fig.4. There is a greater variability on the attractor than its mild
counterpart. In particular, the orbit has different types of sharp zigzag turns, a
signature of boom/bust dynamics. Such outbursts of outbreaks and crashes are
more evident from the time series plots. We should point out that outbreak/crash
dynamics are not limited to chaotic oscillations. They can happen to periodic cycles
as well if the reproductive rates are divergently apart.

4. Predator-Prey System–Introduction to Singular Orbit Analysis

There are 2 issues that are important to ecological consideration: long-term
dynamics and short-term trend. Various methods can be used to analyze these
problems, not all equal in effectiveness. To motivate the geometric method of this
paper, we first give a brief illustration and comparison of these methods. We will
do so in the context of the simplest case of one predator and one prey system

(7) ζ
dx

dt
= x

(

1− x−
y

β1 + x

)

,
dy

dt
= y

(

x

β1 + x
− δ1

)

,

which is the xy-subsystem of (3) in the absence of the competitor z (z = 0) and
the top-predator w (w = 0).

4.1. Local Linearization. With regard to the simplest long-term dynamics, the
system may have a unique xy-equilibrium point, expressed explicitly as x = xe =
(β1δ1)/(1 − δ1) > 0, y = (1 − xe)(β1 + xe). To determine its local stability, one
linearizes the system at the equilibrium point, finds the eigenvalues, and then is
lead to the following conclusion

(1) The equilibrium state is local stable if and only if the predator y is weak,
β1δ1/(1− δ1) > (1− β1)/2.

(2) If y is efficient, 0 < β1δ1/(1− δ1) < (1 − β1)/2, then a small limit cycle is
created surround the unstable equilibrium point via Hopf bifurcation.

There are a few obvious drawbacks. First, it is only local. Second, it is only
about equilibrium point. Third, little can be said about short-term trend in terms
of temporal outbreaks and crashes. Last, it is difficult to practically impossible
to explicitly solve higher dimensional systems for equilibrium points, or for their
eigenvalues, or to apply the Routh-Hurwitz stability criterion (e.g. [21]).

To circumvent some of these algebraic difficulties and at the same time to extract
just the right amount of information, there is another elementary but effective
technique that is, surprisingly, not used more frequently in the literature. We give
an illustration of this method in Appendix B since it will be used in various places
later.



14 B.BOCKELMAN, B.DENG, E.GREEN, G.HINES, L.LIPPITT, & J.SHERMAN

4.2. Kolmogoroff Method. The second method is based on the following Kol-
mogoroff’s Theorem of (1936) (c.f. [18]):

Theorem: If a system of equations:

dx

dt
= xf(x, y),

dy

dt
= yg(x, y), for x ≥ 0, y ≥ 0,

satisfies

(1) f(0, 0) > 0,
∂f

∂y
< 0, x

∂f

∂x
+ y

∂f

∂y
< 0;

(2)
∂g

∂y
≤ 0, x

∂g

∂x
+ y

∂g

∂y
> 0;

(3) There exist constants A > 0, B > C > 0 such that f(0, A) = f(B, 0) =
g(C, 0) = 0;

then there exists either a global stable equilibrium point or a global stable limit cycle.

It is straightforward to verify these conditions for Eq.(7) with A = xxtr = β1, B =
1, C = xynl = β1δ1/(1−δ1). By combining it with the local stability result above we
conclude that the existence of a globally stable limit cycle occurs if and only if the
predator y is efficient. Although this result gives a complete qualitative description
on the long-term dynamics of the system, not much can be said about short-term
trend. In addition, the method, as well as the closely related Poincaré-Bendixson
Theorem, is obviously 2-dimensional. We are yet to see any extension of these
methods to higher dimensional webs and chains.

4.3. Phase Plane Analysis. The third method is the phase plane analysis, more
precisely, the method of vector field analysis using nullclines. The x-nullcline,
ζdx/dt = xf(x, y, 0) = 0, of (7) consists of the trivial branch, x = 0, and the non-
trivial branch, a parabola y = (1−x)(β1+x) solved from f(x, y, 0) = 1−x− y

β1+x
=

0. The importance of considering nullclines is immediately apparent—it tells where
a population’s decline turns into a recovery, and vise visa. More specifically, if
dx/dt > 0 at a given set of populations x, y, then the prey population x(t) contin-
ues to increase at the time. Otherwise it decreases if dx/dt < 0. Therefore, the
set of conditions at which dx/dt = 0 usually marks the transition between increase
and decrease in population. Exactly the same remarks apply to the y-nullcline,
dy/dt = 0, which consists of the trivial branch y = 0 and the nontrivial branch

x
β1+x

− δ1 = 0 or x = xynl :=
β1δ1
1−δ1

. Also apparent is that the intersections of both

variables nullclines give rise to equilibrium points at which neither x nor y changes.
Features important for future analysis are: both x-branches intersect at a point

(xxtr, yxtr) = (0, β1), referred to as a transcritical point; the maximum point of the

parabola is (xxfd, yxfd) = ( 1−β1

2 , (1+β1)
2

4 ), which is a fold point. (More information is
forthcoming on both transcritical and fold points.) Also dx/dt > 0 for points below
the parabola and dx/dt < 0 for points above the parabola, which when translated
in practical terms means that with fewer predators the prey is allowed to recover
and with an excessive amount the prey must be in decline. The y-transcritical point
is y = 0, x = xynl. Also, dy/dt > 0 for points right of the nontrivial y-nullcline,
and dy/dt < 0 for points left of it, which implies that an abundant supply in the
prey promotes predator’s growth and a depleted stock contributes to its decline. A
phase portrait based on these qualitative information is given in Fig.5(a).

Because of an apparent vagueness of this equation’s vector field, the method
does not always tell the stability of all the equilibrium points, nor the existence of
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limit cycles. In addition, although the nullcines separate population declines from
recovery, they do not foretell the magnitudes by which these events take place,
which often are of great practical importance.

4.4. Holistic Approach. The conclusion of the mathematical analysis above can
be derived holistically.

Starting with the nontrivial x-nullcline, we know that x = 1 is the dimensionless
carrying capacity when the system is free of the predator y = 0. As a fixed amount
of the predator y > 0 is introduced to system, the prey carrying capacity decreases.
The predator-adjusted carrying capacity may disappear at a nonzero level, xxfd > 0,
when the predator reaches a critical mass, yxfd, and when the predator concentra-
tion is higher than the critical mass, the prey crashes down to zero. This crash
crisis may never happen. It depends on whether or not the predator is predatorily
strong or weak. More specifically, it depends on whether or not a prey survival
threshold is present in the system. For a given level of predation y, xxtd > 0 is
called a survival threshold if the prey dies out when its initial concentration is lower
than the threshold and grows to its predator-adjusted capacity when its initial con-
centration is greater than the threshold. Thus the threshold itself is a nontrivial
equilibrium state of the prey, if exists, but it is unstable. If it appears above a
predator level, yxtr, obviously it must rise higher with a greater concentration of
y. Since the threshold increases in y while the y-adjusted capacity decreases in y,
they must coalesce at some point, and that point is the crash fold concentrations
(xxfd, yxfd), appearing as a fold point on x-nullcline curve. The crash fold does not
appear if a survival threshold never develops. The condition for the existence of
the threshold is straightforward: its initial appearance is the intersection of the
trivial x-nullcline x = 0 and the nontrivial x-nullcline f(x, y, 0) = 0 such that
as y increases the nearby nontrivial x-nullcline increases as well. Specifically, let
y = φ(x) = (1− x)(β1 + x) represent the nontrivial x-nullcline f(x, y, 0) = 0. Then
the system develops an x threshold at φ(0) = β1 if dx/dy > 0 which is equivalently
0 < 1/(dx/dy) = dy/dx = dφ(0)/dx. Evaluating dφ(0)/dx = 1 − β1 > 0 implies
β1 < 1, which defines the predatory efficiency of y. The predator level y = yxtr

at which the threshold reduces to 0 is special. It is referred to as the transcritical
point above.

The same type of holistic reasoning can be used to describe the y dynamics.
But there is one exception on the y-nullcline due to our nonlogistic death rate
assumption on y. By the holistic argument, a greater amount of the prey should
support a greater amount of the predator, therefore the nontrivial y-nullcline should
be an increasing function. It is a vertical line instead for Eq.(7) because of the
nonlogistic assumption. Other aspects of the y-dynamics by the holistic argument
however are consistent with the analytical argument. In particular, there should be
a minimum positive prey mass that only above which can the predator be sustained.
Below it, the predator dies out. Above it, the predator population grows. This
explains the value xynl and the sign of dy/dt.

When combining the descriptions for both prey and predator, we can also derive
some qualitative information above the interaction. For example, if the predator
needs a greater minimum prey mass to survival than to crash it, i.e., xynl > xxfd,
then a crash in x will never materialize if the population concentrations for both
x and y are exactly at the levels of crashing x = xxfd, y = yxfd. This is because
the crashing concentration in the prey is not enough to sustain an increase in y,
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and y should be lower than the level of crashing at the next moment of interac-
tion, thus pulling the system away from the crisis of crashing. Such a predator is
considered weak (xynl = β1δ1/(1 − δ1) > xxfd = (1 − β1)/2) even though it may
be predatorily strong β1 < 1. For it to be weak, a number of less desirable factors
should be present. The relative mortality rate δ1 = d1/(b1p1) may be too high,
which can result from high death rate d1, or low birth-to-consumption ratio b1, or
low maximum catch rate p1, or the relative semi-saturation density β1 = H1/K is
too high.

Like the phase plane method, this approach is qualitative in nature, suffering
a similar impreciseness of the former. Unlike the phase plane method, it relies
on ecological intuition and very little on technicality yet arrives at a comparable
level of qualitative understanding. In addition, any technical result should have
its holistic interpretation. If such a result proves to be general enough, then its
holistic interpretation can become a part of an expanded repertoire of intuitions
and principled arguments. The intuitiveness and expansibility of this method are
its great strength and appeal. We will use it whenever we can together with the
analytical method we introduce next.

4.5. Singular Orbit Analysis. Making up the qualitative shortfall of the last
two methods is where the singular perturbation method comes to play under the
prolificacy diversification condition: 0 < ζ ¿ 1. It deals with all conceivable types
of dynamics problems: from the stability of equilibrium points, to the existence of
limit cycles, to the temporal phenomenon of population booms and busts, and to
chaos. It does so with a surgical precision in most cases. The results often foretell
the dynamics when continued to a moderate parameter range beyond the singular
range 0 < ζ ¿ 1 which the method is specifically about. Due to its quantitative
nature, the method is inevitably technical, yet always receptive to intuitive and
holistic interpretation. When this dual approaches are followed the effort required
for comprehension becomes less laborious and the understanding it reaches tends
to be optimal.
Fast and Slow Subsystems. First the order of magnitude in the course of evo-
lution is explicitly expressed in the dimensionless form (7). For small 0 < ζ ¿ 1,
population x changes at a fast order of O(1/ζ) if it is not near its equilibrium
(xf(x, y, 0) = 0) already, comparing to an ordinary order of a constant magni-
tude O(1) for variable y. All non-equilibrium solutions are quickly attracted to a
small neighborhood of the stable branches of the x-nullcline: x = 0, y > yxtr or
f(x, y, 0) = 0, x > xxfd, the y-adjusted x carrying capacity. Once they are there,
the large magnitude O(1/ζ) is neutralized by x’s being near the nullcline state
xf(x, y, 0) ≈ 0. Then the y dynamics, which is negligible when x is away from
its nullcline state, cannot be neglected further. The subsequent development now
evolves according to the ordinary time scale of variable y. There are clearly two
phases: the fast development in x followed by the slow evolution in y. In ecological
terms, if (x, y) lies above the parabola f(x, y, 0) = 0, then x undergoes a sudden
decline or population bust or crash during the x-fast phase. Otherwise, if (x, y)
lies below the parabola, then an outbreak or boom in x’s population takes place
instead. In contrast, during the y-slow phase the y population undergoes a slow
decline if there is not enough prey supply or a slow rebound otherwise. These fast
and slow dynamics can be captured both qualitatively and quantitatively at the
limit ζ = 0 to equation (7).
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Figure 5. (a) A typical vector field of the xy-system. The x-
component of the vector field points towards the solid branches of
the x-nullcline and away from the dashed ones. Similar conven-
tion is used for branches of the y-nullcline. Species y is weak iff
xxfd < xynl. (b) A typical case of weak y and the stability of the
equilibrium point by singular orbit analysis. The green curve is a
relaxed orbit for 0 < ζ ¿ 1. See text for the derivation of yxpd on
the phenomenon of Pontryagin’s delay of loss of stability at which
a boom in x population occurs although the recovery starts after
its crossing the dashed threshold on the parabolic x-nullcline near
yxtr. (c) A typical case of efficient y, the existence of a singular
limit cycle and its relaxed cycle for 0 < ζ ¿ 1. (d) The effect of
relative prolificacy is shown.

More precisely, setting ζ = 0 in Eq.(7) results in

(8) 0 = x

(

1− x−
y

β1 + x

)

,
dy

dt
= y

(

x

β1 + x
− δ1

)

.

It is a system of algebraic and differential equations. It can also be viewed as
a differential equation on the x-nullcline manifolds: x = 0 and f(x, y, 0) = 0.
It captures the dynamics of the slow phase in the sense that if (xζ , yζ)(t) is a
segment of a solution of Eq.(7) for ζ > 0 that is near the x-nullcline during the
y-slow phase, then the limit (x0, y0)(t) = limζ→0(xζ , yζ)(t) must satisfy the limiting
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equation (8). For this reason, we call (8) the slow subsystem of Eq.(7) and view
Eq.(7) in the slow time scale of variable y, which in fact was originally scaled against
the maximum reproductive rate of species Y . In practical terms, the prey always
adapts to its predator-adjusted carrying capacity one step ahead of any change in
the concentration of the predator because it always out-reproduces its predator.

Similarly, if we change the time variable of Eq.(7) from t to τ = t/ζ, then the
equation becomes

(9)
dx

dτ
= x

(

1− x−
y

β1 + x

)

,
dy

dτ
= ζy

(

x

β1 + x
− δ1

)

.

The time scale is set according to that of variable x. Setting ζ = 0 in the equation
above gives rise to

(10)
dx

dτ
= x

(

1− x−
y

β1 + x

)

,
dy

dτ
= 0.

It is a 1-dimensional system in the fast variable x with y frozen as a parameter.
Again, the equation captures the dynamics during the x-fast phase in the same sense
as equation (8) does to the y-slow phase: the limit (x0, y0)(τ) = limζ→0(xζ , yζ)(τ)
must satisfy equation (10) if (xζ , yζ)(τ) is a solution segment of Eq.(9) during the
x-fast phase. For the obvious reason, we call Eq.(10) the fast subsystem of Eq.(7)
and view Eq.(9) in the fast reproductive scale of the prey x. In practical terms, if
the prey is not in its stable state, whether that is the predator-adjusted carrying
capacity or the wipe-out state x = 0, it will quickly converge to it if the reproductive
rates are divergent in prey’s favor.

In terms of terminology, solutions as well as orbits of Eq.(8) are described by
adjective slow whereas those of Eq.(10) by fast. These orbits are also referred to as
singular orbits as well as their natural concatenations. By natural concatenation it
means the following. A fast orbit of Eq.(10) must asymptotically approach a point
on the x-nullcline x = 0 or f(x, y, 0) = 0. From that point, a slow orbit of Eq.(8)
develops on the x-nullcline. The union of these two orbits oriented in the common
sense of time is one case of the natural concatenation of fast and slow singular
orbits. In practical terms, for example, it may capture the transitional events from
a population boom in x to its slow decline and y’s slow rise, or a bust in x to its
slow recovery and y’s slow decline as seen in Fig.5(b,c) for concatenated singular
orbits and their perturbed orbits.

The criterion for determining stable branches of the x-nullcline is ∂(xf)/∂x < 0
at the nullcline point, which in turn translates into

(11)
f |{x=0} < 0 at the trivial branch x = 0
fx|{f=0} < 0 at the nontrivial branch.

Reversing the sign for unstable branches. Setting them to zero for transcritical
points and fold points respectively. These criteria are listed here for future reference.
Mechanism of Outbreak. The remaining case of natural concatenation is as-
sociated with mechanisms by which singular orbits jump away, rather than into,
nullclines. In practical terms, it deals with sudden temporal transitions of popula-
tion: a slow decline and a slow recovery respectively in population y and x followed
by a sudden outbreak in x, or a slow build up and a slow decline respectively in y
and in x followed by a sudden crash in x. Because of their theoretical importance
to the singular orbit analysis both qualitatively and quantitatively, and because of
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their practical importance to sharp temporal shifts in population, we give a detailed
illustration to each scenario below.

The first case takes place near the transcritical point (0, yxtr) = (0, β1) at which
two branches of the x-nullcline, x = 0 and f(x, y, 0) = 0, intersect. The exposition
below gives an illustration to the relation between the onset of prey outbreak and
the initial predator concentration preceding the outbreak.

Let x = a, 0 < a < xynl, xxfd be any line sufficiently near the y-axis. Let (a, y1)
be any initial point that is on the line and above the parabola. Let (xζ(t), yζ(t)) be
the corresponding solution of the perturbed system (7) with 0 < ζ ¿ 1 and with
the initial point. The solution must move down because x = a ẏ < 0 for it is to the
left of the nontrivial y-nullcline. It moves leftwards above the unstable parabola x-
nullcline until it crosses the parabola at a point (xp, yp), 0 < xp < a, β1 = yxtr < yp
at which the solution curve is vertical. It then moves down but rightwards since
now the x is in the recovery mode ẋ > 0. A finite time Tζ > 0 later it intersects
the cross section line x = a at a point denoted by (a, y2(ζ)). In general the second
intercept y2(ζ) depends on ζ. Now integrating along the solution curve we have

0 = ζ lnx|aa =

∫ Tζ

0

ζẋζ
xζ

dt =

∫ y2(ζ)

y1

ζẋζ
xζ ẏζ

dyζ

=

∫ y2(ζ)

y1

f(xζ , yζ)

yζg(xζ , yζ)
dyζ .

Taking limit ζ → 0 on both sides of the equation above, using the facts that xζ →
0, xp → 0, yp → yxtr = β1 and the notations that y1 = y, y2(ζ) → yxpd, yζ → s, we
obtain the integral equation

∫ y

yxpd

f(0, s, 0)

sg(0, s, 0)
ds = 0

for variables y and yxpd. In practical terms, y approximates the value followed by
a collapse in x starting at the initial (a, y) and yxpd approximates the value that
immediately precedes an outbreak in x. Because the integrant f(0, s, 0)/sg(0, s, 0)
has opposite signs for s > yxtr and for s < yxtr, we immediately conclude the
following qualitative property: the greater concentration y at the state of the x-
collapse the lower concentration yxpd it reaches before the x-outbreak can take place.
We also have its quantification: yxpd is the value so that the two areas bounded by

the integrant graph are equal:
∫ y

yxtr

f(0,s,0)
sg(0,s,0)ds =

∫ yxtr

yxpd
− f(0,s,0)

sg(0,s,0)ds. Notice that the

branch x = 0, y < yxtr is effectively unstable for the fast x-subsystem Eq.(10).
The above phenomenon that singular orbits develop beyond a transcritical point,

continue along the unstable part of a nullcline before jumping away is called Pon-
tryagin’s delay of loss of stability. The case illustrated is for the type of transcritical
points at which the fast variable goes through a phase of crash-recovery-outbreak.
In other cases of generalization, they may be responsible for a reversal phase for
the fast variable. However, all the known PDLS cases of our XY ZW -model are
of the crash-recovery-outbreak type described above. We often call them outbreak
PDLS points.
Predatory Efficiency and Mechanism of Bust. The remaining case is associ-
ated with a slow build-up and a slow decline in y and x respectively followed by a
sudden crash in x. It happens only when the predator y is efficient 0 < xynl < xxfd.
We adopt a similar set-up and steps as for the transcritical turning point above to
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describe the crash mechanism. First let x = a with xynl < a < xxfd instead and
let (a, y1) be any initial point from x = a so that y1 < yxfd = (1− xxfd)(β1 + xxfd)
instead. Because it is below the parabola, the perturbed solution (xζ , yζ)(t) moves
right-up, crosses the stable parabola x-nullcline vertically, moves left-up and hits
the cross-section line x = a again at a point denoted by (a, y2(ζ)). Use the exact
orbit-integral-to-ζ-limit argument above to get a similar integral equation

∫ y2(0)

y1

f(x0, y0, 0)

y0g(x0, y0, 0)
dy0 = 0,

with limζ→0(xζ , yζ) = (x0, y0) being the y-slow singular orbit on the parabola
f(x0, y0, 0) = 0. Since y2(ζ) > yxfd for ζ > 0, we must have y2(0) ≥ yxfd. The
equation above does not hold if y2(0) > yxfd because the integrant would be strictly
negative for integration interval yxfd < y0 < y2(0). Hence we conclude that y2(0) =
yxfd, independent of the any initial concentration (a, y1) with y1 < yxfd. In practical
terms, the collapse in x’s population will occurs invariably whenever y’s population
reaches the crashing fold concentration yxfd.
Competitiveness. By definition (see Appendix A), predator y is competitive iff
the x-attractor at the carrying capacity (1, 0) is unstable with respect to the xy-
system, which in turn requires y to grow per-capita ((1/y)dy/dt = g(x, y, 0) > 0)
near that point, i.e., g(1, 0, 0) = (1/(β1 + 1) − δ1 > 0. Solving this inequality
gives rise to δ1 < 1 and β1δ1/(1 − δ1) < 1, which is equivalent to 0 < xynl =
β1δ1/(1 − δ1) < 1, that is the minimum concentration of x needed for y to grow
should be no greater than the prey carrying capacity. If y is noncompetitive, then
either xynl = β1δ1/(1 − δ1) < 0 in which case δ1 > 1 implying that y dies out
faster than it reproduces, or xynl = β1δ1/(1− δ1) > 1 implying y is weaker still in
terms of predation efficiency. In either case, (1, 0) is globally stable and y dies out
eventually.

The information that y is competitive is enough to conclude its survivability.
This can be taken as a rudimentary rule for competitive survivability. Although the
argument is rather simplistic for this 2-dimensional case, it will become increasingly
more substantial as more species are taken into consideration.
Classification. With most necessary ingredients in place for the method of sin-
gular orbit analysis we now complete our showcase for the predator-prey model
Eq.(7). If y is noncompetitive, it dies out eventually. If it is competitive, there
are 2 subcategories to consider: weak and efficient predations. For the weak case,
xxfd < xynl < 1, all non-equilibrium singular orbits converge to the coexisting
steady state as shown in Fig.5(b). For the efficient case, xxfd > xynl > 0, all non-
equilibrium singular orbits converge to the limiting singular cycle ABCD as shown
in Fig.5(c).

We note that when y is weak, all singular orbits eventually settle down on and
never leave the stable branch of the nontrivial x-nullcline f(x, y, 0) = 0, xxfd < x <
1. That is, this branch is flow invariant. The practical interpretation is that weak
predation leads to long term steady supply in the prey. This intuitive argument
will also be used to derive some useful conclusions later.
Enrichment Paradox. The conclusion that efficiency leads to population cycle
is the generalized principle of the well-known Enrichment Paradox by Rosenzweig
([25]). In fact, increasing the prey carrying capacity K decreases the dimensionless
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semi-saturation parameter β1 = H1/K, which in turn can drive the predator into
efficiency regime: xynl = β1δ1/(1− δ1) < xyfd = (1− β1)/2.
Prolificacy Duality. Prey-to-predator prolificacy has no long term effect for weak
y as all solutions converges to the coexisting equilibrium point. Short term outbreak
and collapse can occur depending on the current state of the species in their phase
space, see Fig.5(b). More specifically, if the prey x is in a decline phase ẋ < 0,
increasing its prolificity has a counter-intuitive effect. Instead of increasing its
number, it crashes to the bottom even faster. The predator stands alone to rip all
the benefit: Y = rK

p1
y and the prey has nothing to gain against its fixed carrying

capacity: X = Kx. The only circumstance in which increasing its prolificity is
self-beneficial is when the prey is in a recovery mode (ẋ > 0). In such a case, it
quickly reaches its predator-adjusted carrying capacity—the stable branch of the
parabolic x-nullcline f(x, y, 0) = 0. Prey’s over prolificity is a double-edged sword.

Important principles that can be derived from here is that periodic outbreaks and
collapses are unavoidable under the combination of predatory efficiency and prey-
to-predator over-prolificity. Even more surprising is the scenario of the phenomenon
of prolificity-to-chaos as we have seen in the numerical simulation of Fig.2 and in
theory later.
Persistence. The importance of this analysis at the limit ζ = 0 lies in the fact
that all the singular asymptotic structures will persist for small (often moderate
ζ in practice) 0 < ζ ¿ 1! The theory of persistence has been well-developed,
c.f. [23, 22, 10, 9, 1, 27, 19, 4], which enables us to focus our attention primarily
on singular orbit structures in applications if the main purpose is to understand
the underlining dynamics. For this reason, we will only make sparse comments on
persistence questions throughout the paper.
Prolificacy Reversal. A case can be made that the method of singular orbit
analysis is far superior than other methods described. The only drawback seems
to be the lack of a treatment for large ζ À 1. A closer examination shows however
the drawback is not as significant as it first seems. First, the practical interpre-
tation of large ζ > 1 implies that the predator out-reproduces its prey. Such
rate-reversal systems are less common than their rate non-reversal counterparts.
Second, if the predator has the potential to multiply faster than its prey, then
Verhulst’s logistic growth assumption must be incorporated into predator’s model
by assuming that Y ’s per-capita death rate is density dependent: d + d0Y . Upon
non-dimensionalizing, the y takes this form dy/dt = y(x/(β1 + x)− δ1 − δ0y). For
large ζ À 1, the resulting model is again a singular perturbed system for which y
is fast and x is slow. The nontrivial y-nullcline is monotone increasing function of
x with y saturation: y = (x/(β1 + x) − δ1)/δ0, consistent with our earlier holistic
prediction on the qualitative behavior of the prey induced predator equilibrium.
The same singular orbit analysis can be applied again. Without Verhulst’s assump-
tion, application of the singular orbit analysis will fail. More specifically, since the
nontrivial y-nullcline x = xynl would be a vertical line parallel to all y-fast singular
orbits, at the limit ζ =∞, all fast y-orbits for x > xynl would fly to infinity without
bound, which would leads to an ecological absurdity that a fixed amount of prey
sustains any ever increasing amount of predator. The failure does not come from
the method rather than the unrealistic assumption of a nonlogistic growth on the
fast reproducing predator y. We will not treat the rate-reversal models any further
in this paper.
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We conclude this subsection by pointing out that a summary of the singular orbit
analysis methodology, in particular, the analysis of sharp temporal falls and rises
involving multiple folds and transcritical threshold points, is given in Appendix C
for future reference for higher dimensional systems which we will consider below.

5. Competition Exclusion: XY Z-Web

In this section, we will set up the x-dynamical range for which the main analysis
of Sec.7 is to be carried out. In doing so we will highlight some known results of
the xyz-web and inevitably some open problems as well.

As demonstrated by the simple predator-prey xy-system in the previous section,
this method follows these steps: (1) separate the nullclines into typical config-
urations according to web characteristics in terms of competitiveness, efficiency,
and prolificacy which usually can be quantified mathematically; (2) classify typical
short term and long term singular orbit structures for each category; (3) demon-
strate persistence of singular structures for the perturbed system, which is optional
for this paper. In carrying out task (2), we will break the system down to fast and
slow subsystems, and piece together the higher dimensional singular orbits from
the lower dimensional and always simpler ones through concatenation via crash
fold and outbreak PDLS points.

For the xyz-system

ζ
dx

dt
= xf(x, y, z),

dy

dt
= yg(x, y, 0),

dz

dt
= ε1zh(x, z),

all the nullclines are now surfaces, each always consists of two branches: the trivial
and the nontrivial ones. In singular perturbation terminology, we also refer to these
surfaces as slow manifolds whenever appropriate. While the ζ-fast subsystem is still
1-dimensional, the ζ-slow subsystem on the other hand is 2-dimensional, which in
turn is singularly perturbed if ε1 → 0 is allowed. We will use similar ideas and
techniques from Sec.4. The only difference is to apply them in multi-dimensions.

The nontrivial x-nullcline, f(x, y, z) = 0, consists of equilibrium states for the x-
equation when y, z are kept constants. The stable equilibrium state is the predators
yz-adjusted carrying capacity. It must decrease with increase in either y or z
or both. A crash fold point developed at a given pair of (y, z) if at (y, z) there
is an adjusted capacity x which disappears upon any small increase either in y
or z. Again the existence of crash fold points for a given concentration in y, z
depends on whether or not survival thresholds develop for the prey. The condition
for the existence of threshold requires that at the intersection of the nontrivial
branch and the trivial branch of the x-nullcline, the prey concentration increases
with increase in y, z along the nontrivial branch. Mathematically, it equivalent to
∂x/∂y > 0, ∂x/∂z > 0 with x, y, z satisfying f(x, y, z) = 0, and partial derivatives
evaluated at points satisfying f(0, y, z) = 0.

The crash fold curve should have the following properties. First, if y is in-
creased, then a decreased amount of z is only needed to crash x. Therefore, on
the yz-plane, the curve is a decreasing function of z when y is increased and vis
versa. Let zxfd|{y=0} denote the amount of z that is needed to crash x when y = 0
and xxfd|{y=0} the corresponding single predator-adjusted x-capacity, and similar
notation for yxfd|{z=0} and xxfd|{z=0}. If both single predator-adjusted crashing ca-
pacities are the same xxfd|{z=0} = xxfd|{y=0}, then intuitively the joint yz-adjusted
crashing capacity should remains the same. If they are different that one is higher
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Figure 6. (a) The x-nullcline, with the stable branches outlined
in solid red and unstable branches by dash red. Phase lines of
the x-fast flow are in black. (b) When both y, z are efficient and
competitive, coexisting cycle must exist. The coexisting cycle is
shown for parameter values: ζ = 0.1, ε1 = 1, β1 = 0.25, β2 =
0.325, δ1 = 0.5, δ2 = 0.45, for which it can be verified numerically
that y, z are competitive. (c) A 3-d view of the nullcline surfaces
is shown for the same parameter values as in (b) except for β2 =
0.25, δ1 = 0.75, δ2 = 0.775, for which both y, z are weak. (d) A
reduced 2-d phase portrait view. A case of non-competitive z is
shown. Solid blue vector field and curve for a perturbed case ε1 > 0
and dotted black curves for ε1-singular orbits. Both give the same
y-dominant conclusion.

than the other, then the crash fold curve xxfd decrease from the higher crash capac-
ity to the lower one. For example, suppose y can crash x at a higher concentration
of x than z does. Then y puts a greater predatory pressure on x than z does. Since
we know it requires a smaller amount of y to crash x if z is increased, then it is rea-
sonable that the new predator-adjusted crashing capacity should be lowered. These
properties, although intuitively reasonable, require technical justification which we
give below.
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It is important to make use of the fact that the nontrivial x-slow manifold,

f(x, y, z) = 1− x−
y

β1 + x
−

z

β2 + x
= 0,

is linear both in y and z. Thus, by a standard introduction of a parameter, α, this
surface can be alternatively expressed as follows

(12)
y = α(1− x)(β1 + x), z = (1− α)(1− x)(β2 + x)

for 0 ≤ x ≤ 1 and 0 ≤ α ≤ 1,

which offers many practical conveniences below.
The transcritical curve is the joint solution to the two x-slow manifolds x =

0, f(x, y, z) = 0. Using the parameterization (12) we have for the transcritical
curve as

(13) y = αβ1, z = (1− α)β2 =

(

1−
y

β1

)

β2, with 0 ≤ α ≤ 1, x = 0.

It is a line with end points: (x, y, z) = (0, β1, 0) at α = 1 and (x, y, z) = (0, 0, β2)
at α = 0 which are the transcritical points for the respective xy-system and the
xz-system as special cases.

The x-fold curve is where the manifold f(x, y, z) = 0 comes in tangent to
the horizontal x-fast flow lines. Hence it necessarily satisfies these two equations
f(x, y, z) = 0, fx(x, y, z) = 0 simultaneously as we have already pointed out in (11).
Using the parameterization (12) again together with the additional equation

fx(x, y, z) = −1 +
y

(β1 + x)2
+

x

(β2 + x)2
= 0,

we obtain after eliminating the parameter α the x-fold curve:

(14)

y =
(2x− 1 + β2)(β1 + x)2

β2 − β1

z =
(2x− 1 + β1)(β2 + x)2

β1 − β2

for
1−max{β1, β2}

2
< x <

1−min{β1, β2}

2
, β2 6= β1;

and if β1 = β2, then

x =
1− β1

2
, y + z =

(1 + β1)
2

4
.

Note also that the special cases for the xy-fold point and the xz-fold point are,
respectively, x = (1− β1)/2, y = (1 + β1)

2/4, z = 0 and x = (1− β2)/2, y = 0, z =
(1 + β2)

2/4 as expected.
The transcritical line separates the trivial x-slow manifold x = 0 into two parts.

The part contains bounded (y, z) is unstable giving rise to the threshold phenom-
enon that an insufficient amount of predators promotes growth in the prey. The
unbounded part is stable precisely because of the opposite, driving the prey to
extinction. (The same conclusion can be derived, laboriously, by a linearization
argument that ∂[xf(x, y, z)]/∂x|{x=0} = f(0, y, z) > 0 iff (y, z) is to the left side
of the transcritical line f(0, y, z) = 0.) Similarly, the yz-adjusted capacity on the
nontrivial x-slow manifold f(x, y, z) = 0 is stable (since fx(x, y, z) < 0) and the
threshold part is unstable (since fx(x, y, z) > 0). A typical sketch for the x-nullcline
surfaces is given in Fig.6(a).
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All singular orbits must intersect the x-stable branches. Of the last two, all
singular orbits must either visit or stay on the stable nontrivial branch. This is
because with depleted food source x ≈ 0, y, z will decrease and eventually across
the x rebound/outbreak transcritical line (13) and jump up onto the x-capacity
branch, guaranteed by the principle of Pontryagin’s delay of loss of stability. Hence,
any singular xyz-attractor must either contain a part of the x-capacity manifold or
stay there if x cannot be crashed.

We now set up in detail an important part of the framework for this paper: joint
weak predation by y and z. Recall that if y is weak, then its required minimum
prey density for growth, xynl, is greater than the amount to crash x, i.e. xynl >
xxfd|{z=0}. So it alone cannot crash x dynamically on the y-adjusted x-capacity.
Similarly, z is weak provided xznl > xxfd|{y=0}. Joint weak predation assumption
requires more than individual weakness. We assume instead that everywhere along
the crash fold curve, none of the predators can grow. In other words, once the
singular orbit reaches the predator-adjusted carrying capacity, crash in the prey
population is not possible. We also refer to this assumption as yz-weak predation
assumption. In technically terms, the nontrivial y-nullcline and z-nullclines are two
parallel planes,

x = xynl =
β1δ1
1− δ1

, x = xznl =
β2δ2
1− δ2

,

and the yz-weak predation requires both planes lie above the x-fold curve. Be-
cause the x-fold ranges in x only in the interval (1 − max{β1, β2})/2 < x <
(1 − min{β1, β2})/2 by (14), this setup holds iff the y, z nullcline values xynl, xznl

are greater than the upper end x-value of the fold:

min{xynl, xynl} = min{
βiδi
1− δi

} > max{
1− βi

2
} =

1−min{β1, β2}

2
.

Since weak y, z automatically implies xynl > (1− β1)/2 and xznl > (1− β2)/2, the
condition above reduces to xynl > (1− β2)/2 and xznl > (1− β1)/2. In this setting
the stable nontrivial x-slow manifold is invariant for the ζ-slow yz-flow. Because
we will almost exclusively work with this surface of predator-adjusted carrying
capacity, we will denote it by S = {f(x, y, z) = 0, fx(x, y, z) < 0}. Also we denote
by D its projection to the yz-plane, that is the region bounded by the y, z axises
and the yz-projection of the x-fold curve.

Because of its invariance, the ζ-slow subdynamics on S is only 2-dimensional and
we will take the advantage by conducting our analysis on the projected yz-plane,
as shown in Fig.6(c,d). We only give a practical argument to justify the vector field
plot of Fig.6(d): For y below its nullcline, it is relatively small. Its food supply
is relatively abundant and therefore y will grow. For y above its nullcline, it will
decline. Similar argument applies to z.

We note that the y-nullcline and z-nullcline are two parallel planes, and so they
do not intersect in general unless xynl = xznl. We conclude immediately that there
does not exist any coexisting equilibrium point except xynl = xznl. The Competition
Exclusion Principle is in large part because of this fact.

To compensate the almost artificial treatment on competitiveness of Sec.4, we
give here a more substantial and genuine treatment on the subject. Because both y
and z are weak, the xy-attractor and xz-attractor are equilibrium points. Therefore
y is competitive iff, by definition, the xz-equilibrium point is unstable with respect
to the xyz-system, iff y can still grow per-capita near the xz-capacity equilibrium,
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Table 2. Summary on Coexistence

Competitor z
Eq.(3) with w = 0 WC WNC EC ENC

Competitor y WC NA y Dominant Co-Cyc.∗ Open
WNC NA Open Open
EC Co-Cyc. Open
ENC Open

NA — Not Applicable
Co-Cyc. — Coexistence in limit cycles

WC — Weak and Competitive predator
WNC — Weak and Noncompetitive predator

EC — Efficient and Competitive predator
ENC — Efficient and Noncompetitive predator
Open — Never investigated

∗ — Open question on persistence proof

(dy/dt)/y = g(x, y, 0) > 0, and specifically g(xznl, 0, 0) = xznl/(β1 + xznl)− δ1 > 0.
Solving the last inequality we have

xznl >
β1δ1
1− δ1

= xynl.

We already pointed out early that the smaller the value xynl the more efficient y is.
Hence this inequality above can be interpreted as that y is more competitive than z
because and only because it is relatively more efficient. This relation automatically
concludes y and z cannot be both competitive when they are both weak. Because
there are no xyz-equilibrium points and the yz-dynamics on S is 2-dimensional,
the xy-equilibrium point is globally attracting, killing off z eventually.

Therefore the necessary condition for coexistence requires at least one of the
two predators to be efficient. As a sufficient condition, coexistence occurs if both
predators are competitive, i.e. both the xy- and the xz-attractors are xyz-unstable.
For example if the xz-attractor is a limit cycle in the case of efficient z, then y is
competitive provided this cycle is xyz-unstable asymptotically. Equivalently,

∫ Tc

0

g(xc(t), 0, zc(t))dt > 0,

where (xc(t), 0, zc(t)) denotes the xz-limit cycle and Tc the xz-cycle period. In
practical terms, at each point of the cycle, the sign of g(xc(t), 0, zc(t)) tells whether
y increases or decreases, and g(xc(t), 0, zc(t)) is the magnitude of per-capita rate of
change at this point t. Then the averaged per-capita net change over the period Tc

is precisely

1

Tc

∫ Tc

0

g(xc(t), 0, zc(t))dt.

Hence, if the integral is positive, then the net per-capita change in y along the cycle
is a gain, and y grows as a group. See Appendix A for technical reasoning. Limit
cycle is the only known form of coexistence. This result is the complimentary part
of our current understanding on the Competition Exclusion Principle.
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Figure 7. (a) A sample of computer generated x, y, w nullclines
in the xyw-space. (b) An xyw-slow cycle as y is weak and w is
efficient. Parameters values: ζ = 0.1, ε1 = 0.1, ε2 = 0.1, β1 =
0.3, β2 = 0.57, β3 = 0.2, δ1 = 0.6, δ2 = 0.54, δ3 = 0.5, and z = 0.

Last, we remark that each predator can be classified into 4 categories in terms
of efficiency and competitiveness. Therefore there are 16 categories for 2 preda-
tors. Excluding symmetrical duplications and impossible combinations there are
8 distinct cases left, of which 5 cases have never been investigated. The status is
summarized in Table 2. We refer to [15] for a geometric treatment of both y, z
efficient and competitive case.

6. XYW -Chain with Weak Y

We consider in this section the xyw-chain free of the mid-lateral competition
(z = 0) under the assumption that y is weak: xxfd = 1−β1

2 < xynl =
β1δ1
1−δ1

.
Taking a similar approach as in the previous section, we first consider the null-

cline surfaces. The nontrivial x-slow manifold is a parabola cylinder parallel to the
w-axis:

y = (1− x)(β1 + x), for 0 ≤ x ≤ 1.

It is the same x-nullcline as for the xy-system extended in the positive w-axis
direction. Because x is in direct interaction only with y, the predator-adjusted x
carrying capacity therefore depends only on y as well. All the properties about
the x-nullcline can be directly borrowed from Sec.4. Its fold line and transcritical
lines are respectively: (x, y) = (xxfd, yxfd) = ((1 − β1)/2, (1 + β1)

2/4), and x =
0, y = ytrn = β1, for w ≥ 0. Similar, the attracting branches of the x-slow manifold
are the parabola between xxfd < x < 1 and the trivial manifold x = 0 above the
transcritical line y > β1. Also, since y is weak, the former is globally attracting and
invariant as weak predation does send the prey crashing through the fold boundary
of the predator-adjusted carrying capacity. Without introducing new notation we
again denote this manifold by S.

The nontrivial y-nullcline surface is

w =

(

x

β1 + x
− δ1

)

(β3 + y).
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Since y > 0, it imposes the range x/(β1 + x) − δ1 > 0 which in turn implies
x > β1δ1/(1 − δ1) = xynl. The holistic explanation is that a greater minimum
prey density is required in order for y to grow when itself is preyed upon from
w. As always, to the side of unbounded top-predator w, the prey y decreases in
population because the predatory pressure from w is too great. The nontrivial
w-nullcline k(y) = 0 is a plane parallel to the xw-plane:

y = ywnl =
δ3β3

1− δ3

Below the plane (not enough prey y), ẇ < 0, and above the plane ẇ > 0.
To determine the ζ-slow dynamics on the invariant 2-dimensional manifold S, we

consider the reduced y-nullcline on S, namely the xw-adjusted y equilibrium state.
Denote by γ = {g = 0} ∩ {f = 0} the intersection of the nontrivial y-nullcline
with S. Because y is weak, the xy asymptotical state is the xy equilibrium point.
This w-adjusted xy-equilibrium decreases in y with increase in w, moving away
from the x crash fold. The top-predator w can crash the y population at a nonzero
concentration if w is efficient so that a nonzero survival threshold for y develops at
the intersection of the trivial y-nullcline y = 0 and the nontrivial one g(x, y, w) =
on the x-nullcline f(x, y, 0) = 0. Use the same property that the threshold increases
in y with increase in w, we will derive in Appendix D (a special case of Proposition
12.1 with z = 0) that under the condition

(15) β3 <
(β1 + 1)3

β1

(

1

β1 + 1
− δ1

)

a nonzero y threshold develops and there exists a unique y crash fold point on
w = γ(x) in [xynl, 1]. Notice that the y-crash fold develops only when β3 is relatively
small, the predatory efficiency requirement on the part of w, consistent with the
analysis of Sec.4. The crash fold point separates γ into two parts: the top part
contains the w-adjusted xy capacity equilibria. Its y component decreases with
increase in w. It is y-stable. The bottom part, if w is predatory efficient, is y-
unstable. The intersection with the trivial branch y = 0, x = 1, y = 0, wytr =
γ(1), is the only y-rebound/outbreak transcritical point. Denote the fold point’s
y-coordinate and w-coordinate by yyfd and wyfd.

Last, the w-nullcline surface on the S is again a straight line. Putting all these
elements together, we see that the ζ-slow phase portrait on S is qualitatively the
same as the predator-prey xy-system of Sec.4. The reduced system is also singularly
perturbed by ε2, the wy prolificacy parameter. See Fig.7(b).

Dynamically, w is weak if yyfd < ywnl < yxfd, and the corresponding equilibrium
point attracts all ε2-singular orbits. W is efficient if 0 < ywnl < yyfd and in which
case a limit cycle appears, and its singular counterpart attracts all ε2-singular orbits.
Since it does not contain fast x outbreaks and crashes through the x crash fold,
we all call this type of cycles the x-slow cycles which when restricted on S are
y-fast cycles. Also all the ε2-prolificacy induced boom and bust dynamics in y are
completely parallel to the xy case of Sec.4.

In closing we point out that the food chain dynamics can become extremely
complex for efficient predator y. There are 4 known types of chaotic attractors with
efficiency-efficiency combination for y and w, conforming yet again the principle that
efficiency leads to complexity, see [5, 6, 7, 8] for details. We also point out that the x-
slow cycles and the equilibrium points all persist for small 0 < ζ ¿ 1, 0 < ε2 ¿ 1,
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since their hyperbolicity can be verified and therefore the persistence results of
[10, 1] can be applied.

7. Main Results: Dynamics of Weak Y,Z XY ZW -Web

We now consider the full xyzw-web. For convenience the full system is recalled
from Eq.(3)below

(16)















































ζ
dx

dt
= x

(

1− x−
y

β1 + x
−

z

β2 + x

)

:= xf(x, y, z)

dy

dt
= y

(

x

β1 + x
−

w

β3 + y
− δ1

)

:= yg(x, y, w)

dz

dt
= ε1z

(

x

β2 + x
− δ2

)

:= zh(x)

dw

dt
= ε2w

(

y

β3 + y
− δ3

)

:= wk(y)

We only consider in this paper the seemly simplest case: trophic diversified pro-
lificacy for both xyw and xz chains and joint yz-weak predation. We will mostly
use holistic and geometrical arguments and supplement them by technical analysis
from Appendix E.
Dimension Reduction. The nontrivial x-nullcline f(x, y, z) = 0, its crash-fold,
stable, and unstable branches are the same for the full system as for its xyz-
subsystem because w does not directly interact with x. We use the same notation
S as in the previous sections for the stable branch of the nontrivial x-manifold. It
is the same as before except that it is a 3-dimensional solid in the xyzw-space.

We know from Sec.5 that without w, the solid S is invariant for the ζ-slow yz-
flow if y, z are yz-weak. As argued before, because of the yz-weak assumption, y, z
are in a decline mode near the x-fold state, hence prevent x from crashing, which
in turn implies the surface S ∩ {w = 0} is invariant for the ζ-slow yz-subsystem.
With the presence of w predation, y must be in a steeper decline near the x-fold
than without, and for the same reason crash in x never take place and the solid S
is invariant for the full ζ-slow yzw-system.

Any point (x, y, z, w) from the solid S can be expressed by a relation with x as
a function x = q(y, z) of y, z. It means for each level of y, z predation, there is a
unique yz-adjusted carrying capacity of the prey, which by definition defines the
stable nontrivial branch of the x-nullclline. Also, the function q is decreasing in
both y and z because the yz-predation pressure depresses the adjusted prey steady
state.

On the trivial x-slow manifold x = 0, the transcritical points for the full web
remain the same as for the xyz-web. All ζ-singular orbits must cross it and jump
to the solid S at some x-outbreak PDLS points for the reason that x and w do
not directly interact with each other. Therefore, all nontrivial ζ-singular orbits
eventually settle down into the invariant solid S. And we only need to consider the
3-dimensional yzw-slow system in S. A dimension reduction is now obtained.

Mathematically, S is defined by f(x, y, z) = 0, fx(x, y, z) < 0. Because of the
hyperbolicity fx(x, y, z) < 0, variable x can be solved by the Implicity Function
Theorem as a function of q(y, z) from f(x, y, z) = 0 with (y, z) from the same set D
as in Sec.5 that is bounded by the y, z axis and the x-fold curve projected onto the
yz-plane. Also q is a decreasing function in both y and z: qy(y, z) < 0, qz(y, z) <
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0 (see Appendix E). The ζ-slow yzw-system in S is then expressed explicitly as
follows:

(17)































dy

dt
= y

(

q(y, z)

β1 + q(y, z)
−

w

β3 + y
− δ1

)

= yg(q(y, z), y, w)

dz

dt
= ε1z

(

q(y, z)

β2 + q(y, z)
− δ2

)

= zh(q(y, z))

dw

dt
= ε2w

(

y

β3 + y
− δ3

)

= wk(y)

Z-Dominant Dynamics. If z is xyz-dominant (h(xynl) > 0), y dies off eventu-
ally even without top-predator’s presence. The weaker competitor would meet its
extinction-bound fate sooner with w > 0, and take with it its consumer w.

This trivial case can be easily demonstrated mathematically. Specifically, if
the initial w0 = 0, then w(t) ≡ 0 and y(t) → 0, z(t) → zznl|{y=w=0} from Sec.5.
If w0 > 0, then because of this rate relation yg(x, y, 0) > yg(x, y, w), the same
relation is maintained for the state:

y|{w0=0}(t) ≥ y|{w0>0}(t) =⇒ y|{w0>0}(t)→ 0,

when all other conditions are equal. This leads eventually to w(t)→ 0. Hence, we
have proved the following statement

Proposition 7.1. If z is xyz-dominant, then z is xyzw-dominant, i.e., y(t) →
0, w(t)→ 0

Hence the remainder of the paper is for the more interesting and nontrivial case
that z is a weaker competitor than y (with g(xznl, 0, 0) < 0).
Qualitative Properties of Nullcline Surfaces. We begin our singular orbit
analysis in S by first describing the y, z, w nullclines holistically and geometrically.
The technicalities are left to Appendix E.

The nontrivial w nullcline for the reduced system (17) is the simplest: k(y) =
0 =⇒ y = ywnl = β3δ3/(1 − δ3), a plane parallel to the zw-plane in S. On this
plane either recovery or decline in w takes place depending on whether or not its
prey y is in creasing or decreasing mode. To the side y < ywnl, w decreases because
of insufficient food supply. Otherwise, w increases if y > ywnl.

The nontrivial z nullcline is slightly more complicated: h(q(y, z)) = 0 =⇒
q(y, z) = xznl = β2δ2/(1 − δ2). It is a plane parallel to the w-axis, through a
curve q(y, z) = xznl on the yz-plane. It is the same z-nullcline analyzed in Sec.5. It
defines the y competition-adjusted xz equilibrium state. When setting y in dynam-
ical motion, it is also the state where z either rebounds from a decline or declines
from a growth depending on whether or not the competition strength from y weak-
ens (ẏ < 0) or intensifies (ẏ > 0). We already know the function q decreases in
both y and z. Hence to maintain a constant level q(y, z) = xznl, y and z must
behave in opposite manner on the curve: increasing y must be counter-balanced by
decreasing z. Therefore, the curve has negative slopes everywhere in S.

The most complex nullcline is the y-nullcline surface: g(q(x, y), y, w) = 0, which,
by solving for w, is expressed as

w := p(y, z) =

(

q(y, z)

β1 + q(y, z)
− δ1

)

(β3 + y).

As with other nullclines, this surface is the w-predation and z-competition adjusted
capacity or threshold states. In dynamical motion, they defines the states at which
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Figure 8. (a) A sketch based on the qualitative descriptions on
the nullcline surfaces inside the x-nullcline solid S. Stable branches
of the y-nullcline are painted green on the trivial y-nullcline y = 0
and left blank on the nontrivial part w = p(y, z). The unstable
branches are left blank on y = 0 and painted grayish green on
w = p(y, z) between the y crash-fold and the transcritical curve.
Blue and red vertical planes the nontrivial w and z nullcline sur-
faces respectively. Their intersections with the stable nontrivial
y-nullcline surface are blue and red curves respectively. (b) Nu-
merically generated nullcline surfaces for the same parameter val-
ues as in Fig.4. The solid S is bounded by the x-fold plane parallel
to the w-axis. (c) The same surfaces of (b) in the yz-projected
view. Left to the y-fold curve, the y-nullcline surface is unstable,
and to its right, it is stable. The y-nullcline surface is bounded by
the coordinate axises and the green y-boundary curve.

the predator y either recovers from a fall or declines from a rise depending on the
strength of z-competition and w-predation. If z-competition is strong (ż > 0) or
the w-predation is repressive (ẇ > 0), then y falls from growing to decline at the
state. Otherwise it turns from decline to recovery.
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Two special cases are already known: the case with w = 0 from Sec.5 and the
case with z = 0 from Sec.6. Below we continue on a practical description of the
surface and more importantly its intersection curves with the other two nullcline
surfaces.

The range in y, z over which the surface w = p(y, z) is positive is precisely the
delta shaped region bounded by the y, z axises and the y-nullcline cure g(q(y, z), y, 0) =
0, i.e. q(y, z) = xynl. From the expression of w = p(y, z) above, we see that
p(y, z) > 0 if and only if q/(β1 + q) − δ1) > 0 which in turn solves as q(y, z) >
β1δ1/(1 − δ1) = xynl. Since we already know q is decreasing in both y and z,
so for this inequality to hold, y and z must be smaller yet than they would be
at the equality q(y, z) = xynl. Hence the domain is given as ∆ := {(y, z) :
in the first quadrant left of the y-nullcline curve on w = 0}. Alternatively, for a
fixed competition intensity of z, and an elevated predatory pressure w > 0, the
adjusted equilibrium y level must be lower than what would be if the top-predation
is absent, w = 0. Either way, we know the surface in S lies above the delta-shaped
region ∆.

The topography of the surface can be understood holistically as well. From the
expression w = p(y, z) = (q(y, z)/(β1 + q(y, z)) − δ1)(β3 + y) we can readily see
from a domino effect that if y is fixed, increasing z decreases the steady x supply
x = q(y, z) in S, which in turn decreases the quantity q(y, z)/(β1 + q(y, z)), which
represents the per-capita catch x/(β1 + x) by y, and hence decreases the p-value.
In practical terms, if y is fixed and the z competition level is increased, then it only
requires a smaller w amount of predatory pressure to separate the waxing phase
ẏ > 0 from the waning phase ẏ < 0 of y. Looking at it either ways, the y-section
curves on the surface are all decreasing in z, all the way down to w = 0 on the
boundary of ∆.

It is slightly more complex to visualize the z-section curves on the surface. Begin
with the special case z = 0, we know that the y-nullcline can have a y-crash-fold
from Sec.6. It separates the y-nullcline into the w-adjusted capacity state and the
y-threshold state. The former is stable and the latter is unstable. The stable branch
is a monotone decreasing function of w: fixed at a greater w depletes the steady
supply y. Now fix z at an increased value z > 0, the competition makes fewer
resource available for y, and makes y more vulnerable. Hence it takes a smaller w
amount to crash y. In addition, as a result of the Enrichment Paradox, intensified
z competition amounts to depleting y which in turn amounts to making w weaker
as a predator. Since the w-nullcline is independent of z: y = ywnl = β3δ3/(1− δ3),
so if ywnl was exactly at the crash-fold yyfd for a given z, then for a larger z, the
crash-fold yyfd must be smaller to make room for w to become weaker. Hence, we
can conclude that the y-crash-fold decreases not only in the w-coordinate wyfd but
also in the y-coordinate yyfd when z is increased.

Finally, it is left to describe the intersections of these nullcline surfaces. The
intersection of the w-nullcline surface y = ywnl with the y-nullcline x = p(y, z) is
a monotone decreasing curve of w in z as we have already derived this property
for any y-section curves on the surface w = p(y, z). The intersection of the z-
nullcline x = q(y, z) = xznl with the y-nullcline surface is w = p(y, z) = (xznl/(β1 +
xznl) − δ1)(β3 + y) which is, obviously, a monotone increasing line in y. With the
constant supply x = q(y, z) = xznl, increasing z decreases y, which in turn decreases
w = p(y, z) = (xznl/(β1+xznl)−δ1)(β3+y). So the intersection curve is a decreasing
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(a) (b)

Figure 9. (a) yw-phase portraits with fixed z when ε1 = 0. Green
curves are the z-section curves. With increase in z, w becomes
weaker as the intersection of the w-nullcline (blue) moves from the
left of the y-fold to the right. (b) The projected view of Fig.8(a)
to the zw-plane. The grayish green part is the projected view
of the unstable nontrivial y-nullcline. It and the blank part is the
projected view of the stable nontrivial y-nullcline. The grayish and
green part together is the stable trivial y-nullcline. The doted green
curve that separates the blank area from the grayish green/green
area is the y-transcritical curve on y = 0. Half filled circles are all
transcritical points. Blue and red curves are for w-nullcline and z
nullcline respectively. Dotted ones are unstable branches and solid
ones are stable ones. Open circles are unstable equilibrium points
and filled circles are stable equilibrium points.

function of w in z. In practical terms, increasing y decreases z on the fixed supply
level x = xznl of x. This improves the status of predator y. As a result, it would
take a greater amount of the top-predator w to flip a growing y mold ẏ > 0 to a
declining mold ẏ < 0.

All the descriptions above are incorporated into the illustration of Fig.8.
Z-Induced W -Weakness. If we hold z constant (with frozen ε1 = 0), then the
reduced xyw-chain (16) in the solid S is a predator-prey system in y, w. Figure 9(a)
shows a projected view of the 3-dimensional portrait Fig.10(a) to the yw-plane.
The green, parabola-like curves are the z-section curves on the y-slow manifold
w = p(y, z). They are the z-section y-nullclines for the yw-system. The height and
width of these curves decrease with increasing z as explained above that increase in
z weakens the z-adjusted y capacity, which in turns requires a lower w to crash it.
The w-nullcline remains the same along the line y = ywnl, regardless the competition
intensity from z. If it cuts the z-sectioned y-nullcline right of the y-fold, then w is
xyw-weak. Otherwise, w is efficient. Note that the yw-equilibrium points decreases
steadily, all the way toward the extinction level (w = 0) with increased competition
intensity from z. Again, in terms of singular perturbation, they are the yw-fast
subdynamics if z is the slowest variable.
W -Induced Competition Exclusion. Under the condition that y is xyz-dominant
we know the z-nullcline must cut through the y-slow manifold w = p(y, z) along
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Figure 10. Competing yz-phase planes for frozen w with ε2 = 0.

a curve which is decreasing in w with increasing z as shown in Fig.10(a). If we
hold each w constant in Eq.(17) (with frozen ε2 = 0), the system is a 2-dimensional
competing species system in y, z. The phase portrait is the w-section of the yzw
portrait which are illustrated in Fig.10. Let w = w0 > 0 be fixed. Then there
are 4 typical cases for the competing yz-dynamics. (1) For 0 < w0 < wznl|{y=0}, z
is driven out of the competition with the xy-equilibrium point globally attracting
as in Fig.10(a). (2) For wznl|{y=0} < w0 < wznl|{z=0}, both the xy-equilibrium
point and the xz-equilibrium point are locally stable with their basins of attraction
separated by a separatrix through the xyz equilibrium point which is unstable, as
in Fig.10(b). In this case, initial edge determines the competition outcome. (3) For
wznl|{z=0} < w0 < wyfd|{y=0}, z dominates and y dies out. All nontrivial solutions
converge to the xz-equilibrium point as in Fig.10(c). (4) As shown Fig.10(d), it has
the same outcome as case (3) except that the y-nullcline now contains a crash fold
point. The remaining cases are not typical. They are bifurcations amongst these 4
cases. This demonstrates that predation on y from w enhances the competitiveness
of y’s competitor z.
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Competition coexistence is excluded with fixed level of w. However, as we will see
below that coexistence in distinct dynamical forms are possible if w is dynamically
evolving according to the rule (17). The w-frozen dynamics is only the yz-fast
dynamics of the yzw-system provided w is much less prolific than y and z.

7.1. Fast Y Z-Cycle and Chaos for Fast Y,Z, and Slow W . Consider first a
2-time scale system of yzw in S. In terms of prolificity, we assume in this case
that 0 < ε2 ¿ 1, ε1 = O(1), that is, y, z are comparable in reproduction but slower
than x, and w reproduces at a slower rate. We demonstrate below that if z is
xyw-competitive, then w induces coexistence for all species in the form of either a
fast yz-cycle or chaos, and that z dies out if it is not xyw-competitive.
Exclusion for XYW -Noncompetitive Z. If w is weak, ywnl > yyfd, the xyw-
equilibrium point is globally attracting for all singular orbits of the xyw-system with
z = 0. The stability of this point with respect to the full xyzw-system is determined
by the sign of h(xwnl) which must be negative, h(xwnl) < 0, because of the xyw-
noncompetitive assumption on z. In this case, xwnl lies to the side which does not
promote the growth of z, therefore xwnl < xznl. Translate this condition to the solid,
these two nullcline surfaces xwnl = q(y, z), xznl = q(y, z) never intersect. On the
plane z = 0, we must have ywnl > yznl because xwnl = q(ywnl, 0) < q(yznl, 0) = xznl

since q is decreasing in both y and z. In other words, a greater y can only correspond
to a smaller steady supply x. The reduced yzw-system has 2 time scales: the ε2-
fast yz-dynamics and the ε2-slow w-dynamics. The asymptotic singular orbit is
rather simple: all xyzw singular orbits converge to the xyw-equilibrium point. See
Fig.11(a).

If w is efficient, then the xyw-attractor is a x-slow, y-fast cycle of the type of
Sec.6. Since z is not xyw-competitive with respect to the cycle, by definition this
cycle attracts all orbits nearby. We now argue that all singular orbits settle on
this cycle and z dies out eventually. One immediate consequence to the hypoth-
esis is that the z-rebound/outbreak transcritical line y = yznl on z = 0 must cut
through the xyw-cycle. Otherwise, if the cycle lies completely left of it, z would
be increasing everywhere along the cycle. The cycle would be xyzw unstable and
z would be competitive. Another consequence to the local stability of the cycle
is that every singular orbit that comes into the cycle directly in the yz-fast flow
direction will never leave the cycle again. If the yz-fast singular orbit converges to
the yz-equilibrium point on z = 0 at a level w < wypd (see Fig.11(b)), then the
concatenating w-slow orbit will stay on the z-stable part of the y-nullcline before
hitting the cycle. That is, the orbit will cumulate more damping on z than the
cycle itself which has already suppressed the z-component due to its attractiveness
in the direction of z. Therefore, we have proved the following result.

Proposition 7.2. Under the conditions that z is xyw-noncompetitive, 0 < ε2 ¿
1, ε1 = O(1), the global asymptotic singular orbit is the xyw-attractor with z = 0.

Fast Y Z-Cycle for Weak W and XYW -Competitive Z. We trap the cycle in
a way illustrated in Fig.11(c). More specifically, let I = [wznl, wyfd] be the interval
on y = 0, z = zznl as shown. A singular orbit starting at the top end point wyfd

moves down driven by the ε2-slow w-system. It passes the y-PDLS point wznl,
entering the w-region (1) (see previous subsection’s 2nd last paragraph). The xz-
equilibrium point of the yz-system loses its stability with respect to the y-direction.
The w-slow orbit switches to the yz-fast orbit only at a y-outbreak PDLS level
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Figure 11. (a) In this case, max{yyfd, yznl} < ywnl, competitor z
does not take the advantage of the competitive potential created
by the predator w. All singular orbits are attracted to the xyw-
equilibrium point. (b) All singular orbits converge to the stable
yw-cycle when is z is not competitive. (c) When w creates enough
room for the competitor z: ywnl < yznl, a fast yz-cycle emerges. In
particular, singular orbits consist of fast y-outbreak and z-outbreak
jumps between the yz-equilibrium branches y = 0, z = zznl and
z = 0, w = p(y, 0), y ≥ yyfd on which w-slow motion proceeds
down and up respectively.

w = wypd. Following the yz-flow, it flies to the dominant xy-equilibrium point
on z = 0. Once it is on the yz-slow equilibrium manifold w = p(y, 0), z = 0, the
w-slow flow takes over again, and proceeds in a slow rebound because y is relatively
abundant. Upon passing the z-transcritical point wztr, the xy-equilibrium point
loses its stability in its z-direction. It must then switch to the yz-fast dynamics at
the corresponding z-outbreak PDLS point wzpd. In fact, since w is weak, the wwnl

level, which is lower than the y-fold w-value wyfd, is the highest asymptotic value
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the w-slow singular orbit can go, i.e. wzpd < wwnl always holds. Therefore, all
singular orbits from the interval I will not surpass the fold point and must return
to I. Notice that the lower end point wznl obviously returns to I as shown since
the nontrivial z-nullcline on w = p(y, z) decreases in w with increasing z. In other
words, the w-region (2) consists of inaccessible threshold points for I. Also, because
PDLS points are strictly monotone with respect to their starting points, this map
is strictly increasing, hence having a unique fixed point. Hence we have proved the
following statement.

Proposition 7.3. Under the conditions that w is weak, z is xyw-competitive, and
0 < ε2 ¿ 1, ε1 = O(1), the asymptotic singular orbit is a unique fast yz-cycle.

By fast cycle, it means that the cycle contains fast singular segments of the
system.
Fast Y Z-Cycle and Chaos for Efficient W and XYW -Competitive Z. In
the analysis for the previous case, the weak w condition is only a sufficient condition
for the existence of the fast yz-cycle. When w is efficient, the y-fold w-level wyfd

could be the upper bound of the z-PDLS w value wzpd defined above. If this is
the case, then we conclude the same that all nontrivial singular orbits converge to
a unique yz-fast cycle. Although this condition that wzpd < wyfd requires less, it
is still a sufficient condition. A yz-fast cycle may still exist if it is not satisfied.
More important, the dynamics can become chaotic in structures similar to Fig.4. In
such a case, the xyw cycle keeps ejecting orbits in the fast yz-direction towards the
xz-equilibrium (y = 0) state, which in turn drives down the orbits along w, which
lowering w allows y to recover, and injects the orbits back to the xyw cycle again. A
conceptually simpler scenario with a faster y than z is analyzed in complete detail
below, which can be cast in terms of a chaotic 1-dimensional map. The case at
hand can be treated in the similar manner because the ε2-slow manifold is the same
1-dimensional yz-equilibrium state w = p(y, 0), z = 0 and y = 0, xznl = q(0, zznl),
in 2 pieces. The treatment is postponed to that subsection.

7.2. Equilibrium and Fast Y -Cycle for Fast Y , Slow W , and Slower Z. In
terms of the prolificacy parameters, we have 0 < ζ ¿ ε1 ¿ ε2 ¿ 1. Biologically,
the new comer z is xyz-noncompetitive nor as prolific as the xyw-chain. We will
demonstrate below that because of w’s predation on y, z is able to survive in the
form of an equilibrium or a y-fast cycle. A cycle is y-fast if it contains crash fold
point of y.

Because y is the fastest amongst y, z, w, singular orbits consist of zw-slow or-
bits on the stable branches of the y-nullcline and fast jumps between them from
either the y crash-fold or from the y outbreak-PDLS points. Figure 8(a) gives a
3-dimensional illustration of these nullcline structure. Because much of the singular
orbit analysis now centers on the stable branches of the y-nullcline, one simpler and
effective way to visualize the dynamics is project the view onto the zw-plane as in
Fig.9(b). We will use the projected illustration extensively below. Also, because
ε1 ¿ ε2, on the stable y-nullcline surfaces, all singular orbits head to the w-nullcline
before the lowest time scale z-dynamics takes over.
Exclusion for Weak W and XYW -Noncompetitive Z. Recall that the z-
nullcline curve on the stable nontrivial y-nullcline surface is monotone decreasing in
z from the point (yznl|{z=0}, 0, wznl|{z=0}) to (0, zznl|{y=0}, wznl|{y=0}) of which the
latter lies on the y-transcritical curve on the zw-plane. In particular, wznl|{z=0} >
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wznl|{y=0} > 0. Similarly, the w-nullcline curve on the surface is also monotone
decreasing in z from the point (ywnl, 0, wwnl|{z=0}) to (ywnl, zwnl|{w=0}, 0), where
wwnl|{z=0} = p(ywnl, 0). In the case of weak w, wyfd|{z=0} > wwnl|{z=0}. Since the
right end point of the w-nullcline, which is w = 0, lies always below the right end
point of the z-nullcline, wznl|{y=0} > 0. These two lines intersect if and only if
the relation between the left end points are reversed: wwnl|{z=0} > wznl|{z=0} > 0,
which is equivalent to ywnl < yznl|{z=0}, the condition that z is xyw-competitive.
Otherwise, the z-nullcline curve lies above the w-nullcline curve, along which z
decreases because there are not enough w to enhance z’s competitiveness. In the
latter case, all ε1-slow orbits on the w-nullcline converge to the xyw-equilibrium
point with z = 0. Hence, it is straightforward to check the following statement, see
also the illustration Fig.12.

Proposition 7.4. If z is not xyw-competitive, i.e ywnl > yznl|{z=0}, then all sin-
gular orbits converge to the xyw equilibrium point and z dies out.

Equilibrium Coexistence. When yznl|{z=0} is greater than both ywnl|{z=0} =
ywnl and yyfd, the w and z nontrivial nullcines must intersect on the stable nontrivial
y-nullcline surface as concluded above. The intersection is the only nontrivial xyzw-
equilibrium point, denoted by E . That the intersection is unique can also be seen
from the following. Because the nontrivial z-nullcline surface and the nontrivial w-
nullcline surface are both planes parallel to the w-axis with the former decreasing
with increase in y while the later at a fixed y value, they intersect along only one
line parallel to the w-axis, if they do. Therefore this zw-nullcline line intersects
the y-slow manifold at a unique point E or not at all. The condition that the z-,
w-nullcline surfaces intersect is

(18) ywnl ≤ yznl|{z=0},

see Fig.8(a) for illustration.
Assume the z-nullcline line lies entirely on the stable nontrivial y-nullcline sur-

face. Two cases are considered here: w weak and z-competitive, and w efficient.
See Fig.12. Condition for the first case is given explicitly as

(19) wyfd|{z=0} > wwnl|{z=0} > wznl|{z=0}.

Condition for the second case is given similarly as

(20) yyfd|{z=0} > ywnl|{z=0}.

Proposition 7.5. Under the conditions (19) or (20) and for sufficiently small
0 < ε1 ¿ ε2 ¿ 1, the xyzw-equilibrium point E is locally stable. Moreover, at the
singular limit ε1/ε2 = 0 all singular orbits converge to E for the case of weak w
(19).

Proof. We consider first the singular case that w is fast relative to z. As illustrated
in Fig.12(a) for the case (19). Initial points 1, 3 are the nontrivial stable y-slow
manifold. For type 1 initial points, singular orbits jump to the nontrivial w-nullcline
first and then converge to E following the z-slow flow. For type 3 initial points,
singular orbits jump to the trivial w-nullcline w = 0, cross the w-transcritical point,
jump up to the nontrivial w-nullcline at some w-outbreak PDLS points, and then
converge to E like type 1 points do. Type 2 points start on the trivial y-slow
manifold. They are represented by dash arrows. They will either jump to the
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(a) (b)

Figure 12. Typical yzw-singular orbits for cases of 0 < ε1 ¿
ε2 ¿ 1 with stable xyzw-equilibrium point E : (a) weak w, the
xyw attractor is an xyw equilibrium point; (b) efficient w, the xyw
attractor is an xyw cycle. Same plot conventions as Fig.9. In addi-
tion, squares denote points of Pontryagin’s delay of loss of stability.
They are color-coordinated with their corresponding transcritical
points: like-colored squares always pair with like-colored half-filled
circles.

nontrivial stable y-nullcline to become type 1 or 3 points, or they will first cross
the y-transcritical points, jump to the nontrivial stable y-slow manifold at some
y-PDLS points to become type 1 or 3 points. Type 4 points have an additional
feature. They jump to the trivial w-nullcline first, then follow the z-slow flow to
cross the y-transcritical point and jump to the nontrivial stable y-nullcline at some
y-PDLS points before converging to E . Hence, all singular orbits converge to E . The
local stability of E at the singular limit ε1/ε2 = 0 is similarly argued for both cases
concerning only initial points of type 1 as illustrated in Fig.12(b). By Fenichel’s
geometric theory of singular perturbation ([10]) the local stability of E persists for
small 0 < ε1/ε2 ¿ 1. This completes the proof. ¤

Coexistence in Y -fast Cycle. We can conclude from Propositions 7.5 and 7.4
that one necessary condition for possible existence of a periodic xyzw-cycle is when
w is efficient, i.e., the condition (20) holds so that the long term xyw-dynamics is
the x-slow, y-fast cycle discussed in Sec.6. Competitor z can be xyzw-competitive
if the xyw-cycle is unstable. (Under one sufficient condition, for example, that the
xyw-cycle lies behind the z-nullcline, i.e., wznl|{z=0} < wypd, with wypd denoting
the y-PDLS point of the xyw-cycle, z increases near the cycle, and the cycle is
unstable.) If in addition that the equilibrium point E lies in the unstable branch of
the y-nullcline surface, then it must be unstable. Under these two circumstances it
is easy to see that each singular orbit converges to a y-fast cycle of the type of Sec.6
for a fixed z between z = 0 and the point z = zyfd|{y=ywnl} at which w changes
its efficiency type. All these y-fast cycles form an invariant cylinder. When it is
perturbed first by 0 < ε2 ¿ 1, it forms a smooth surface with a vertex at the same y-
fold-w-nullcline point z = zyfd|{y=ywnl} and a yw-cycle at the other end point z = 0.
The vertex point is a Hopf bifurcation point of the yw-system with z as a parameter
and the surface shapes like a paraboloid. Cut off a sufficiently small piece of the



40 B.BOCKELMAN, B.DENG, E.GREEN, G.HINES, L.LIPPITT, & J.SHERMAN

(a) (b)

Figure 13. (a) Existence of a non-equilibrium coexisting xyzw-
attractor. (b) Existence of two coexisting xyzw-attractor.

surface near the vertex that lies entirely in front of the z-nullcline plane. Then it
results in a cylindrical surface. This surface together with small 0 < ε1 ¿ ε2 ¿ 1 is
an invariant center-manifold of the yw-system that is asymptotically attracting in
the yw-direction. Therefore, when it is perturbed by 0 < ε1 ¿ ε2 ¿ 1, it changes
to another invariant cylindrical manifold. The flow at the z = 0 end pushes in
the increasing direction of z because the xyw-cycle is unstable, and the flow at the
other end pushes leftward because it lies in front of the z-nullcline. As a result,
there must be an xyzw-coexistence attractor sitting on the cylinder. The two ends
of the attractor are limit cycles. It becomes a fast y-cycle if the two ends merge.
Hence we have proved the following statement.

Proposition 7.6. If z is xyzw-competitive, and if the equilibrium point E is un-
stable under the condition that wyfd|{y=ywnl} < wznl|{y=ywnl}, then for the perturbed
system 0 < ε1 ¿ ε2 ¿ 1, there exists a global cylindrical attractor which contains
y-fast xyzw-cycles at its end.

Multiple Coexisting Attractors. Any one of the conditions of Proposition 7.6
can go through a bifurcation. Assuming at the bifurcation point of condition (20)
wyfd|{y=ywnl} = wznl|{y=ywnl}, i.e., the equilibrium point E lies on the y-fold, the
xyw-cycle is still unstable and there is a non-equilibrium coexisting xyzw-attractor.
If this xyzw-attractor is an asymptotically stable limit cycle, then under a small
perturbation to condition (20): wyfd|{y=ywnl} > wznl|{y=ywnl}, E becomes stable.
At the same slightly perturbed parameter value, the coexisting xyzw-cycle also
persists. Thus there are at least 2 xyzw-attractors: the stable equilibrium E and
the xyzw-cycle. Figure 13(b) illustrates such a situation, in which the point p at the
y-fold and w-nullcline drifts leftwards when the singular perturbation 0 < ε1 ¿ ε2
is on as shown. A numerical simulation was given in Fig.3 in Sec.3.

7.3. Y -Slow Cycle for Fast Y and Slow Z,W . In terms of the prolificacy pa-
rameters we consider 0 < ζ ¿ εi ¿ 1, i = 1, 2 but ε1 and ε2 are comparable in
that ε1/ε2 = O(1). We will demonstrate below that the stable equilibrium point E
undergoes a Hopf bifurcation to give rise to a y-slow cycle. It grows with the ratio
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(a) (b)

Figure 14. (a) A y-slow cycle born through Hopf bifurcation at
E . (b) It grows into a large singular cycle showing the case of
w-nullcline going through the y-fold. In the case of (a) and as
ε2/ε1 → 0, the cycle grows but will never surpass the level w =
wwnl, at which the xyw-equilibrium point shown is not stable.

ε1/ε2, and to become a large y-slow, z-fast, or a large yz-fast cycle, or a chaotic
attractor to be demonstrated in the next subsection.

Assume the same condition (18) that guarantees the existence of the nontrivial
equilibrium point E . By Proposition 7.5 we know that for small 0 < ε1 ¿ ε2 ¿ 1, E
is locally stable under the condition (19) or (20). Then the following result holds.

Proposition 7.7. Assume the conditions (19) or (20). Then for each 0 < ε2 ¿ 1,
there is a value ε1 = θ(ε2) such that a pair of eigenvalues of the linearization at E
crosses the imaginary axis.

Proof. By Fenichel’s geometric theory of singular perturbation, the invariant y-slow
manifold in a compact neighborhood near E persists for small 0 < ε2 ¿ 1 treating
0 < ε1/ε2 ¿ 1 as a time scale independent of ε2. On this 2-dimensional manifold
the yzw-system can be projected onto the zw-plane. In a neighborhood of the E ,
the zw-phase plane looks qualitatively like Fig.14(a). To analyze the eigenvalues we
use the geometric method of Appendix B. More specifically, the linearized equation
can be written as follows

u̇ = ε1c1(au+ v)

v̇ = −ε2c2(bu+ v)

with (u, v) = (0, 0) corresponding to the equilibrium point E in (z, w). Here,
a, b, c1, c2 are constants satisfying the following conditions. Because u-equation’s
right side is the linearization of the vector field ε1zh restricted on the y-slow mani-
fold, the u-nullcline au+ v = 0 is precisely the tangent line to the z-nullcline at E .
Therefore, it has negative slope, forcing a > 0. Exactly the same argument results
in b > 0. In addition, the relative position of these u-, v-nullclines preserves that
of the z-, w-nullclines, we must have b > a > 0 because w decreases faster on the
w-nullcline than on the z-nullcline. Since ż > 0 for points above the z-nullcline,
which include points of large w because a significant presence of w enhances the
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competitiveness of z. Since the linearization in terms of u mirrors the same quali-
tative property, we must have the constant c1 > 0 to be positive. Exactly the same
argument leads to c2 > 0. Since εi and εici have the same order of magnitude,
we will let εi := εici for simpler notations in the following calculation. Now the
eigenvalues λ1,2 of the linear uv-system are

λ1,2 =
1

2
[ε1a− ε2 ±

√

(ε1a− ε2)2 − 4ε1ε2(b− a)].

We now see easily that the eigenvalues are pure imaginary at ε1a − ε2 = 0, and
their real parts change from negative to positive as ε1 increases above ε2/a. This
completes the proof. ¤

7.4. Large Y Z-Fast Cycle For Fast Y , Slow Z, Slower W . First we describe
the key condition that will allow us to trap such an orbit. Start at the y-fold point
(yyfd, 0, wyfd) on z = 0, c.f. Fig.14(b). Following the y-fast flow, the singular orbit
lands on the trivial y-nullcline surface y = 0 with the other coordinates unchanged.
Then the z-fast dynamics takes over, sending the orbit horizontally to the attracting
z-nullcline y = 0, z = zznl, landing on it with the same w-coordinate wyfd. See both
Figs.14(b),15(a). Once on the line y = 0, z = zznl, the w-dynamics takes over,
and the slow w-orbit develops downwards. It first crosses the y-transcritical point
(y, z, w) = (0, zznl, wytr), and must then jump to the nontrivial y-slow manifold
w = p(y, z) at a y-PDLS point (0, zznl, wypd) due to Pontryagin’s delay of loss
of stability with respect to the fast y-flow. The value of w0 := wypd|{z=zznl} is
determined as follows.

First we need to be more specific about the time scales of the reduced yzw-system
in the solid S. Rescale the time t→ ε2t to obtain the reduced system as

ε2y
′ = yg(q(y, z), y, w), ε0z

′ = zh(q(y, z)), w′ = wk(y)

with ε0 = ε2/ε1 ¿ 1 as an independent singular parameter from ε2. Thus, under
the condition that 0 < ε2 ¿ ε1 ¿ 1, y is the fastest of the three at a rate of order
O(1/ε2), z is the second fastest at a rate of order O(1/ε0) = O(ε1/ε2)¿ O(1/ε2).

Take any plane y = y0 > 0 sufficient near y = 0. Then a perturbed orbit starting
from (y0, z0, wyfd) for z0 > 0 is first attracted to the trivial y-nullcline y = 0, only
to emerge somewhere below the y-slow manifold w = p(y, z) and move toward the
manifold. In doing so it will hit the plane y = y0 again in direction opposite to its
initial direction. Hence following the orbit, the integral identity below holds

0 =

∫ y0

y0

1

ε2y
dy.

Since we can choose 0 < y0 < ywnl, the w-component of this portion of the orbit
always decreasing in w. Thus, we can make the following substitution of variable
from y to w

0 =

∫ y0

y0

1

ε2y
dy =

∫ wypd

wyfd

1

ε2y

dy

dw
dw.

Simplify the integral to obtain

0 =

∫ wypd

wyfd

g(q(y, z), y, w)

wk(y)
dw.

Taking the limit ε2 → 0 first, we have y = 0 on the equation above. Taking the
limit ε0 → 0 next for the reduced zw-system, we have z = zznl for z of the integrant.
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Therefore at the limit limε0→0 limε2→0, the integral equation above becomes

0 =

∫ wypd

wyfd

g(q(0, zznl), 0, w)

wk(0)
dw,

defining the wypd value on z = zznl as shown in Fig.14(b) as well as 15(a). Because
g(q(0, zznl), 0, w) < 0 for w > wytr and g(q(0, zznl), 0, w) > 0 for 0 < w < wytr, and
the fact that the indefinite integral

∫ u

wytr

g(q(0, zznl), 0, w)

wk(0)
dw

is 0 at u = wytr and +∞ at u = 0, the integral equation above for the y-PDLS
point wypd has a unique solution between 0 and wytr.

Once it is on the y-slow manifold w = p(y, z), the z-dynamics takes over, send-
ing the singular orbit to the trivial z-nullcline on w = p(y, 0) with w = w0 =
wypd|{z=zznl}. The slow w-dynamics takes over subsequently, moving the orbit up-
ward. Notice that since the nontrivial z-nullcline is between the y-fold curve and
the boundary 0 = p(y, z), the nontrivial z-nullcline strikes through the y-slow man-
ifold w = p(y, z) from y = 0 to z = 0. As a result it intersects on w = p(y, 0) at
a z-PDLS point between w = 0 and w = wyfd as shown in Fig.14(b) labelled with
wznl. Also between w = 0 and the y-fold point there is no xyzw-equilibrium point
because of the weak predator assumption on w. We can conclude now that after its
passing the z-transcritical point wznl on z = 0, w = p(y, 0), the z-dynamics becomes
unstable. Pontryagin’s delay of loss of stability takes place for the singular orbit so
that sooner or later it will develop in the increasing direction of z.

To be more precise on how the singular orbit turns around in variable z, we
again use the PDLS argument. Let w0 = wypd|{y=0,z=zznl} as above. Let z0 > 0
be sufficiently near z = 0. A perturbed orbit starting from the plane z = z0 at
point (y0, z0, w0) with y0 defined by w0 = p(y0, z0) will eventually emerge away
from z = 0 and strikes the plane z = z0 in opposition direction. Let wzpd denote
the w-coordinate of the point of return. Then, the identity 0 =

∫ z0

z0
ε0dz/z holds.

Suppose the orbit does not pass the w-nullcline y = ywnl, then one substitution
from variable z to w is sufficient to change the integral equation to

(21) 0 =

∫ wzpd

w0

ε0
z

dz

dw
dw =

∫ wzpd

w0

h(q(y, z))

wk(y)
dw.

Taking the double limit limε0→0 limε2→0, the equation above becomes

0 =

∫ wzpd

w0

h(q(y, 0))

wk(y)
dw =

∫ wzpd

w0

h(q(p−1(w), 0))

wk(p−1(w))
dw,

with y = p−1(w) uniquely defined by the invertible function w = p(y, 0).

Proposition 7.8. If the z-PDLS point wzpd defined by the equation above lies below
the y-fold point wyfd, then there exists a singular yz-fast cycle.

Proof. Take the interval I = [wypd, wytr] on z = 0, w = p(y, 0) as shown in
Fig.14(b). A return map following the singular orbits of the interval can be de-
fined. Under the assumption that wzpd never surpasses the y-fold point wyfd, the
lower end point w0 = wypd returns to the interval I. Because the z-nullcline de-
creases in w with increase in z, we see clearly from Fig.14(b) that the upper end
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point wytr must also returns to I as well. The continuity of this return map is obvi-
ous. Also it is strictly increasing because of the way all PDLS points are defined by
their respective integral equations whose solutions are unique. Hence there must
be a unique fixed point of the return map, and the fixed point indeed corresponds
to a yz-fast cycle. This completes the proof. ¤

The condition of this result must holds if the w is weak, and z is competitive,
as illustrated in Fig.14(a). As a result the z-PDLS point defined in the proposition
will never pass the unstable xyw-equilibrium point. In fact, the integral equation
defining wzpd above can be separated into two parts as

0 =

∫ wzpd

w0

h(q(y, 0))

wk(y)
dw =

∫ wznl

w0

h(q(y, 0))

wk(y)
dw +

∫ wzpd

wznl

h(q(y, 0))

wk(y)
dw,

with y = p−1(w). The first integral is negative and finite. The second integral is

positive. The denominator of the integrant of the latter h(q(y,0))
wk(y) = h(q(p−1(w),0))

wk(p−1(w))

diverges as w increases to wwnl at which k(p−1(w)) = 0. Hence the integral equa-
tion above must have a solution for wzpd < wyfd as required by Proposition 7.8’s
assumption.

The numerical simulation of Fig.2 also demonstrates that chaos is also possible
if predators y, z, w are weak but z is more prolific than w. Although chaos of this
type is harder to demonstrated, the case with efficient w can be done below.

7.5. Chaos for Efficient W , Competitive Z, and Fast Y , Slow Z, Slower W .
Under this condition, the xyw-equilibrium point is xyw-unstable, the xyw-cycle is
xyzw-unstable. We start from the integral equation 0 =

∫ z0

z0
ε0dz/z that defines the

z-PDLS point wzpd starting at w0. Recall that the assumption that the perturbed
orbit from w0 on w = p(y, z) never crosses the w-nulllcline plane y = ywnl gives
rise to the integral equation (21). Now suppose instead that the orbit crosses the
w-nullcline only once with w-coordinate at the crossing as w∗. Then the orbit is
increasing in w from w0 to w∗ and decreasing from w∗ to wzpd. Then two separate
substitutions from z to w are needed to bring the equation 0 =

∫ z0

z0
ε0dz/z into

0 =

∫ w∗

w0

ε0
z

dz

dw
dw +

∫ wzpd

w∗

ε0
z

dz

dw
dw

=

∫ w∗

w0

h(q(y, z))

wk(y)
dw +

∫ wzpd

w∗

h(q(y, z))

wk(y)
dw.

Although the two integrals look the same in form, the limiting behaviors with
ε2 → 0 are different. In the first integral all points lie on the nontrivial y-slow
manifold w = p(y, z) as ε2 → 0. In the second all points lie on the trivial y-slow
manifold y = 0 instead. Moreover, the y-fast dynamics forces w∗ → wyfd. Follow
up by taking ε0 → 0, then z = 0 in both integrals. Therefore, with the double limit
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Figure 15. (a) The z-PDLS point corresponding to w0 of Σ is at
w = wzpd, lying on y = z = 0 after pushing over the y-fold point
wyfd. (b) Due to the y-fold point wyfd the return map π devel-
ops a local minimum at the pre-PDLS point w1 of wzpd. (c) The
bifurcation of the local minimum through w0 = w1. (d) Possible
multiple extrema for small w0. (e) Combination PDLS jumps on
singular orbits with ε2 = 0.

limε0→0 limε2→0, the integral equation becomes

0 =

∫ wyfd

w0

h(q(y, 0))

wk(y)
dw +

∫ wzpd

wyfd

h(q(0, 0))

wk(0)
dw

=

∫ wznl

w0

h(q(y, 0))

wk(y)
dw

+

[

∫ wyfd

wznl

h(q(y, 0))

wk(y)
dw +

∫ wzpd

wyfd

h(q(0, 0))

wk(0)
dw

]

:= I1 + I2,

(22)

with y = p−1(w) defined from w = p(y, 0) as before, where I1 =
∫ wznl

w0

h(q(y,0))
wk(y) dw

and I2 denote the two integrals in the bracket. See Fig.15(a). Notice that I1 is
negative which can diverge to −∞ if w0 → 0. Whereas I2 is positive, bounded
above. This analysis implies that the condition of Proposition 7.8 must bifurcates
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into such a situation prescribed by equation (22) as w0 = wypd|{y=0,z=zznl} drops
lower.

If we let Σ be a w-interval on w = p(y, z) as shown in Fig.15(a) whose w-end
points are the same as the interval I = [wypd, wytr] from the proof of Proposition
7.8. For simpler notation let w2 = wytr|{y=0,z=zznl} and let w1 be the pre-PDLS

point of the y-fold wyfd, i.e.
∫ wyfd

w1

h(q(y,0))
wk(y) dw = 0. It exists because we assume

the z-PDLS point corresponding to w0 is pushed over the y-fold and lie on the
w-axis as shown in Fig.15(a). Then the same singular orbit induced return map
used in the proof Proposition 7.8 is no longer monotone increasing. Let π denote
the return map. Then w1 is a critical point in Σ = [w0, w2]. It increases in [w1, w2]
and decreases in [w0, w1] as depicted in Fig.15(b). Fig.15(c) shows the case at
bifurcation when w0 = w1.

If w0 is just slightly perturbed below the bifurcation point w0 = w1, then the
z-PDLS point wzpd is perturbed slightly below wyfd, and the image π(w0) of the
return map lies a little bit above w0. Further decreasing w0 will result in significant
increase in π(w0), which may give rise to chaotic dynamics of the return map π.
Decreasing w0 further can make the return map more complex by creating more
critical points as shown in Fig.15(d). In fact, decreasing w0 makes the negative
integral I1 of (22) more negative. To counter balance I1, wzpd must further move
downward on the w-axis and come to meet the y-PDLS point wypd. At this point
the y-fast dynamics must take over to switch the singular orbit to the stable y-
slow manifold w = p(y, z). Further decreasing w0 moves the wzpd upwards on the
nontrivial stable y-nullcline w = p(y, 0), splitting the integral I2 into three parts

I2 =

∫ wyfd

wznl

h(q(y, 0))

wk(y)
dw +

∫ wypd

wyfd

h(q(0, 0))

wk(0)
dw +

∫ wzpd

wypd

h(q(y, 0))

wk(y)
dw.

Under this situation, another critical point emerges between w0 and w1 to become a
local maximum for the return map π. Now it is clear to see that further decreasing
w0 will make the z-PDLS point wzpd to move up on w = p(y, 0) and down on
y = z = 0, creating more local extrema. Fig.15(d) shows such a possible situation.

Depending on the location of w0, the singular orbit may cycle around the xyw-
cycle several times before hitting its z-PDLS point. This conclusion is based on the
property that the z-competitive condition and the calculation of the z-PDLS point
are essentially the same type of integrals as above. To be precise, let (yc(t), 0, wc(t))
denote the perturbed cycle for ε2 > 0, and T be the period. Then z is xyw-

competitive if
∫ T

0
h(q(yc(t), 0))dt > 0. Let t = 0 correspond to the w-minimum

value w∗ on the w-nullcline on z = 0 and let t = T1 correspond to the w-maximum
point with w∗. Then w is increasing from w∗ to w∗ over [0, T1] and decreasing
from w∗ to w∗ over [T1, T ]. Split the integral over [0, T1] and [T1, T ] and use the
substitution dt = dw/wk(yc(t)) to get

J =

∫ w∗

w∗

h(q(yc, 0))

wk(yc)
dw +

∫ w∗

w∗

h(q(yc, 0))

wk(yc)
dw,

with the integrants tracing along the two half of the cycle. In limit ε2 → 0, limw∗ =
wyfd and limw∗ = wypd, and yc = p−1(w) for the first integral and yc = 0 for the
second integral, and

J0 = lim
ε2→0

J =

∫ wyfd

wypd

h(q(p−1(w), 0))

wk(p−1(w))
dw +

∫ wypd

wyfd

h(q(0, 0))

wk(0)
dw > 0.
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The same type of integrals as for the z-PDLS integral above. In particular, the
integral equation for the z-PDLS points can be broken down to an integral from
w0 to wypd, an integer multiple of J0, and a remainder part from wypd to wzpd.
The first and the last integrals together is precisely the same form of the z-PDLS
integral equation described above. Because J0 > 0, singular solutions always jump
away from the cycle no mater where they jump on it at w0.

One sufficient condition for chaotic dynamics is to have three adjacent critical
points that straddle the diagonal π = w in the sense that the value of the middle
point under the return map is on one side of the diagonal π = w and those of the
other two are on the opposite side of the diagonal so that these critical points also
lie between the minimum and maximum values of the points. More precisely we
have the following partial result. Also, multiple bumps must occur on the graph
of π if w0 is sufficiently small and the singular orbit cycles around the xyw-cycle
several times before jumping away in the z-direction.

Proposition 7.9. If there exist three adjacent critical points of π that straddle the
diagonal, then there is a subset of Σ on which π is equivalent to the shift dynamics
on two symbols.

Proof. A proof for such a continuous map is given in [7]. ¤

Numerical simulations indeed suggest such a scenario of Proposition 7.9 as well
as chaos due to the existence of a single critical point for a quadratic-like map π.

Finally we conclude this subsection by explaining a special case of Pontryagin’s
delay of loss of stability when the slow flow is 2-dimensional. The ε2-fast dynamics
is that of y, and the ε2-slow dynamics is that of z, w. Start a point on the y-fold
as shown in Fig.15(e). The singular ε2-fast dynamics sends it down on y = 0. The
ε2-slow zw-dynamics takes over. It moves down in w, crosses the y-transcritical
curve, and jumps back to w = p(y, z) at some y-PDLS point wypd as shown, and
zigzags its way toward y = 0, z = zznl afterward. Since we always pick nonzero
singular values 0 < ε2 ¿ ε1 ¿ 1 for numerical simulations, such zigzag orbits are
bound to occur as shown in Fig.4 in the case that the wypd values lie below the
corresponding wznl on the y-nullcline w = p(y, z).

7.6. Large Y Z-Cycle and Chaos for Fast Z, Slow Y , and Slower W . The
last case we consider satisfies that the maximum reproductive rates range from
high to low in the order of x, z, y, w: 0 < ε2 ¿ 1 ¿ ε1 ¿ 1/ζ. In this case, all
nontrivial singular orbits eventually enter the x-slow manifold solid S as before.
The key difference from all previous cases is that instead of going to either of the
attracting y-slow manifolds as before, singular orbits will move in the direction of z
and converge to the attracting branches of the z-nullcline because of the prolificity
reversal between y and z.

We have derived above that the nontrivial z-nullcline is a vertical plane parallel
to the w-axis in the solid S as shown in Fig.16, through the line connecting (yznl, 0)
to (0, zznl) on the w = 0 plane. We have also demonstrated above that to the left
side of the plane z increases because y is relatively small, and to the right side of the
plane z decreases because y is relatively large. Also, part of the trivial z-nullcline
z = 0 is also attracting, for which y ≥ yznl again because of a relatively greater
concentration of its competitor y.
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(a) (b)

(c) (d)

Figure 16. In all the cases, the attracting z-manifolds consist of
the nontrivial z-nullcline, which is the vertical plane parallel to the
w-axis, and part of the trivial z = 0 nullcline with y ≥ yznl. (a)
The case of weak w, xyw noncompetitive z. (b) The case of weak
w, xyw competitive z. (c) The case of efficient w, xyw competitive
z. (d) The case of efficient w, xyw-noncompetitive z.

The principal ideas and techniques for analyzing the singular orbits of this case
are the same as the case where y is faster than z as long as we replace z for y as
the fast variable second only to x in all the arguments above.

Four subcases are in order: (a) weak w (ywnl > yyfd) and xyw-noncompetitive
z (yznl < ywnl); (b) weak w and xyw-competitive z; (c) efficient w (ywnl < yyfd)
and xyw-competitive z (xyzw-unstable xyw-cycle); (d) efficient w and xyw non-
competitive z. See illustrations of these four cases in Fig.16.

Descriptions of these 4 cases are as follows. For the first case (a), the xyw
equilibrium point is a global attractor for all nontrivial singular orbits. Competitor
z dies out eventually, no xyzw-coexistence state. For the case of (b), there is
an attracting, large xyzw-coexisting limit cycle. In fact, let Σ be the interval
on the line y = yznl, z = 0 with end points wypd < wytr as shown, for which
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point labelled wypd is the PDLS point coming from the unstable equilibrium point
y = ywnl, z = 0, w = wwnl on the nontrivial y-nullcline surface w = p(y, z). Then it
is easy to see geometrically that the singular orbit of every point from the interval
Σ returns to it. The singular orbit induced return map is monotone increasing.
Therefore there must be a unique fixed point of the return map similar to the case
of Fig.15(a), corresponding to an attracting limit cycle. For the case of (c), chaotic
dynamics can occur. Following the same set-up as (b), the return map in Σ is no
longer just monotone. As in the case of Fig.15(b), let w1 be the pre-PDLS point
of the y-fold point (yyfd, 0, wyfd) with respect to the fast z-flow. Then the singular
orbit induced return map on Σ is qualitatively the same as that of Fig.15(b) and
(d) if wypd is pushed low enough to the trivial plane w = 0. For the last case (d),
all nontrivial singular orbits are attracted to the xyw-limit cycle if it is just locally
attracting with respect to the xyzw-system. Numerical simulations with large ε1
were carried out. They were all consistent with the theoretical predictions above.

In summary, if competitor z is out-reproducing its competitor y, then the only
possible singular coexisting states are either large yz-limit cycles or chaotic attrac-
tors. Coexisting equilibrium state is not possible.

8. Concluding Remarks

(1) The Competition Exclusion principle cannot be generalized to 4-species web
even for the simplest case where all predators are weak because the coexistence can
be a steady state. The principle must be extended to account for the predation-
induced competitiveness: Z is notXY Z-competitive but can beXY ZW -competitive.
Also, the predation-induced coexistence state is not just one simplistic form. It can
range from equilibrium states, to periodic cycles, to multiple attractors, to chaotic
attractors.
(2) Competition can prevent a chain from chance extinction. Under the pressure of
an efficient top-predator W , the XYW chain is locked in a cycle whose variation
between high and low densities grows as the relative birth rate ofW to Y decreases.
Also the more efficient W is, the greater the cycle variability. Therefore Y can be
subject to chance extinction if its cycle density becomes too low. In such a case,
adding a competitor Z to the chain seems to add more pressure on Y and therefore
further increase XYW ’s cycle variability. This seems to be biologically reason-
able as well as logical. Instead, the opposite must occur: a weak, noncompetitive
competitor Z reduces the variability and even restores the density variability to a
steady state away from chance extinction zone. This phenomenon is an extension
of the Enrichment Paradox as pointed out earlier in Sec.3.
(3) Chaos can arise from a deceptively benign mix—an XYW stable equilibrium
without Z, an XY equilibrium without W,Z, and an extinction-bound Z in the
XY Z-web. All it takes is to have a prolific Z relatively to Y,W in the XY ZW -web.
This phenomenon of Prolificity to Chaos was only known for time discrete models
of single species of non-overlapping generations.
(4) The role of a noncompetitive competitor Z in the XY Z-web is not at all passive
in the XY ZW -web. By out-reproducing its competitor Y , it can have a dramatic
impact on the system—driving it from a steady state all the way to a chaotic one.
There is a risk as well as a potential benefit for Z to do so. As the reproduction-
driven attractor increases in size, so is the population variability between their
maximum and minimum densities. Low density is susceptible to chance extinction.
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By out-reproducing its competitor, Z may become the first chance extinction victim
or may drive Y first into its own chance extinction zone due to the Prolificacy Du-
ality. The role of prolificity in such a web is as important as intratrophic predation
and competition.
(5) The last observation raises the possibility that evolution may have rooted out
such weak-predators/over-prolific-competitor web. At the first glance, we noted
in the introduction that there seems no ecological or logical reasons to assume a
prolificacy preference between the two weak competitors Y,Z in the XY ZW -web.
Since for large and moderate ZY -prolificacy there are no equilibrium coexisting
states but only large Y Z-cycles and large chaotic attractors which are susceptible
to chance extinction, it seems after all that there should be a prolific asymmetry
between Y,Z—it is best for a noncompetitive competitor to stay low if it owes its
existence to the predators of its competitors.
(6) It also raises the possibility that evolution may have favored organisms whose
prolificities do not vary much individually not because of their physiological con-
straints but because of their adaption to the chance extinction avoidance strategy
whose dynamical explanation is given above. In other words, whatever physiologi-
cal limitations on reproduction that we observe in nature they might have been the
the result of nature’s counter measure to the route of prolificity-to-chaos.
(7) It is yet to test whether or not any of our theoretical predictions will hold in the
field. One prediction is easier to verify or reject than others. That is, an XY ZW -
web of all weak predators will develop a small cycle from its equilibrium state if Z’s
prolificity is increased. Artificially changing an organism’s reproductive rate should
not be hard to do, especially in lab. Another phenomenon is also worth noticing.
The question is is there any organism which reduces its reproductive rate when its
predator arises in number so to ride out the predatory surge and increases the rate
when the predator is in a slump so to reach its potential capacity quickly?
(8) Understanding complexity requires effective languages and precision tools that
work hand-by-hand. We believe we have found both and demonstrated how to use
each to complement the other. The combined approach should work well to study
other types of food web dynamics which may have multiple preys, multiple top-
predators. Last, no survey on methods can end without a few words on numerical
method. Numerical method has proven to be an indispensable tool for exploration
and verification. Some of the numerical simulations presented motivated part of
the theory, a majority of them was for verification of the theory, and still at least
one numerical result (Fig.2) stands out on its own and we have to leave it that way
for now.

9. Appendix A: General Food Web and Competitiveness

In general, let {X1, X2, . . . , Xn} be a community of species ordered in chains
from bottom to top. It is said to be a direct chain if Xi is the prey of Xi+1 for
all 1 ≤ i ≤ n − 1. We call Xk a chain predator of any Xi for i < k and simply a
predator if i = k− 1 in a direct chain. We call Xi a chain prey of Xk for i < k and
simply a prey for k = i+ 1 in a direct chain. The community is said to form a web
if any Xk, k ≥ 1 is either a chain predator or a chain prey and there is an i such
that Xi is not a prey of Xi+1. Two species Xi, Xj are said to be connected in a
web if either one is a chain predator of the other in a direct subchain or both share
a common chain predator or chain prey. A web is said to be connected if any two
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species in it are connected and it is always meant to be connected unless otherwise
noted whenever a web is considered. A direct chain is a special case of connected
web.

A time continuous model for a community usually take the form: Ẋi = Xifi(X),
X = (X1, X2, . . . , Xn), i = 1, 2, . . . , n. Any hyperplane Xi1 = Xi2 = · · · = Xij = 0
is invariant. In other words, any collection of Xn1

, Xn2
, . . . , Xnk with Xi = 0, i 6=

nj , j = 1, 2, . . . , k forms a subsystem. Xnk is said to be Xn1
Xn2
· · ·Xnk -weak if

{Xn1
, Xn2

, . . . , Xnk} is a direct chain and it has a stable Xn1
Xn2
· · ·Xnk equilib-

rium point with nontrivial values Xni > 0. Let Xnk+1
be a competitor of Xnk

such that both Xnk and Xnk+1
share a common subchain, i.e. there are species

Xn1
, Xn2

, . . . , Xnk−1
so that bothXn1

Xn2
. . . Xnk−1

Xnk andXn1
Xn2

. . . Xnk−1
Xnk+1

are direct chains. Then Xnk+1
is said to be Xn1

Xn2
· · ·Xnk−1

Xnk -competitive if any
Xn1

Xn2
· · ·Xnk−1

Xnk attractor is asymptotically unstable with respect to the ex-
panded Xn1

Xn2
· · ·Xnk−1

XnkXnk+1
-subsystem. By definition it is equivalent to

lim
T→∞

1

T

∫ T

0

fnk+1
(Xa(t))dt > 0

with Xa(t) denoting any dense solution on the attractor. This criterion is derived
from the variational equation of the Xnk+1

-equation

V̇ = fnk+1
(Xa(t))V

with V = DXnk+1
being the variation of the Xnk+1

-variable because Xnk+1
= 0 on

any Xn1
Xn2
· · ·Xnk−1

Xnk attractor. Solving V we have

V (t) = V0 exp(

∫ t

0

fnk+1
(Xa(s))ds) := V0 exp(λtt)

where λT = 1
T

∫ T

0
fnk+1

(Xa(s))ds. Hence limT→∞ λT > 0 implies the asymptotic
instability of the Xn1

Xn2
· · ·Xnk−1

Xnk attractor.
If the attractor is an equilibrium point, this condition reduces to fnk+1

(Xa(t)) ≡
fnk+1

(Xa(0)) > 0. If it is a Tc periodic cycle, it is reduced to

1

Tc

∫ Tc

0

fnk+1
(Xa(t))dt > 0.

If it is an irreducible Xn1
Xn2
· · ·Xnk−1

Xnk chaotic attractor, then it is the Xnk+1
-

directional positive Lyapunov exponent in the expanded Xn1
Xn2
· · ·XnkXnk+1

sys-
tem.

10. Appendix B: Geometric Method of Local Stability

The technique is also based on a geometric aspect of the problem—the nullcline
analysis presented in Sec.4. Let

u̇ = F (u, v)/ζ, v̇ = G(u, v)

denote the linearization of Eq.(7) after we have translated the corresponding equi-
librium point (xe, ye) to the origin (0, 0). Since it is the linearization of xf(x, y, 0),
F (u, v) must take this form F (u, v) = au+ bv for some a, b. To determine the signs
of a and b, we take a closer look at the circumstances from which it arises. First the
nullcline F (u, v) = 0 is precisely the tangent line to the nullcline xf(x, y, 0) = 0.
By inspecting the nullcline xf(x, y, 0) = 0 as shown in Fig.5(a), we conclude that
the line F (u, v) = au + bv = 0 has a negative slope iff y is weak: xxfd < xynl.
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Hence, a, b must have the same sign. Second, since xf(x, y, 0) < 0 iff the point
(x, y) lies above the nullcline f(x, y, 0) = 0, F (u, v) preserves the same property:
au+bv < 0 iff (u, v) lies above the line au+bv = 0, which implies that a < 0, b < 0.
The exactly same argument can be applied to conclude that G(u, v) = cu for some
c > 0. Now the eigenvalues of the lineariation can be explicitly derived as

λ1,2 =
1

2

[

a

ζ
±

√

a2

ζ2
+

4bc

ζ

]

.

We can then conclude the following:

(1) The eigenvalues have negative real parts iff y is weak, i.e. a < 0 for a <
0, b < 0, c > 0.

(2) The equilibrium point undergoes a Hopf bifurcation at the fold point when
a = 0.

The same amount of qualitative information without actually finding the equilib-
rium point and the linearization explicitly.

11. Appendix C: Methodology of Singular Perturbations

The key idea for singular orbit analysis is to break down, if possible, a system
into various time scales so that we only have to deal with one or fewer variables
at a time. The scaled system (3) indeed evolves at various different time scales,
provided 0 < ζ, ε1, ε2 ¿ 1. Such systems are called singularly perturbed systems
and the small time rate parameters are called the singular parameters.

By expressing the derivatives explicitly in (3) as follows

ẋ =
1

ζ
xf(x, y, z), ẏ = yg(x,w), ż = ε1zh(x), ẇ = ε2wk(y),

we see that the derivative ẋ is extremely large due to the 1
ζ
term. Thus all solutions

evolve very quickly to the nearest attracting x-nullcline surface, where ẋ = 0, with
other variables varying little near their initial values. (If there is no attracting x-
nullcline surface in that x-flow direction, which is not the case for our system, the
solution diverges to infinity very quickly.) At the limit, ζ = 0, the other variables are
frozen at their initial values and the x-initial instantaneously jumps in the direction
of x to the attracting x-nullcline surface, which consists of stable equilibrium points
for the x-equation with other variables fixed as parameters.

Once the solution arrives on an attracting branch of the x-nullcline, the next
fastest part of the system takes over. With the assumption that 0 < ε2, ε1 ¿
1 it is the y variable. Holding z and w as constant, the solution may proceed
to the nearest attracting y-nullcline (following the 1-directional y-flow) or may
leave the x-nullcline via fold points or transcritical points. If it goes to the y-
nullcline, we then look for the next fast variable which may be either z or w or both
depending on the relative sizes of ε1 and ε2, and repeat the process during which the
singular solution may bounce among various nullclines or attractors before settling
down on an equilibrium point, a limit cycle, or a chaotic attractor. Jumping off
a nullcline occurs usually at fold or transcritical turning points. The fast variable
at a given time scale can be more than 1 variable. For instance, since y, z are
competitors which occupy the same trophic level above x, they may reproduce at
comparable rates. In such a case (y, z) is the next joint fast variable after x. As
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a consequence the singular orbit may be attracted to not only the combined yz-
equilibrium/nullcline states but also other types of yz-attractors such as invariable
tori. The singular orbit analysis still applies in that the next corresponding singular
orbit stops on such attractors before further developing. Presumably the dynamical
behaviors vary with particular models.

The short-term temporal transitions illustrated in Sec.4 are the simplest and
most elementary kinds of predator-decline-prey-recovery-to-prey-outbreak and predator-
recovery-prey-decline-to-prey-collapse that one encounters in ecological models. Math-
ematically, the derivation involves only a simple substitution from the integration
variable xζ to yζ once since yζ(t) is a monotone function of t from y1 to y2. In
generalizations to this argument for some more elaborate outbreak-collapse popu-
lation dynamics, the fast x-nullcline may be surfaces or hyper-surfaces and the slow
y-flow may be multi-dimensional having once again more than 1 time scales with
fold and transcritical turning points of its own. As a result the substitution in yζ
may require more-than-one monotone substitutions and the integral equation may
contain multiple pieces of integrals. However complicated the models may be, the
technique of orbit-integral-to-ζ-limit will always be an attractive tool to try, which
always worked whenever it is needed throughout the presentation. Many authors
have effectively used this method of which the elementary derivation given above
follows the original idea of [23], see also [27, 19].

The method of singular perturbations is to categorize asymptotic singular orbits,
which attracts other singular orbits near by, and to demonstrate that the attract-
ing singular orbits persist for small but non-vanishing singular parameters. The
importance of studying singular attractors lies in the fact that almost inevitably
such singular attractors persist for the perturbed full systems. For examples of how
persistence problems are handled for practical models we refer to [4, 5, 15].

12. Appendix D: Existence of Y -Fold

Proposition 12.1. Under conditions:

max{
1− βi

2
} < min{

βiδi
1− δi

} and β3 <
(β1 + 1)3

β1

(

1

β1 + 1
− δ1

)

there is a unique y-fold curve py(y, z) = 0 in ∆ from z = 0 to y = 0, and py(0, 0) >
0, py(y, z) < 0 for q(y, z) = xynl.

Proof. The idea is to show that along any radius line y = s, z = ms in the first
quadrant m ≥ 0, s ≥ 0 from the origin (0, 0), s = 0 to the ∆ boundary q(s,ms) =
xynl, there is a unique zero for the function wy = py(s,ms).

With x = q(y, z) ∈ [xynl, 1] below, the y-partial derivative of w is

wy =py(y, z) =
β1

(β1 + x)2
qy(β3 + y) +

(

x

β1 + x
− δ1

)

=
β1

(β1 + x)2

(

−
fy
fx

)

(β3 + y) +

(

x

β1 + x
− δ1

)

=

(

−
fy(β1 + x)

fx

)[

β1

(β1 + x)3
(β3 + y) +

(

−
fx

fy(β1 + x)

)(

x

β1 + x
− δ1

)]

=
1

fx

[

β1

(β1 + x)3
(β3 + y) + fx

(

x

β1 + x
− δ1

)]

(since fy = − 1
β1+x

)



54 B.BOCKELMAN, B.DENG, E.GREEN, G.HINES, L.LIPPITT, & J.SHERMAN

Since fx = −1 + y
(β1+x)2 + z

(β3+x)2 = −1 at x = 1, y = z = 0, s = 0, we have

immediately

wy|{x=1,y=z=0} = −

[

β1β3

(β1 + 1)3
−

(

1

β1 + 1
− δ1

)]

= −
β1

(β1 + 1)3

[

β3 −
(β1 + 1)3

β1

(

1

β1 + 1
− δ1

)]

> 0

by the assumption on β3. Also, at x = q(s,ms) = xynl = β1δ1/(1− δ1),

wy|{x=xynl} =

(

1

fx

)

β1

(β1 + x)3
(β3 + y) < 0

because fx < 0 in S by definition. Therefore there must a zero of wy = p(s,ms)
between s = 0 and q(s,ms) = xynl. So it is only left to show that the zero is unique.

To this end, we make a simple change of variable x = q(s,ms) so that x runs
from 1 to xynl with increasing s from s = 0. Since xs = qy +mqz < 0 because both
qy, qz < 0 and m ≥ 0, this is a valid substitution. Moreover, the inverse s = s(x) is
well defined, and is monotone decreasing: sx < 0. Denote

wy =
1

fx

[

β1

(β1 + x)3
(β3 + y) + fx

(

x

β1 + x
− δ1

)]

:=
1

fx
Q(x).

Then we know Q(1) < 0, Q(xynl) > 0, and we only need to show Q′(x) < 0 for
x ∈ [xynl, 1]. Writing Q out

Q(x) =
β1

(β1 + x)3
(β3 + s(x)) +

(

−1 +
s(x)

(β1 + x)2
+

ms(x)

(β3 + x)2

)(

x

β1 + x
− δ1

)

we see that Q′(x) < 0. In fact, the first term is obviously decreasing in x. The
second term is the product of two factors: a(x)b(x) := fx(

x
β1+x

− δ1). By product

rule, we have a′(x)b(x) + a(x)b′(x). Since a = fx is negative, decreasing, and b
is positive, increasing, we see clearly that it is decreasing for the product. This
completes the proof. ¤

13. Appendix E: Nullclines of XY ZW -Web

The attracting branch of the nontrivial x-nullcline satisfies fx(x, y, z) < 0 by
definition. Therefore it can be solved from f(x, y, z) = 1 − x − y

β1+x
− z

β2+x
= 0

by Implicity Function Theorem in terms of x as a function x = q(y, z) of y, z.
Because it is independent of w, the manifold is a solid or hyper-surface in the
xyzw-space, parallel to the w-axis, which we denote by S : x = q(y, z) for points
(y, z) interior to the fold surface (14). Since fx < 0 on S, and fy < 0, fz < 0,
we have that qy = −fy/fx < 0 and qz = −fz/fx < 0. Hence, q decreases in
both y and z variables, with q(0, 0) = 1. When projected to the yzw-space, S is
a cylindrical solid in the first yzw-octant, bounded by the coordinate planes and
the fold cylindrical surface (14). In other words, it is the domain of definition in
the positive yzw-octant for the function q. We will use the same notation S for its
yzw-projection solid.

Eq.(17) is again singularly perturbed by parameters 0 < εi ¿ 1. The zw-plane
(y = 0) is always the trivial y-nullcline. The intersection of the nontrivial y-nullcline
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within S is determined by the system of equations f(x, y, z) = 0, g(x, y, w) = 0,
which is expressed as

w = p(y, z) :=

(

q(y, z)

β1 + q(y, z)
− δ1

)

(β3 + y),

with (y, z) constraint to the region ∆ := { q(y,z)
β1+q(y,z) − δ1 ≥ 0, y ≥ 0, z ≥ 0},

equivalently ∆ = {q(y, z) ≥ β1δ1/(1 − δ1) = xynl, y ≥ 0, z ≥ 0}. It is a surface
in the x-slow manifold solid S. Since q is decreasing in y, z, and the boundary
curve x = q(y, z) = xynl is a line, obvious from the defining equation f(x, y, z) =
(1− x− y/(β1 + x)− z/(β2 + x) = 0, therefore the domain of definition ∆ for the
y-nullcline w = p(y, z) in S is a triangle bounded by the axises y = 0, z = 0 and
the line q(y, z) = xynl, see Fig.8.

The y-transcritical curve is given by w = p(0, z) = ( x
β1+x

−δ1)β3 with x = q(0, z)

which satisfies z = (1− x)(β2 + x), with z between 0 and z = (1− xynl)(β2 + xynl).

It is monotone decreasing in z. In fact, wz = pz(0, z) =
β1β3

(β1+x)2xz whose sign is the

same as 1/xz = zx = 2( 1−β2

2 − x) < 0 because x ≥ xynl > xxfd|{y=0} = (1 − β2)/2
by the y-weak assumption.

As we mentioned earlier in Sec.5 that the xyw-system with z = 0 has a unique
y-nullcline fold point on the stable x-manifold f = 0, and it is a special case of
Proposition 12.1. More specifically, a fold turning point for the y-flow in the solid
S is determined by gy(q(y, z), y, w) = 0, g(q(y, z), y, w) = 0. In terms of w = p(y, z)
for the y-nullcline in S: g(q(y, z), y, w) = 0, the condition gy(q(y, z), y, w) = 0 is
equivalent to wy = py(y, z) = −gy(q(y, z), y, w)/gw(q(y, z), y, w) = 0. Also, the
stable branch of the y-nullcline is determined by gy(q(y, z), y, w) < 0, which is
equivalent to wy = py(y, z) < 0 because gw < 0 always.

Proposition 12.1 proves that the y-nullcline surface w = p(y, z) in S indeed has
a unique y-fold curve wy = py(y, z) = 0 on w = p(y, z) running from ∆’s boundary
z = 0, which is the above special case, to another boundary y = 0. Denote this
fold curve by (y, z, w)yfd. This curve divides the y-nullcline into the stable branch
and the unstable branch. The unstable part contains the y-transcritical point, in
particular x = 1, y = z = 0, w = q(0, 0), and the stable part contains the boundary
q(y, z) = xynl, see Proposition 12.1.

The nontrivial z-nullcline h(x) = 0 in the x-slow manifold solid f(x, y, z) = 0 is
given by x = xznl, f(x, y, z) = 1 − x − y/(β1 + x) − z/(β2 + x) = 0. It is a line in
the yz-plane and a plane parallel to the w-axis in the solid S. Important properties
about it include the following:

(1) If z is competitive (Exy = xynl − xznl > 0), then the z-nullcline x = xznl

does not intersect the y-slow manifold w = p(y, z) = ( x
β1+x

− δ1)(β3 + y)

since w < 0 with x = xznl. On the yz-plane in S, the line x = xznl lies
between the x-fold curve and the boundary line x = q(y, z) = xynl for for
the y-slow manifold w = p(y, z). See Fig.8.

(2) If z is not competitive (Exy = xynl−xznl < 0), then the z-nullcline x = xznl

intersects the y-slow manifold w = p(y, z) = ( x
β1+x

−δ1)(β3+y) in the solid

S : f(x, y, z) = 1− x− y/(β1 + x)− z/(β2 + x) = 0 along a line

w = p(y, z) =

(

x

β1 + x
− δ1

)

(β3 + y), z = (β2 + x)

(

1− x−
y

β1 + x

)
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parameterized by y ∈ [0, (1 − x)(β1 + x)], with x = xznl above. Along it
w increases while z decreases with increase in y. We denote this line by
(y, z, w)znl.

(3) The z-transcritical line is given by the intersection of the trivial z-nullcline
z = 0 and x = xznl in the solid S : f(x, y, z) = 1−x− y/(β1 +x)− z/(β2 +
x) = 0, which is the line yztr = (1− xznl)(β1 + xznl). Point (yztr, 0, wztr) =
(yztr, 0, p(yztr, 0)) is the z-transcritical point on the y-slow manifold w =
p(y, z). See Fig.8.

Finally, the nontrivial w-nullcline (k(y) = 0) is given by the hyper-plane

y = ywnl =
β3δ3
1− δ3

.

It intersects the y-slow manifold w = p(y, z) in S along a curve w = p(ywnl, z) with
z from 0 to zwnl = (1−xynl− ywnl/(β1 +xynl))(β2 +xynl), which is the intersection
of y = ywnl with the boundary w = 0, q(y, z) = xynl. This w-nullcline will intersect
the y-fold curve if w is efficient as defined in Sec.6, or may not if w is weak as
shown in Fig.8. The point (ywnl, zwnl, w) is the w-transcritical point on the y-slow
manifold w = p(y, z).
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