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The intraspecific interference of a top-predator is incorporated into a classical mathematical model
for three-trophic food chains. All chaos types known to the classical model are shown to exist for
this comprehensive model. It is further demonstrated that if the top-predator reproduces at high
efficiency, then all chaotic dynamics will change to a stable coexisting equilibrium, a novel property
not found in the classical model. This finding gives a mechanistic explanation to the question of
why food chain chaos is rare in the field. It also suggests that high reproductive efficiency of
top-predators tends to stabilize food chains. © 2006 American Institute of Physics.

[DOL: 10.1063/1.2405711]

Ecological chaos is rare but theoretical chaos is common
in mathematical models of food chains. Because of the
practical difficulty and cost associated with controlled
field and laboratory experiments, studying how chaos
arises and disappears from food chain models remains an
attractive and economical way to understand these prob-
lems. In particular, such understandings may offer rare
insights into the role that chaos plays in the evolution of
predator-prey dynamics.

I. INTRODUCTION

The Rosenzweig-MacArthur food chain model has been
used by many authors for food chain chaos, cf. Refs. 1-14.
Our more recent work'>™'® shows that chaos occurs in a large
region of parameter space of the Rosenzweig-MacArthur
model, a result that, like many others, does not correlate well
with empirical data.'”* The gap between the predicted and
the observed was noticed in the late 1980s. A plausible ex-
planation was proposed in Ref. 23, where it was hypoth-
esized that the rarity of field food chain chaos is due to the
fact that chaotic variations would inevitably drive down the
species population to a too low level for the species to escape
extinction. However, this explanation is not mechanistic, but
phenomenological and circular. In other words, if ecological
chaos is an evolutionary executioner, then what is the “capi-
tal” cause?

The purpose of this paper is to propose a mechanistic
solution to the problem. The same approach has resolved a
long list of theoretical problems in ecological research. All
the problems arise from a subtle but critical defect of the
classical Rosenzweig-MacArthur food chain model that does
not include the effect of intraspecific competitions among
predators. Without this consideration, the model inevitably
leads to paradoxical predications, with the Enrichment Para-
dox, the Biological Control Paradox, and the Competition
Exclusion Principle being the most notorious. See Ref. 24 for
an early and direct field study contradicting the Enrichment
Paradox assertion from Ref. 14. The issue of the Biological

an equilibrium point of arbitrarily small magnitude if the
biological control agent can reproduce significantly faster
than the pest. The Competitive Exclusion Principle fails to
hold in general according to Ref. 30. All these artifacts dis-
appear when intraspecific competition is taken into consider-
ation for all species.

We will show that with the inclusion of intraspecific
competition for the top-predator alone to the Rosenzweig-
MacArthur food chain model, the “chaos paradox” effec-
tively ceases to be an issue when the top-predator reproduces
at high efficiency. In particular, all chaotic dynamics of the
comprehensive model will bifurcate into a stable equilibrium
with an increase in the top-predator’s reproductive efficiency.
The result thus suggests that reproductive inefficiency of
species is an intrinsic cause of chaos-induced extinction, if
such an evolutionary extinction scenario has ever happened,
and that chaos is largely a theoretical spectacle for ecological
systems since evolutionarily successful species are expected
to be reproductively efficient. It also suggests to field and
laboratory experimentalists that food chain chaos is likely to
be found in systems of inefficient predators. The result fur-
ther suggests that efficient top-predators are important for the
stability of ecological systems.

The paper is organized as follows. We will introduce in
Sec. II the modified Rosenzweig-MacArthur food chain
model with the inclusion of intraspecific competitions of the
predators. We will demonstrate in Sec. III how the food
chain chaos mechanisms for the classical model extend to
our comprehensive model. We will show in Sec. IV why all
chaotic dynamics are eliminated by increasing the reproduc-
tive efficiency of the top-predator.

Il. THE MODEL

Consider the following model for three-trophic food
chains:

Control Paradox™® was resolved in Ref. 29, which shows X< rX(l X ) X
that the modified predator-prey model can indeed stabilize at K) H +X '’
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Here X,Y,Z are the densities for a prey, a predator, and a
top-predator, respectively. Without predator Y, prey X is
modeled by the logistic equation with r the maximum per
capita growth rate and K the carrying capacity. Each predator
is modeled according to Holling’s type II disk function®"?
with p; the corresponding maximum per capita capture rate
and H; the semisaturation constant. Parameters b, b, are the
birth-to-consumption ratios for the predators, the reproduc-
tive efficiency parameters mentioned in the Introduction. The
products b;p; are the maximum per capita reproductive rates
of the predators. Each predator is subjected to a minimum
per capita death rate d,. It is assumed that each predator is in
addition subjected to a density-dependent per capita death
rate s1Y,s,Z, respectively, which may be interpreted to be the
result of intraspecific competitions for resources. Without
these two terms, the model is the classical Rosenzweig-
MacArthur model® for food chains whose dynamics have
been thoroughly anatlyze:d.4’6’9’10’12’15’18 As mentioned above,
the exclusion of the predator’s intraspecific interference in a
two-species predator-prey model leads to predictions not
supported by observations. The inclusion of these terms is
further justified because it conforms to Verhulst’s logistic
growth principle.3 73 This has been done for the two-species
predator-prey system [with Z=0 in (2.1)] in Refs. 29 and 36.

For the purposes of capturing equivalent dynamics and
simplifying mathematical analysis, the following changes of
variables and parameters are used to transform the equations
to a dimensionless form:

t—bpt Y z
— 9’ 'x = _, = _7 Z = _’
1P1 K y Y, Z
. rK b,rK
with Yo=—, Z,= ,
P1 P2
(2.2)
H, H, d d,
Blz_’ :82=_’ 51= s 52= s
K Y bip, byp,
51 522 bip, byp,
0’1 =, 0‘2 = s = R = .
bip, byp, r bipi

The original idea that motivated this particular transforma-
tion can be found in Ref. 15. The same idea was used effec-
tively in Refs. 16—18 as well. The new, dimensionless equa-
tions now become

ZX=x(1—x— )==Xf(x,y),

Y
B1+x

Z
_m> = yg(X,y,Z), (23)
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We only want to emphasize here that parameter {=bp,/r is
the YX prolificacy, measuring the maximum growth rate of ¥
against that of X. Similarly, parameter e=b,p,/(b;p;) is the
ZY-prolificacy parameter. By the theory of allometry,”’38
these ratios correlate reciprocally well with the fourth roots
of the ratios of X’s body mass to Y’s body mass, and, respec-
tively, Y’s body mass to Z’s body mass. Thus ¢ is usually of
a small order. However, parameter ¢ may not be small in
some biological control cases where the control agents are
smaller in size than the pest species and reproduce faster. We
also point out that 1 unit in the new dimensionless time scale
equals 1/(b,p;) units in the original time scale, which repre-
sents the average time interval between the birth of Y. This
can be seen from the time scaling that t— 7=bpt with 7
being the new dimensionless time variable for which 7=1
corresponding to r=7/(b,p,)=1/(b,p,). To save notation, we
simply retain ¢ instead of 7 for the new time variable in Eq.
(2.3) as well as for the subsequent analysis below. Notice
that at high reproductive efficiency for the top-predator (i.e.,
b,>1), we have e=b,p,/(b;p;)>1 when the other param-
eters are maintained at a normal or smaller magnitude.

The nondimensionalization reduces the number of pa-
rameters from 12 to 8, which means that the dynamics for
the dimensionless equations at one set of parameter values is
the same for the dimensional equations in a four-dimensional
subspace of the dimensional parameter space.

For the analysis of this paper, we only consider the case
of 0<{<1, which means the maximum reproductive per
capita rate of X is faster than that of Y. Because of this, we
can safely neglect Y’s intraspecific interference effect and
assume s;=0. Detailed justifications were given in Ref. 29
for the predator-prey system without the top-predator Z. We
will recall the justification argument later when we comment
on Z’s faster-than-Y’s time scale with e> 1.

-6 - azz) = ezh(y,z).

lll. CHAOS CONFIGURATIONS FOR 0<¢<1, 0<e<1

In one respect, ecology is about the temporal rise and
fall of species populations. It is known that the transition
between these two phases takes place at nullclines of con-
tinuous population models. For the classical Rosenzweig-
MacArthur food chain model, population oscillations, peri-
odic or chaotic, are well understood by the time scale
analysis (i.e., the singular perturbation method) based on the
trophic time diversification hypothesis that the prey repro-
duces faster than the predator, which in turn reproduces
faster than the top-predator; see Refs. 10, 12, and 15-18. The
method organizes its classification scheme on the geometri-
cal configuration of the nullclines.

The classification is possible because the number of geo-
metrical configurations of the nullclines is finite. Two fea-
tures are particularly helpful. (i) The trophic time diversifi-
cation hypotheses, which allow the time scale parameters
{,e to be of various magnitudes, thus enabling a singular
perturbation analysis of the dimensionless model. (ii) In the
dimensionless form, the geometrical configurations of the
nullclines are independent of the time scale parameters, fur-
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FIG. 1. (Color) (a) Nullcline surfaces. (b) Adapted from Ref. 18. (c) A typical teacup attractor. Parameter values are {=0.02, £€=0.375, 8,=0.26, 3,=0.5,
6,=0.2,5,=0.18, 0,=0.1. (d) Typical time series of the attractor [over a truncated time interval of the attractor plot (c)].

ther simplifying the singular perturbation analysis. Figure
1(a) depicts the basic nullcline configurations for chaotic dy-
namics of Eq. (2.3). All technical details about the x and y
nullclines can be found in Refs. 15-18 since they do not
depend on the new parameter o,. We sketch below some of
the qualitative properties that are needed for our discussion
concerning 0, >0. Our summary is under the conditions that
the x variable changes the fastest (0<<{<<1), the y variable
does so the second fastest, and the z variable the slowest
(0<e<1).

Nullcline surfaces. The nontrivial x-nullcline surface,
f(x,y)=0, is a cylindrical parabola parallel with the z axis.
The fold of the surface (f=0, f,=0) runs along the line {x
=X,y=y}. It separates the surface into two parts. The part
containing the prey’s predator-free carrying capacity (1,0,0)
consists of stable equilibrium points for the x equation, sat-
isfying f=0, f,<<0. It represents the predator mediated car-
rying capacity for the prey. It decreases in x with an increase
in y, i.e., more predators result in a smaller prey capacity.
The other part that intersects the trivial x nullcline, x=0,
consists of unstable equilibrium points of the x equation,

satisfying f=0, f,>0. It represents the predator-induced
threshold for the prey: for each fixed y, an initial amount in
x greater than the threshold leads the prey to its predator-
mediated carrying capacity, and a smaller amount leads it to
the extinction edge x=0. It increases in x with an increase in
y. Hence these two parts must intersect and the intercept is
the fold line, called the crash fold because for a slightly
greater amount of y (but fixed), the prey subdynamics col-
lapses to the extinction edge x=0 (orbit 7). We denote the
capacity branch of the x nullcline by S,. The intersection of
both trivial and nontrivial nullclines surfaces consists of tran-
scritical points {x=0, y=y,,=8,}, through which the phe-
nomenon of Pontryagin’s delay of loss of stability (PDLS)
occurs.'”**4" The PDLS points corresponding to the crash
fold line are denoted by pqy, with the y coordinate, ygp, of
the points shown. 2, represents the PDLS points projected on
the capacity surface S, following the {-fast, x subflows (or-
bit 9). Roughly speaking, when originated from y=y and at
the singular limit {— 0, the predator has to dip to the PDLS
level yg <y to allow the prey to recover.
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The nontrivial y-nullcline surface, g(x,y,z)=0, can be
best described as a threshold surface for the y equation. For
each fixed x> x,,,=[,6,/(1-48)), variable y increases with
an increase in z on the surface. For y above it, the y(7) sub-
dynamics increases in ¢ since dy/dt=yg>0 (orbits 1, 5, 6,
10) and for y below it the y(r) subdynamics decreases in ¢
toward y=0 since dy/dit=yg<0 (orbit 3). Its intersection
with the capacity surface S, of the x equation is the curve
Yxy- This curve consists of two monotone parts when S, is
small enough > It has a maximum point in z, denoted by

p'=(x",y",z"). If one restricts the y equatlon on the
X- capacny surface S,, then the part above y~, ny Yy
N{y>y"}, is locally attracting for the y equatlon (orbit 1)
when z is fixed, whereas the part below y~, yxy—yxyﬂ{y
<y}, is locally repelling (orbit 3) because Yxy S€parates S,
into two parts: above the y-nullcline surface where g>0
(orbits 5, 6, and 10) and below the y-nullcline surface where
g<0 (orbit 3). In other words, the upper part is the top-
predator mediated carrying capacity of y, and the lower part
is the threshold. Both are supported by the x capacity S,,. All
in the z coordinate, the intersections of y,, with the predator-
free capacity line {x=1, y=0}, the PDLS curve 3, and the
x-fold line {x=X, y=y} are z, zy and z, respectively, of
which z is a y-transcritical point through which the PDLS
phenomenon occurs for the y variable (orbits 3 and 5) if it
has a faster maximum per capita reproductive rate than z
does, which is the case under discussion in this section.

The nontrivial z-nullcline surface, h(y,z)=0, can be
solved as z=[y/(B,+y)— & ]/ 0,. It degenerates to a plan y
=y,m=B26/(1-38,) at 0,=0. For o, >0, variable 7 increases
on the surface with an increase in y>y,,. As y tends to ®,
variable z saturates toward (1-38,)/0,. For each fixed y
>7y,., this surface consists of attracting equilibrium points
for the z equation because /1,<0 [Fig. 2(a)]. In particular,
above the surface dz/dt>0 (orbit 2) and below it dz/dt<0
(orbit 4). For this reason, it can be considered as the carrying
capacity of the top-predator supported by the middle preda-
tor. The intersection of this surface with the x-nullcline sur-
face is the curve 7,,. The intersection of ,, with x’s fold line
{x=X, y=y} is z,,; in the 7 variable, as shown. Its intersection
with the xy-nullcline curve y,, is an xyz-equilibrium point. It
is easy to see that for y,,; <y and o, sufficiently small, the
intersection is unique, denoted by p;. The intersection of the
z-capacity surface (h=0) with the y-threshold surface (g
=0) is the curve Vyz shown. In fact, we can make the follow-
ing precise statement.

Proposition 3.1. Let y.=y,,+,/1- 5. Then under the
condition that y«<y.,=p,, there is a constant o, so that for
0<0'2<0'2, Yy is monotone in x and y, and Yy, Yip Vyz
intersect at a unique xyz equilibrium point py.

Proof. Notice first that the intersection of 7,, and v, is
automatically on 7,,. Hence we only need to restrict all the
curves on the z nullcline 2=0, in particular the first two 7y,,,
Yy, Notice also that the z nullcline z=[y/(B,+y)-&]/0,
increases with an increase in y >y, and is parallel to the x
axis. Therefore, we can project both curves to the xy plane
and their configurations will uniquely determine the configu-
rations in the full 3-space. To this end, the projected y,,
curve looks exactly the same as the parabola f(x,y)=0 since
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FIG. 2. (a) A singular phase portrait in the yz equation on the capacity
surface of the x nullcline f=0. All e-fast singular orbits converge to the
equilibrium point regardless of the geometric configurations. (b) A sample
bifurcation diagram in variable y and parameter . The chaos dynamics
starts with a teacup attractor at the small end of . The dashed line is the
equilibrium point branch, which stays constant for all € since the nullcline
surfaces do not change with e. Parameter values other than & are the same as
Fig. 1(c).

the x nullcline is independent of z. For the vy, curve, it is
equivalently defined as Q(x,y)=x/B,+x—q(y)=0 with ¢(y)
=8,+1/B,+y[y/ B, +y— 8]/ o, after eliminating the variable
z from both g=0 and h=0, from which x can be solved as
x=p19(y)/[1-g(y)]. From here it is straightforward to show
the following. We have the partial derivatives Q,>0 and
0,=0 at only one possible point, y«=y,,+B,/1-6,. In ad-
dition, x has a horizontal asymptote at the smallest y value
Ya>>Y,m such that 1-¢(y,)=0, and at any solution of
1-¢(y)=0 for that matter. To make sure y« is not in the
domain of y,,, we only need y:>y, or 1-g(y« )<O which
solves for 0'2<(l &) /[(2B,+1-8)(1=8,)]:= 05. Thus the
Yy, curve is bounded between y,, and y,, strictly increasing
without bound in x as y approaches y,. Moreover, the y range
is bounded blow y,, under the assumption that y:<<y,.
Thus, the curve 7y, can intersect only the portion of 7,
below the point y,, which is monotone decreasing in x.
Hence, there must be an intersection because xy, <1 and
the intersection is unique, which is the unique equilibrium

point py.
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[Note that since the 7y, s attracting for the y equation
for each fixed x>x,, (with g<0 above the curve and g
>0 below it) when the equations are restricted on the
z-capacity surface, the curve represents the carrying capacity
of y, supported by x and mediated by z.] O

Food chain chaos types. Because of this result, the geo-
metric configurations considered in Refs. 15-18 for 0,=0
hold for the system for 0 <o, < a'; and y«<pf,. Hence, all
food chain chaos types known for this model from the pre-
viously cited studies persist for the case 0<o,< 0';, Y
< B; with the trophic time diversification condition that O
<{<1,0<e<1. More specifically, the results are summa-
rized in Fig. 1(b). They are organized according to the aux-
iliary parameters u:=Z—zgy,0 =2z~ Zgpk. Lhe illustration is
for the singular case when {=0 and 0<<e¢ << 1. The Shilnikov
chaos case is a minor exception for which £ ~ O(1). Detailed
descriptions about the junction-fold chaos® can be found in
Ref. 15; those about the Shilnikov chaos’ in Ref. 16; PDLS
chaos in Ref. 17; and canard chaos (a.k.a. teacup chaos from
Ref. 4) and burst-spike cycles(”8 in Ref. 18. The remaining
nonchaotic dynamics can be found in Ref. 10, whose param-
eter region is indeed smaller than the chaotic ones combined.
Here is how to read Fig. 1(b). As an example, for parameter
values satisfying u=7—z4>0,0=2;—24, <0, the singular
asymptotic attractor for {=0 and 0<e<1 is a PDLS attrac-
tor as indicated. Figure 1(c) illustrates a sample canard chaos
for the new system with 0<{<<1. It is qualitatively similar
to its counterpart from Ref. 18, yet v,, is clearly not a flat
line like the unperturbed system with o,=0.

Reproduction time scale, population boom and bust
dynamics. To link these illustrations together, we use the
canard chaos attractor [Fig. 1(c)] as an example. Solutions on
the attractor for the perturbed case 0<{<1,0<e<1 [Fig.
1(c)] are approximated by the so-called singular solutions for
the unperturbed case {=0,e=0 [Fig. 1(a)], and the limiting
attractor persists in the form of so-called singular attractors.
Flow lines 1 through 10 in Fig. 1(a) are examples of the
typical singular orbits at the limit {—0, e —0.

In particular, if a point is not on the x nullcline, the
singular x solution, such as orbits 7 and 9, with fixed y,z will
take it quickly either to the trivial branch x=0 or the capacity
branch &,. In other words, the prey density will quickly
equilibriumize if it reproduces faster than all predators. But
the equilibriumization often does not last, such as orbits 6
and 8. More specifically, the x-fast orbit 7 follows 6 because
a high y induces a crash in x while orbit 9 follows 8 because
a low enough y permits a rebound in x. The severity of crash
and the vitality of rebound depend on the relative reproduc-
tive time scales. The smaller the £, the harsher the crash, and,
respectively, the faster the rebound. In reality though, the
species may not have a chance to rebound if a crash preced-
ing it is too severe to prevent the species from extinction due
to some exogenous factors that would otherwise be insignifi-
cant when the species is at its capacity state.

Once it is on the attracting part of the x nullcline, the y
equation restricted on the x-nullcline surface takes over and
the singular solution with fixed z but changing x according to
x=0 or f(x,y)=0 will develop toward the attracting part of
the y nullcline, such as orbits 1, 3, 5, 6, 8, and 10. That is, it
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is the predator’s turn to equilibriumize. Again, some do not
last, such as orbits 2 and 4. Also, population collapse may
occur, orbit 3, before it can rebound, orbit 5.

Once it is on the attracting part of the xy nullcline, 7, or
{x=1, y=0}, the xy-nullcline restricted z equation finally
takes over, and e-slow orbits such as 2 and 4 take the singu-
lar orbit either to the y-crash point p” to start orbit 3 or
through the y-transcritical point z and to the corresponding
PDLS point to start orbit 5. In this case, a crash in z, orbit 4,
follows a crash in y, orbit 3. The top-predator rebound is
build on the xy cycles, such as orbits 6 through 10, which are
themselves perilous if { is large while the nullcline surfaces
remain the same.

It is in this singular limiting sense that the partition of
the parameter space by Fig. 1(b) holds not only for {=0,0
< e <1 but also qualitatively so for 0<{<1, 0==e<1. Fig-
ure 1(d) illustrates the effects of the time scales 0<{<1,0
<e<1 on the time series of the systems. The fast spikes
seen on the x,y time series are due to x’s fastest time scale
with 0<{<<1. The sharp initiation and termination of the
spikes are due to y’s fast time scale next to x’s because of
0<e<1. The long, slow transients between the bursts of
fast spikes are due to z’s slow time scale. As pointed out
earlier, such exotic oscillations may not be observable
because a population bust can terminate the spectacle prema-
turely.

IV. EQUILIBRIUMIZATION FOR &>1

The time scales 0 <{<<1,0<e<1 are not only an inte-
gral part of the chaos generation mechanisms outlined above,
but also an integral part of the singular perturbation method
by which the chaotic dynamics are established. Once the
time scale is reversed to > 1, instead of developing in the y
direction first on S,, the S, constrained yz subdynamics will
develop in the z direction first. Figure 2(a) illustrates the
singular dynamics under this inverted time scale. Notice that
the nontrivial z nullcline, v,,, is a monotone increasing curve
if and only if ¢,>0, and the point (y,,,0) is a transcritical
point for the z equation through which the PDLS phenom-
enon will occur. We can now see that the e-fast orbits are
lines parallel to the z axis, which will eventually converge to
the equilibrium point. In fact, if an initial point lies above
Y=Y, it will converge to the z nullcline right away. On the
z-capacity curve v,,, the e-slow y dynamics takes over, lead-
ing the singular orbit to the equilibrium point. If the initial
point lies below y=y,,, the e-fast orbit goes to z=0 first.
Then the e-slow y flow takes over and passes through the
transcritical point. At its corresponding PDLS point, predator
y recovers to a high enough value to allow the top-predator
to initiate a population boom, taking the orbit to the
z-capacity branch v,,, and eventually to the equilibrium
point. That is, all singular orbits converge to the coexisting
equilibrium point p;. In fact, the local stability of the equi-
librium point can be analyzed precisely as follows.

Proposition 4.1. For sufficiently large €> 1, the unique
equilibrium point py is stable for the reduced yz subsystem on
x’s capacity surface S,,.

Proof. A proof can be obtained similar to Ref. 29. Let
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y'=yg($(y.2),y,2)=G(y,2),z" =ezh(z,y):=eH(y,z) be the
yz equations restricted on the x-capacity surface S,, with x
=¢(y,z) representing S,.. Let u=y-y,,v=z-z, and the lin-
earized equations at the equilibrium point be

u=Gu+Gy, v=eHu+eHv, (4.1)

where G;=dG/dy is evaluated at the yz-equilibrium point
and so on. The corresponding « nullcline Gju+G,v=0 is the
tangent line to the y nullcline y,, at the equilibrium point.
Thus the slope —G /G, >0 if the equilibrium point is on the
threshold branch v, and —G,/G,<0 if it is on the capacity
branch ﬁy. Since linearization G u+G,v preserves the same
qualitative property as dy/dt=G(y,z) for which G<0 for
large z, we have G u+G,v <0 for large v, implying G, <0.
Hence, G, >0 if and only if the equilibrium point is on the
threshold branch .

Similarly, H;>0, H,<0 no matter where the equilib-
rium is since the line H u+H,v=0 mirrors the z nullcline
and Hu+H,v <0 for large v to mirror the qualitative prop-
erty that dz/dtr<<O0 for large z. The property that H; >0 fol-
lows from the property that v,, is always increasing in z
when y increases.

These conditions imply the following. If the equilibrium
point is on y’s capacity branch (G, <0), it is always stable.”’
If the equilibrium point is on y’s threshold branch, with G,
>0, then the slope of the v nullcline must be greater than the
slope of the u nullcline, —H,/H,>-G,/G,, because of the
same manner in which v,, and v,, intersect, see Fig. 1(b).

Using this property, it is straightforward to show that for

Gy

e>—-—,
H,

the eigenvalues

[(8H2 + Gl) + \‘"(SHZ + G1)2 - 48(G1H2 - GzHl)]/z

of Eq. (4.1) always have a negative real part. Moreover, by
decreasing &, the eigenvalues will cross the imaginary axis
(when eH,+G;=0) so that the stable equilibrium point will
give way to a stable limit cycle via Hopf bifurcation. U

We now note that without the o,>0 term, the xz
nullcline v,, is a line parallel with the z axis, which will lead
to a well-known problem for the z subsystem under the con-
dition that z has a faster time scale than y does with e>1. In
fact, if 0,=0, then for any fixed y>y,,, the z-fast solution
z(t) grows exponentially without bound as t—o since
dz/dt=gzh(y,0) >0, the classical Malthusian fallacy against
Verhulst’s logistic principle.

Figure 2(b) is a bifurcation diagram in y versus &. The
map is generated from points at which the orbit hits the
nontrivial y nullcline g(x,y,z)=0, that is, whenever the so-
lution in y is either a local maximum or a local minimum.
Tracing the diagram leftward, we first encounter the stable
coexisting equilibrium state at parameter €’s high end. At a
smaller € ~2.65, it loses its stability and undergoes a Hopf
bifurcation. This periodic orbit grows until it hits the
x-crash-fold near € ~ 1.65, an event of crisis, exploding to a
chaotic attractor that then changes to contain a chaotic
Shilnikov’s orbit'® near &~ 1.2, at which the equilibrium
point is part of the attractor, and eventually becomes a teacup
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(b)

FIG. 3. Nullclines of the xy equations restricted on the capacity surface of
the z nullcline {i(y,z)=0,y>y,,} when z has the fastest reproducing time
scale. (a) The case with p; on S,. (b) The other case with p; on the
x-threshold surface.

type at the lower end of . Notice that the stabilizing param-
eter range in € is in fact quite moderate. It will become more
so if the other time scale { is relaxed further from {=0. More
importantly, the identical equilibriumization process at large
€ holds for all other nullcline configurations from Fig. 1(b),
and all parameter regions of distinct dynamics, chaotic or
otherwise, will emerge into one region of stable equilibrium
for sufficiently large e. Furthermore, all & ~ % singular orbits
converge to the equilibrium point p, as shown in Fig. 2(a),
which in turn gives a theoretical explanation as to why the
relaxed equilibrium appears globally stable in the bifurcation
diagram Fig. 2(b).

V. DISCUSSION

Taking the time scale to the extreme that z has the fastest
reproducing time scale, b,p,>r>bp;, i.e., €¢>1/{, the
same equilibriumization phenomenon persists, which is illus-
trated in Fig. 3(a). Here, all singular orbits are first equilib-
riumized to the capacity surface of the z nullcline {#=0}, and
the subsequent development is determined by the xy equa-
tion restricted on the surface. The reduced xy dynamics is a
typical predator-prey interaction that can be completely de-
termined by the configuration of the z-mediated nullclines
Yxz and . In fact, as we demonstrated in Proposition 1, the
yz nullcline 7y, increases in y as x increases and it intersects
the xz nullcline 7,, at a unique point on the x capacity part of
the curve S,, as shown. The proof given above for Proposi-
tion (4.1) as well as Ref. 29 shows that regardless of the time
scale with respect to ¢, such an equilibrium point p; is al-
ways stable.
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For the case in which p; is not on S,,, it is easy to show
that the only possible singular attractors are xy-fast cycles,
and no limiting chaos attractors exist. In fact, in the extreme
case of z having the fastest time scale, the xy subdynamics
restricted on z’s capacity surface {h=0} is illustrated in Fig.
3(b), for which condition 0</<1 will give rise to a limit
cycle (dashed arrow lines), and condition {> 1 will lead to a
stable equilibrium point (solid arrow lines) by the same equi-
libriumization process described here and in Ref. 29. For the
remaining cases in which 0'2>0';,a'1>0, no matter how
complex the full three-dimensional dynamics is, at the sin-
gular limit e —oc the approximating dynamics is the two-
dimensional xy dynamics on the capacity z nullcline for
which the most complex structure has the form of limit
cycles only.

In terms of its dimensional parameters, e=b,p,/(b;p,).
For & to be modestly large, b,p, is modestly large relative to
bip;. For byp, to be modestly large, the top-predator either
catches more preys per capital (p, large) or reproduces more
per catch (b, large), or it does both. It is clear then that the
top-predator is quantifiably efficient if it is reproductively
efficient with a greater birth-to-consumption ratio b,. We
note that with other dimensional parameters fixed, increasing
b, will not change the nullcline structures of the XY subchain
below.

We now see that because of the role the reproductive
efficiency b, plays in the analysis above and because of the
modest magnitude of & by which the chain stabilization oc-
curs (Fig. 2), our result indeed suggests a general, albeit
theoretical, principle that increasing top-predator’s reproduc-
tive efficiency tends to stabilize the whole food chain. An
important implication is that ecological stability is the result
of reproductive efficiency—a product of evolutionary opti-
mization.
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