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Food chain chaos due to transcritical point
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Chaotic dynamics of a classical prey-predator-superpredator ecological model are considered.
Although much is known about the behavior of the model numerically, very few results have been
proven analytically. A new analytical result is obtained. It is demonstrated that there exists a subset
on which a singular Poincammap generated by the model is conjugate to the shift map on two
symbols. The existence of such a Poincaxap is due to two conditions: the assumption that each
species has its own time scale ranging from fast for the prey to slow for the superpredator, and the
existence of transcritical points, leading to the classical mathematical phenomenon of Pontryagin’s
delay of loss of stability. This chaos generating mechanism is new, neither suspected in abstract
form nor recognized in numerical experiments in the literature2@®3 American Institute of
Physics. [DOI: 10.1063/1.1576531

Ecological systems consisting of multiple food chains and The current state of research seems to lead to the ques-
webs are extremely difficult to analyze. The role of chaos tion of why food chain chaos is so rare in the field? Although
in ecology is poorly understood. One approach to gain a there are some working hypotheses based on the illuminating
better understanding on ecological chaos is by studying it |ogistic map? we believe the question cannot be adequately
in mathematical models of basic food chains of length 3. 4qdressed until most, if not all, chaos generating mechanisms

In this paper we investigate a new chaos generating ,re nroperly categorized and understood for food chain
mechanism in a basic food chain model and determine models

the ecological parameter ranges in which this type of It is with this in mind that a program was initiated

chaos occurs. . . . . .
in Ref. 16 to categorize chaos generating mechanisms in

food chain models. Conditions were found in Ref. 16 for the

. INTRODUCTION first of four chaos mechanisms proposed. The mechanism

The logistic map for population dynamicaas one of analyzed in that paper is due to the existence of a junction-

very few examples of chaos in the early development otf.OId point™ "~ it yvas dempnstrated rigoroysly for the first
; )pme that the period-doubling cascade to asBler-type at-

debated to this da§* On one hand, there is little unequivo- tractor existed in a food chain model. The second install-
cal evidence that chaos exists in natti@though its exis- ment? identified another set of conditions under which the
tence in laboratory populations has been proved beyonfodel admits a Shilnikov saddle-focus homoclinic orbit. The
doubt® On the other hand, mathematical models of foodmechanism by which such an orbit appears is due to the
chains are rich with chaos. Food chain model chaos was firstxistence of a singular counterpart that was analyzed theo-
exhibited in Ref. 6 in 1978, and food web model chaos inretically in Ref. 21 and applied to a physical model for the
Ref. 7 in 1979. Attractors of these early models looked rathefirst time in Ref. 20.
similar to the Rssler attractof. This paper is the third installment in the series, with the

More than a decade later, a rather distinctive chaotiGntent to unveil a new chaos generating mechanism. This
attractor.—referred to as tea-cup attractor—was found in @)echanism is not related to "Reler-type attractors or to
food chain model by Ref. 9. This finding had the effect of gpiinikoy orbits, two of the most predominant chaos gener-

accelerating the search for chaos in food chain models. '%ting mechanisms in mathematical models. Before this, it

Rassler-type chaotic attractor was shown numerically to €XWas unknown even in abstract settings. The primary cause is

ist in a chemostat food chain model by Ref. 10. A food chain . I . ;
. o . : due to the existence of transcritical points which appear natu-
attractor containing a Shilnikov homoclinic orfit was

found in Ref. 12 and one containing a degenerate Shilnik0\5aIIy in the class of food chain models with Holling Type I

orbit in Ref. 13, see also Ref. 14. The search for field chao8€dators, which we consider here. Such points lead to the
however seemed to be more elusive than ueiis a pre- phenomenon known in the theory of singular perturbation as

vailing view today among some ecologists that chaos shoulffontryagin’s delay of loss of stabiliﬂ.?.‘z“ We will prove
be rare in ecological systems. This view nevertheless is nghat it is because of this delayed stability loss that the model
shared by all, e.g., Ref. 15. admits a set of orbits conjugate to the shift dynamics on two

symbols. The parameter region for which this result holds
9Electronic mail: bdeng@math.unl.edu will be given specifically in the main result of the paper,
YElectronic mail: ghines@math.unl.edu Theorem 4.1.
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FIG. 1. (Color) (a) Part of thex-nullcline surface{x=0)y=y,tU{f(x,y)=0};
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“trm

the nontrivialy-nullcline {g(x,y,z) =0}; and the nontriviak-nulicline {y

=y;}. (b) Geometric illustration for the nullclines and parametrized variables.

II. PRELIMINARY ANALYSIS

We continue to consider the following Rosenzweig-
MacArthur moded® for food chains analyzed in Refs. 16 and

20:
“—x r—z— Py
K  H;+x/’
oo Cx o PaZ
y_y H1+X 1 H2+y)1 (21)
o[ CY
z=z H,+y dz),

with a logistic prey &), a Holloing type Il predatory(), and
a Holling type Il top-predator Z).?® With the following
changes of variables and parameters first used in Ref. 16:

t—cqt x—>£x —>& — Io2plz
e K Y7y cirK ™
Cy Co Hq H,
= e=c P ﬂz—Y—O (2.2
rk d; d,
with Yo=—, &,=—, =—,
0 P1 ! C1 2 Co

Eq. (2.1 is changed to the following dimensionless form:

{X=X(1—X— Birx =xf(x,y),

- X z

y=y B1+X_51_ 182+y ::yg(xayvz)! (23)
Z=¢Z Bz+y_52> :=gzh(y).

Under the drastic trophic time diversification hypoth&sis
that the maximum per-capita growth rate decreases from
bottom to top along the food chainamely

rsci;>c,>0 or equivalently 6<{<1 and OKe<1.

Equation (2.3) becomes a singularly perturbed system of
three time scales, with the rates of change for the dimension-
less prey, predator, and top-predator ranging from fast to
intermediate to slow, respectively. We refer to Ref. 16 for
the arguments that lead to the scaling above.

Geometric theory of singular perturbation thus is readily
applicable to the resulting three-time scale model @%f).
In particular, nullcline analysis will be used extensively
throughout. Nullclines are surfaces along which one of the
derivatives is 0. Thex-nullcline (x=0) consists of two
smooth surfaces: the trivial branct+ 0, and the nontrivial
branchf(x,y)=0 on which we can solve for as a quadratic
function y= ¢(x)=(1—x)(B1+x). The graph of the non-
trivial branch is the parabolic surface shown in Fig. 1 and the
fold is given by &,y), also the maximum point ofy
=¢(x), where Xx=(1—p,)/2y=(1+,)%/4. These two
branches of x-nuliclines meet along the linglx=0y
=VYinh:Yin=B1, consisting of the so-calledranscritical
pointswhich are double zero points fée

Similarly, the y-nulicline (y=0) consists of two sur-
faces: the trivial oney=0, and the nontrivial ong(x,y,z)
=0, shown in full in Fig. 1a). The intersection o§=0 and
f=0 is a curve on the face of the parabola, denoted lny
Fig. 1(b). The intersection of the parabola folk=X,y
=y} with the y-nulicline is the point X,y,z) = yN{x=X,y
=Yy}. The intersection of the trivigl-nulicline with the non-
trivial x-nullcline is the line{x=1y=0} on the parabola.
More importantly, on the nontriviak-nulicline, the trivial
y-nullcline (y=0) and and nontriviay-nullclines(y) inter-
sect at (1,&). This is a transcritical point for thg equation.
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It is the existence of this point that leads to the chaos gen- _ y
eration mechanism that we are considering in this paper. §X=Xf(X,Y):X( 1-x- Bitx
The z-nulicline consists of the trivial nullcling=0 and '
the planeh(y)=0 parallel to thexz plane. We denote the
value of y on this plane byy=y;, wherey;=p8,5,/(1
— 85). The intersection of the three nontrivial nullclines of
the prey, predator, and the top-predator gives the nontrivial
equilibrium point, p¢(X; V¢ ,z;) ={y=y;}Ny. This pointis It i_s a two-dimensional system in var_iabl:esandy, param-
stable iff it lies on the solid part of between the-nullcline  €trized byz. Its phase portrait, for fixed, can be easily
fold point (x,y,z) and they-nullcline fold point x*,y*,z*) constructed from thex- and y-nuliclines. To do this, we
at which y is maximum in the variable. If it lies belowy  again treat Eq(3.1) as a singularly perturbed system, this
=y* it is unstable. time using 0<{<<1 as the singular parameter. The variable
Orbits traveling downwards along the trivial nullclixe 1S ¢-fast and the variablg is Z-slow. Specifically, if we
=0 will leave the nullcline at pointy,(z) determined by rescale the timé—t/{ for Eq. (3.1) and set{=0, then we
Pontryagin’s delay of loss of stabilif:?223272%The value  Obtain its{-fast subsystem

o
Bitx b Baty

y=ya(x,y,z2)=y z|, (3.2

of such a point is determined by the integral x'=xf(x,y), y'=0, z'=0.
It is one-dimensional ik with bothy and z being frozen
vy f(0,8€) parameters. Its flow is completely determined by the equilib-
md§=0- (2.4 rium surfacexf(x,y)=0. Of the x-nullcline surfaces only
Yspk = two branches are attracting. These fxe-0y> B} and{f
=0x<x<1}.
Let psp= (XspksYspks Zspd D€ the intersection of the planar Setting{=0 in Eq. (3.1 gives rise to the intermediate,

surfacey = yq,(2) with the curvey as depicted in Fig. (b). ~ ¢-Slow subsystem ity:

Deng® proves that under the conditia <z, which must

hold in a certain domain of the original parameter space, &=Xxf(X,y), y=yg(x,yz)=y<1—x— Bt X

period-doubling cascade to chaos must take place as the non- i ) i !

trivial z-nulicline planey=y; crosses the poinpgy from Its flow is restricted to thex-nulicline surf_acesx=0 and

above for sufficiently small & <1 and{=0. This scenario [(X,¥Y)=0, and determined by thg-nulicline y=0 and

persists to some extent for sufficiently smat@<1. 9(x,y,2)=0. Above the nontrivialy-nulicline g(x,y,z) =0,
The work in Ref. 20 demonstrates instead that the nonWe havey=0, and soy(t) increases. Below ity<0 and

trivial equilibrium pointp; must become an unstable spiral if Y(t) decreases.
¢ increases beyond a modest valyg This occurs in an- Putting together the flows for the two subsystems, we get

other domain of the original parameter space. When couplef'® Phase portrait for Eq3.1) which is shown in Fig. 2 and
with the same condition that,<Zz, it is proven that at the Fig. Ib). ,

point wherep; crossespsy, a singular Shilnikov saddle- Intermediate-slow predator-superpredator dynamikes
focus homoclinic orbft exists for{=0 and persists for all Eq. (2.3), x evolves on the fastest time scale. In a perturbed

sufficiently small 6< {<1. Chaotic dynamics occur as a re- state with 0<¢<1, all solutions are quickly attracted to a
sult of such orbits. branch of thex-nullcline: either{x=0y>B;} or {f=0x

The parameter constraints under consideration in this pac X} Pecause the rate of change fois much greater than
per are the same as in Ref. 16 except that the nontrividhat ofy andz if their initial points are not already near these
z-nullcline y=y; lies below the poinpy for all z; that is surfaces. In a sufficiently small neighborhood of the surfaces,

solutions are well approximated by the reduceslow flows
by setting{=0 in Eq.(2.3),

xf(x,y)=0, y=yg(x,y,2), z=ezh(y).
This is a two-dimensional system i and z restricted to
eitherx=0 or {f(x,y)=0}.

The yz dynamics is rather simple ox=0. In fact, the
reducedyz equations are

, z=0.

7i<zg<z, 0<e<l, 0<(<L (2.5

Ill. SINGULAR PERTURBATION

The dimensionless systef®.3) with singular parameters
0<e<1,0<¢<1 permits a singular perturbation . _
approach’?1%°=32The key is to construct a full picture of y—yg(O,y,z)—y( —o Boty
the three-dimensional system by piecing together lower di-
mensional systems obtained at the singular limits when ei- 'Zzszh(y)zsz( y _ 52).
ther =0, e=0 or both. B2ty

Fast-intermediate prey-predator dynamic&/hen Eqg. Hence all solutions develop downward toware: 0. They
(2.3 is viewed as a singularly perturbed systemejrthez  will cross the transcritical ling/=y,,,= 81 and jump to the
dynamics ares-slow and thexy dynamics ares-fast. More  stable branch of the nontriviad-nulicline f(x,y)=0 at the
specifically, settinge=0 gives rise to thes-fast xy sub-  Pontryagin turning pointy=ys,{(z) as noted earlier. We
system point out that it is proved in Ref. 28 thgt=y,(z) defined

z)<0,

Downloaded 16 Jan 2004 to 129.93.51.85. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



Chaos, Vol. 13, No. 2, 2003 Food chain chaos 581

FIG. 2. Phase portraits of thefast subsystem i,y with {=0. (a) A specific value ok with 0<z<zg, and(b) several typical values . In (a) the {-fast
x-flow lines are parallel to the axis. Thel-slowy flows are on the-nulicline surfaces=0 andf(x,y)=0, oriented by double arrow heads. PoiAt8 are
equilibrium points. All nonequilibrium singular orbits are attracted to either the relaxation bygle,R or the steady statex(y) =(1,0) for z<zg,. The
turning pointy, is determined by the integral equatiGh4) of Pontryagin’'s delay of stability loss. Ifb) the singular relaxation cycle becomes a singular
homoclinic orbit atz=z,, and disappears far>z,,. Forz<z, equilibrium pointsA, B are unstable. Faz<z<z*, B is stable andA is unstable. Both
disappear foz>z*. The equilibrium point (1,0) is always attracting, locally, and globallyZbrzgy, . A three-dimensional view of these portraits in terms
of z cross sections is referred to Fighl

by Eqg.(2.4) is a monotone decreasing functionan, is the It is again a two-dimensional singularly perturbed system
horizontal projection of the Pontryagin turning curye  with singular parametes. They equation ise-fast. Thez
=Yspd2) onto the nontrivialx-attracting surface{f(x,y)  equation iss-slow and is restricted to the-nullcline. Similar
=0x>x}. to the analysis for thé-fastxy subsystem, the dynamics are
Theyz dynamics on the nontrivial and stablenulicline essentially determined by thenulicline {y=0}, {g(x,y,2)
branch{f(x,y)=0x>Xx} is a little bit more complex, and =0} and thez-nulicline {z=0}, {h(y)=0}. The two trivial
determines the chaotic behavior we will des_cribe later. Give’hullclines,{yzo} and{z=0} are invariant and the dynamics
?hity(f();)dl?ézeoxn:tﬁéy)stfbltzae é?:n‘éilu;f(gky')n [(T_lgh:clz on them are simple. The nontriviginullcline restricted to
' il I {f(x,y)=0x>X} is the curvey={g(x,y,z)=0}N{f(x,y)
f(#(y),y)=0,0<y=y. Then the reduceglz equations are =0x>x} introduced earlier. The nontriviak-nullcline
Y=y a(dy).y z)zy( P(y) s 1 , h(y) =_0 on V\_/hichyzyf_:B2_52/(1—52). Two phase plane
Yo Bituly) Y B+y”) portraits gre illustrated in F|gs.(é9 and 3b). o
(3.2) Most important, the point (1,8) or z as shown in Fig. 3
B is a transcritical point for Eq(3.2) and the phenomenon of
2) Pontryagin’s delay of loss of stability occurs, now for §he

z=¢egzh(y)=¢z

Baty

FIG. 3. Phase portraits of thez subsystems on the stable branch of the nontrixiallicline {f(x,y) =0} and the corresponding singular return maps for
{=0. (a) The case withe=0. On dashed parts of thenullclines, the equilibria are repelling. On solid parts, they are attracting.c¥fhst flows develop
vertically and are shown with double arrows. Upon rescalirg:t and settinge =0 in Eq.(3.2), it gives rise to thes-slow subsystem iz restricted on the
y-nullclinesy=0 andy. For points above the-nullcline y=y;, z increases; and for points below it decreases. The oriented parts of yhaullclines with
single arrows are the reduceeslow flowlines.(b) The return map at perturbed state8<1. Dotted single-arrowed curves are theflowlines on the trivial
x-nulicline x=0. See the text for description.
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flow. The theory again applies. In particular, I1§tZ) be any  point, the orbit can either jump to the=0 plane or stay on
point on 2, for example, right ofzg,,. The perturbed flow the nuliclinef=0 and pass horizontally through In the
(with 0<e<1 in Egs.(3.2)) through §/,z) moves down and first case, the orbit travels dowr=0 and jumps back t&.

to the right, following the vector field. It crosses the The point it hits3 is denoted byz* = 7, (d), which we will
z-nullcline y=ys vertically and then moves left and still take to be the rightmost end point of the interval of definition
down. It crossesy horizontally and then moves up and still of 7, . In the second case, the orbit comes down and inter-
left. It crosseg/=y; vertically. From there it continues to the sects?, at a point far right o&. It then goes aroung;, up to
right and still up, and hits the junction cun® at a point  the fold, downx=0 and returns t& at a point, denoted by
denoted by ¢.(z),w.(2)). This defines a diffeomorphism w* | nearz=0. This point marks the left end point of the
from z to w,(z). Pontryagin's theory implies that interval. Notice thad dividesS into two subintervals, the
lim,_ow,(z) =w(z) exists andw(z) is determined by the |eft and right intervals. On the left intervair, is strictly

following integral increasing and its graph lies above the diagonal. This is be-
wg(1,08) cause the left interval lies above tkenullcline y=y; and
f WdFO- (3.3)  the z-component of the singular orbit increases. The second
z

special point, denoted by, corresponds to a junction-fold
Again, the relationship betweenz and w(z) is point® whereZ is tangent to the-slow vector field on the
diffeomorphic?*~?More specifically, by simplifying the in- parabola{f=0x<x} for 0<e<1. (If 3 is parallel to thez
tegral equation, we find that and w satisfy the equation axis, which is the case whefy =0, thenc is the point of
zexp(—zZ'z=wexp(—w/z). Because the functiony=x intersection of the/-nullcline curvey with 3. If % is mono-
X exp(—x/z) increases in (@] and decreases {rz,), cov-  tone decreasing iz, the pointc lies to the right of the
ering the same range @e], the correspondence between intersection. For any initial condition or® to the right ofc,
andw is indeed diffeomorphic. In particular, if we consider the singular orbit swings down and aroupgdbefore hitting
the shaded region in Fig(& bounded by pointgs,, andz*,  the foldy=Yy. From there it jumps ta=0 and then eventu-
then each vertical segment of the flow in this region correally returns toS. (The first hit onX is not thereturning hit
sponds to a unique vertical flow segment in the shaded repecause it has not visited the triviatnulicline x=0 yet)
gion bounded bw* andwygy,. This pair of vertical segments For initial conditions or®, betweerd andc, the orbit crosses
together with thee-slow horizontal flowline fromz to w y after moving abovee, develops downward, goes around
along{x=1y=0} form the singular orbit for an initial con- . moves up to the fold, jumps t&=0, and eventually

dition below they curve. returns to3. The image of the intervdld,c] is [w* ,7,(c)]
and the image of the intervat,zX ] is [ 7, (c), 7 (Z})]. 7,
IV. RETURN MAPS AND CHAOS has a local maximum at the junction-fold pomtlt is mono-

_ _ _ tone increasing in the intervat,c] and monotone decreas-
We now describe the singular orbits of the full systemjng in the intervalc,z* ].

Eq. (2.3 for {=0 and G<e<1. In particular, we only con- What makes the return magp, potentially chaotic is the
sider mmgl points on thg junction cune. Any ty_p|cal_orb|t existence of the transcritical poiat As e—0, mo=Ilim
from X will eventually hit the parabola fold=x,y=y be-  gyists. More specifically, points and ¢ collapse to one
cqugezspk<z and eis small. ane the orbit hits the fold, it point, denoted byl in Fig. 3(@). The graph on the left inter-
will jump to the trivial x-nulicline x=0, move down along | converges to the diagonal. The graph right @bnverges
x=0, jump back to% aty=ygy. This defines the singular 5 5 strictly decreasing curve determined diffeomorphically
Poincarereturn mapm, for {=0. Note that the image of,  py the Pontryagin integraB.3), see also Figs.(d) and 1b).

is the point where the orbit hits after first visitingx=0. S0 pq g3 result. the length of the interviiro(c), mo(2*)] must
orbits starting on the right side af, onX will hit 2 exactly e nonzero. We call this lengthy. It is because of this
once before returning t& as the image of the Poincaneap. property and the property that the return map’s graph on the

One effective way to view this map is by looking di- |eft jnterval collapses down to the diagonalsat0 that 7,
rectly into thex axis as shown in Fig. 3. The solid oriented must be chaotic for sufficiently smalkG:<1.

curves are the-slow _orbits on the attracting branch of the There are several ways to demonstrate the chaos. We
pgrabola f(x.y)=0x=x<1}. The_ _dOttedz downward- present one argument here. Lgt=(d,z}] be the right in-
oriented curves are those on the triviahulicline x=0 for -, ofS, andl, = "(I))N[0d]. I,, is the part of theth

Y= Yspi. The fast jumps frqm the_ fold to the plame=0 as pre-image ofl ; that is in the left interval. See Fig. 4 for an
well as f_rom the Pontryagm turning cunys=ygpy to E_are illustration. Define the end pointsdy=d and d,
perpendicular to the projectegz plane, and thus hidden :ng(dn—l) so thatl = (d,,,d,,_,]. We know eachd,, ex-

If;?Te?uur;Vrf;v- W?nntﬁ;g ggtsticr:lbe in greater detail the SINYWists because of the monotonicity ef. on (0d] and the fact
First wepigsentiny with a?n interval and the singular that ,(0)=0. Thenth image ofl , under, is Io and so,
' g under one more iteration, the graphm’j“l,n is a unimodal

return mapm, as an interval map, depicted in Fig(b3 - . )
There are two special points dn that are essential to the MaP similar tom |, with the same values at the end points

definition of 7 . The first point, labeled a3, corresponds to  and the same maximum value. In Figb¥ graphs are shown

the unique point or for which the orbit[of Eq. (3.2]  for @2, , 2|, andmy ™Y, .
passing through it intersects the fold aty,z). From this To see whym, is chaotic, choosen so thatd,,,
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n+l
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FIG. 4. (Color) Symbolic dynamics on
two symbols follows whenr ™ is re-

stricted to the upper right corner box
22 (red in the intervall ,=(d,,; 1,d,].

My
SR !
0 dys1 J[ JUE i
< g)—>

=,(c)—ny2<d, and zoom in on the intervdl, as shown
in Fig. 4. Because the graph af, on the left interval 0,d)

collapses onto the diagonal as- 0, the length of , must be
orderO(e). On the other hand, by the choicerafthe image

71'2+1(In) of 1, must cover an interval of length at least
70/2>0, thus it must covet,, i.e., 71 "1(1,)Dl,. In Fig.
4(a), we blow up the picture in Fig. (#) on the interval
[0d,]. In this picture, we can see part af, and 77”+1|,n.

&

0.4681

04651

FIG. 5. (Color) Numerical simulation with parameter valués-0.1, ¢=0.34,8,=0.35,8,=0.1, §;=0.1, 5,=0.3. (a) A three-dimensional view(b) A
Poincarereturn map.c) Projected on to thety plane.(d) Projected on they plane ¢ axis horizontgl.
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We also markl,, on the vertical axis so that we can see different types of chaos play in questions regarding chaos in
I,C 71 (1,,) easily. We can further restriet?** to the box  ecology after most and enough, if not all, chaos generation
in the upper right corner. We defidg,J; to be two disjoint mechanisms are categorized for the food chain model Eqg.
closed interval pre-images of the part of the graph in the box(2.1).

This implies immediately® that there is a Cantor subset
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