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Food chain chaos due to transcritical point
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Chaotic dynamics of a classical prey-predator-superpredator ecological model are considered.
Although much is known about the behavior of the model numerically, very few results have been
proven analytically. A new analytical result is obtained. It is demonstrated that there exists a subset
on which a singular Poincare´ map generated by the model is conjugate to the shift map on two
symbols. The existence of such a Poincare´ map is due to two conditions: the assumption that each
species has its own time scale ranging from fast for the prey to slow for the superpredator, and the
existence of transcritical points, leading to the classical mathematical phenomenon of Pontryagin’s
delay of loss of stability. This chaos generating mechanism is new, neither suspected in abstract
form nor recognized in numerical experiments in the literature. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1576531#
.
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Ecological systems consisting of multiple food chains and
webs are extremely difficult to analyze. The role of chaos
in ecology is poorly understood. One approach to gain a
better understanding on ecological chaos is by studying it
in mathematical models of basic food chains of length 3
In this paper we investigate a new chaos generating
mechanism in a basic food chain model and determine
the ecological parameter ranges in which this type of
chaos occurs.

I. INTRODUCTION

The logistic map for population dynamics1 was one of
very few examples of chaos in the early development
chaos theory. The role of chaos in ecology however is ho
debated to this day.2–4 On one hand, there is little unequivo
cal evidence that chaos exists in nature,3 although its exis-
tence in laboratory populations has been proved bey
doubt.5 On the other hand, mathematical models of fo
chains are rich with chaos. Food chain model chaos was
exhibited in Ref. 6 in 1978, and food web model chaos
Ref. 7 in 1979. Attractors of these early models looked rat
similar to the Ro¨ssler attractor.8

More than a decade later, a rather distinctive chao
attractor—referred to as tea-cup attractor—was found i
food chain model by Ref. 9. This finding had the effect
accelerating the search for chaos in food chain models
Rössler-type chaotic attractor was shown numerically to
ist in a chemostat food chain model by Ref. 10. A food ch
attractor containing a Shilnikov homoclinic orbit11 was
found in Ref. 12 and one containing a degenerate Shilni
orbit in Ref. 13, see also Ref. 14. The search for field ch
however seemed to be more elusive than ever.3 It is a pre-
vailing view today among some ecologists that chaos sho
be rare in ecological systems. This view nevertheless is
shared by all, e.g., Ref. 15.

a!Electronic mail: bdeng@math.unl.edu
b!Electronic mail: ghines@math.unl.edu
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The current state of research seems to lead to the q
tion of why food chain chaos is so rare in the field? Althou
there are some working hypotheses based on the illumina
logistic map,2 we believe the question cannot be adequat
addressed until most, if not all, chaos generating mechani
are properly categorized and understood for food ch
models.

It is with this in mind that a program was initiate
in Ref. 16 to categorize chaos generating mechanism
food chain models. Conditions were found in Ref. 16 for t
first of four chaos mechanisms proposed. The mechan
analyzed in that paper is due to the existence of a junct
fold point.17–19 It was demonstrated rigorously for the fir
time that the period-doubling cascade to a Ro¨ssler-type at-
tractor existed in a food chain model. The second inst
ment20 identified another set of conditions under which t
model admits a Shilnikov saddle-focus homoclinic orbit. T
mechanism by which such an orbit appears is due to
existence of a singular counterpart that was analyzed th
retically in Ref. 21 and applied to a physical model for t
first time in Ref. 20.

This paper is the third installment in the series, with t
intent to unveil a new chaos generating mechanism. T
mechanism is not related to Ro¨ssler-type attractors or to
Shilnikov orbits, two of the most predominant chaos gen
ating mechanisms in mathematical models. Before this
was unknown even in abstract settings. The primary caus
due to the existence of transcritical points which appear n
rally in the class of food chain models with Holling Type
predators, which we consider here. Such points lead to
phenomenon known in the theory of singular perturbation
Pontryagin’s delay of loss of stability.22–24 We will prove
that it is because of this delayed stability loss that the mo
admits a set of orbits conjugate to the shift dynamics on t
symbols. The parameter region for which this result ho
will be given specifically in the main result of the pape
Theorem 4.1.
© 2003 American Institute of Physics
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FIG. 1. ~Color! ~a! Part of thex-nullcline surface$x50,y>ytrn%ø$ f (x,y)50%; the nontrivialy-nullcline $g(x,y,z)50%; and the nontrivialz-nullcline $y
5yf%. ~b! Geometric illustration for the nullclines and parametrized variables.
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II. PRELIMINARY ANALYSIS

We continue to consider the following Rosenzwe
MacArthur model25 for food chains analyzed in Refs. 16 an
20:

ẋ5xS r 2
rx

K
2

p1y

H11xD ,

ẏ5yS c1x

H11x
2d12

p2z

H21yD , ~2.1!

ż5zS c2y

H21y
2d2D ,

with a logistic prey (x), a Holloing type II predator (y), and
a Holling type II top-predator (z).26 With the following
changes of variables and parameters first used in Ref. 1

t→c1t, x→ 1

K
x, y→ p1

rK
y, z→ p2p1

c1rK
z,

z5
c1

r
, «5

c2

c1
, b15

H1

K
, b25

H2

Y0
~2.2!

with Y05
rK

p1
, d15

d1

c1
, d25

d2

c2
,

Eq. ~2.1! is changed to the following dimensionless form:

z ẋ5xS 12x2
y

b11xDªx f~x,y!,

ẏ5yS x

b11x
2d12

z

b21yDªyg~x,y,z!, ~2.3!

ż5«zS y

b21y
2d2Dª«zh~y!.
Downloaded 16 Jan 2004 to 129.93.51.85. Redistribution subject to AIP
Under the drastic trophic time diversification hypothesi15

that the maximum per-capita growth rate decreases fr
bottom to top along the food chain, namely

r @c1@c2.0 or equivalently 0,z!1 and 0,«!1.

Equation ~2.3! becomes a singularly perturbed system
three time scales, with the rates of change for the dimens
less prey, predator, and top-predator ranging from fas
intermediate to slow, respectively. We refer to Ref. 16
the arguments that lead to the scaling above.

Geometric theory of singular perturbation thus is read
applicable to the resulting three-time scale model Eq.~2.3!.
In particular, nullcline analysis will be used extensive
throughout. Nullclines are surfaces along which one of
derivatives is 0. Thex-nullcline (ẋ50) consists of two
smooth surfaces: the trivial branchx50, and the nontrivial
branchf (x,y)50 on which we can solve fory as a quadratic
function y5f(x)5(12x)(b11x). The graph of the non-
trivial branch is the parabolic surface shown in Fig. 1 and
fold is given by (x̄,ȳ), also the maximum point ofy
5f(x), where x̄5(12b1)/2,ȳ5(11b1)2/4. These two
branches of x-nullclines meet along the line$x50,y
5ytrn%,ytrn5b1 , consisting of the so-calledtranscritical
pointswhich are double zero points forẋ.

Similarly, the y-nullcline (ẏ50) consists of two sur-
faces: the trivial one,y50, and the nontrivial oneg(x,y,z)
50, shown in full in Fig. 1~a!. The intersection ofg50 and
f 50 is a curve on the face of the parabola, denoted byg in
Fig. 1~b!. The intersection of the parabola fold$x5 x̄,y
5 ȳ% with the y-nullcline is the point (x̄,ȳ,z̄)5gù$x5 x̄,y
5 ȳ%. The intersection of the trivialy-nullcline with the non-
trivial x-nullcline is the line$x51,y50% on the parabola.
More importantly, on the nontrivialx-nullcline, the trivial
y-nullcline (y50) and and nontrivialy-nullclines ~g! inter-
sect at (1,0,zI ). This is a transcritical point for they equation.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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It is the existence of this point that leads to the chaos g
eration mechanism that we are considering in this paper

The z-nullcline consists of the trivial nullclinez50 and
the planeh(y)50 parallel to thexz plane. We denote the
value of y on this plane byy5yf , where yf5b2d2 /(1
2d2). The intersection of the three nontrivial nullclines
the prey, predator, and the top-predator gives the nontri
equilibrium point,pf(xf ,yf ,zf)5$y5yf%ùg. This point is
stable iff it lies on the solid part ofg between thex-nullcline
fold point (x̄,ȳ,z̄) and they-nullcline fold point (x* ,y* ,z* )
at whichg is maximum in the variablez. If it lies below y
5y* it is unstable.

Orbits traveling downwards along the trivial nullclinex
50 will leave the nullcline at pointsyspk(z) determined by
Pontryagin’s delay of loss of stability.16,22,23,27,28The value
of such a point is determined by the integral

E
yspk

ȳ f ~0,j!

jg~0,j,z!
dj50. ~2.4!

Let pspk5(xspk,yspk,zspk) be the intersection of the plana
surfacey5yspk(z) with the curveg as depicted in Fig. 1~b!.
Deng15 proves that under the conditionzspk, z̄, which must
hold in a certain domain of the original parameter space
period-doubling cascade to chaos must take place as the
trivial z-nullcline planey5yf crosses the pointpspk from
above for sufficiently small 0,«!1 andz50. This scenario
persists to some extent for sufficiently small 0,z!1.

The work in Ref. 20 demonstrates instead that the n
trivial equilibrium pointpf must become an unstable spiral
« increases beyond a modest value«0 . This occurs in an-
other domain of the original parameter space. When coup
with the same condition thatzspk, z̄, it is proven that at the
point wherepf crossespspk, a singular Shilnikov saddle
focus homoclinic orbit2 exists forz50 and persists for al
sufficiently small 0,z!1. Chaotic dynamics occur as a r
sult of such orbits.

The parameter constraints under consideration in this
per are the same as in Ref. 16 except that the nontri
z-nullcline y5yf lies below the pointpspk for all z; that is

zf,zspk, z̄, 0,«!1, 0,z!1. ~2.5!

III. SINGULAR PERTURBATION

The dimensionless system~2.3! with singular parameters
0,«!1,0,z!1 permits a singular perturbatio
approach.17,21,29–32The key is to construct a full picture o
the three-dimensional system by piecing together lower
mensional systems obtained at the singular limits when
ther z50, «50 or both.

Fast-intermediate prey-predator dynamics. When Eq.
~2.3! is viewed as a singularly perturbed system in«, the z
dynamics are«-slow and thexy dynamics are«-fast. More
specifically, setting«50 gives rise to the«-fast xy sub-
system
Downloaded 16 Jan 2004 to 129.93.51.85. Redistribution subject to AIP
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z ẋ5x f~x,y!5xS 12x2
y

b11xD ,

ẏ5yg~x,y,z!5yS x

b11x
2d12

1

b21y
zD , ~3.1!

ż50.

It is a two-dimensional system in variablesx andy, param-
etrized byz. Its phase portrait, for fixedz, can be easily
constructed from thex- and y-nullclines. To do this, we
again treat Eq.~3.1! as a singularly perturbed system, th
time using 0,z!1 as the singular parameter. The variablex
is z-fast and the variabley is z-slow. Specifically, if we
rescale the timet→t/z for Eq. ~3.1! and setz50, then we
obtain itsz-fast subsystem

x85x f~x,y!, y850, z850.

It is one-dimensional inx with both y and z being frozen
parameters. Its flow is completely determined by the equi
rium surfacex f(x,y)50. Of the x-nullcline surfaces only
two branches are attracting. These are$x50,y.b1% and $ f
50,x̄,x<1%.

Settingz50 in Eq. ~3.1! gives rise to the intermediate
z-slow subsystem iny:

05x f~x,y!, ẏ5yg~x,yz!5yS 12x2
y

b11xD , ż50.

Its flow is restricted to thex-nullcline surfacesx50 and
f (x,y)50, and determined by they-nullcline y50 and
g(x,y,z)50. Above the nontrivialy-nullcline g(x,y,z)50,
we haveẏ.0, and soy(t) increases. Below it,ẏ,0 and
y(t) decreases.

Putting together the flows for the two subsystems, we
the phase portrait for Eq.~3.1! which is shown in Fig. 2 and
Fig. 1~b!.

Intermediate-slow predator-superpredator dynamics. In
Eq. ~2.3!, x evolves on the fastest time scale. In a perturb
state with 0,z!1, all solutions are quickly attracted to
branch of thex-nullcline: either $x50,y.b1% or $ f 50,x
. x̄% because the rate of change forx is much greater than
that ofy andz if their initial points are not already near thes
surfaces. In a sufficiently small neighborhood of the surfac
solutions are well approximated by the reducedz-slow flows
by settingz50 in Eq. ~2.3!,

x f~x,y!50, ẏ5yg~x,y,z!, ż5«zh~y!.

This is a two-dimensional system iny and z restricted to
eitherx50 or $ f (x,y)50%.

The yz dynamics is rather simple onx50. In fact, the
reducedyz equations are

ẏ5yg~0,y,z!5yS 2d12
1

b21y
zD,0,

ż5«zh~y!5«zS y

b21y
2d2D .

Hence all solutions develop downward towardy50. They
will cross the transcritical liney5ytrn5b1 and jump to the
stable branch of the nontrivialx-nullcline f (x,y)50 at the
Pontryagin turning pointy5yspk(z) as noted earlier. We
point out that it is proved in Ref. 28 thaty5yspk(z) defined
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 2. Phase portraits of the«-fast subsystem inx,y with z50. ~a! A specific value ofz with 0,z,zspk and~b! several typical values ofz. In ~a! thez-fast
x-flow lines are parallel to thex axis. Thez-slow y flows are on thex-nullcline surfacesx50 andf (x,y)50, oriented by double arrow heads. PointsA,B are
equilibrium points. All nonequilibrium singular orbits are attracted to either the relaxation cycleMȳyspkR or the steady state (x,y)5(1,0) for z,zspk. The
turning pointyspk is determined by the integral equation~2.4! of Pontryagin’s delay of stability loss. In~b! the singular relaxation cycle becomes a singu
homoclinic orbit atz5zspk, and disappears forz.zspk. For z, z̄, equilibrium pointsA, B are unstable. Forz̄,z,z* , B is stable andA is unstable. Both
disappear forz.z* . The equilibrium point (1,0) is always attracting, locally, and globally forz.zspk. A three-dimensional view of these portraits in term
of z cross sections is referred to Fig. 1~b!.
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by Eq.~2.4! is a monotone decreasing function inz. S is the
horizontal projection of the Pontryagin turning curvey
5yspk(z) onto the nontrivialx-attracting surface$ f (x,y)
50,x. x̄%.

Theyz dynamics on the nontrivial and stablex-nullcline
branch$ f (x,y)50,x. x̄% is a little bit more complex, and
determines the chaotic behavior we will describe later. Giv
0<y< ȳ, definex5c(y) to be the value ofx in @ x̄,1# such
that (x,y) lies on the stable branch off (x,y)50; that is
f (c(y),y)50,0<y< ȳ. Then the reducedyz equations are

ẏ5yg~c~y!,y,z!5yS c~y!

b11c~y!
2d12

1

b21y
zD ,

~3.2!

ż5«zh~y!5«zS y

b21y
2d2D .
Downloaded 16 Jan 2004 to 129.93.51.85. Redistribution subject to AIP
n

It is again a two-dimensional singularly perturbed syst
with singular parameter«. The y equation is«-fast. Thez
equation is«-slow and is restricted to they-nullcline. Similar
to the analysis for thez-fastxy subsystem, the dynamics ar
essentially determined by they-nullcline $y50%, $g(x,y,z)
50% and thez-nullcline $z50%, $h(y)50%. The two trivial
nullclines,$y50% and$z50% are invariant and the dynamic
on them are simple. The nontrivialy-nullcline restricted to
$ f (x,y)50,x. x̄% is the curveg5$g(x,y,z)50%ù$ f (x,y)
50,x. x̄% introduced earlier. The nontrivialz-nullcline
h(y)50 on whichy5yf5b2d2 /(12d2). Two phase plane
portraits are illustrated in Figs. 3~a! and 3~b!.

Most important, the point (1,0,zI ) or zI as shown in Fig. 3
is a transcritical point for Eq.~3.2! and the phenomenon o
Pontryagin’s delay of loss of stability occurs, now for theyz
or
FIG. 3. Phase portraits of theyz subsystems on the stable branch of the nontrivialx-nullcline $ f (x,y)50% and the corresponding singular return maps f
z50. ~a! The case with«50. On dashed parts of they-nullclines, the equilibria are repelling. On solid parts, they are attracting. The«-fast flows develop
vertically and are shown with double arrows. Upon rescalingt→«t and setting«50 in Eq. ~3.2!, it gives rise to the«-slow subsystem inz restricted on the
y-nullclinesy50 andg. For points above thez-nullcline y5yf , z increases; and for points below it,z decreases. The oriented parts of they-nullclines with
single arrows are the reduced«-slow flowlines.~b! The return map at perturbed state 0,«!1. Dotted single-arrowed curves are theyz flowlines on the trivial
x-nullcline x50. See the text for description.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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582 Chaos, Vol. 13, No. 2, 2003 B. Deng and G. Hines
flow. The theory again applies. In particular, let (y,z) be any
point on S, for example, right ofzspk. The perturbed flow
~with 0,«!1 in Eqs.~3.2!! through (y,z) moves down and
to the right, following the vector field. It crosses th
z-nullcline y5yf vertically and then moves left and sti
down. It crossesg horizontally and then moves up and st
left. It crossesy5yf vertically. From there it continues to th
right and still up, and hits the junction curveS at a point
denoted by (v«(z),w«(z)). This defines a diffeomorphism
from z to w«(z). Pontryagin’s theory implies tha
lim«→0w«(z)5w(z) exists andw(z) is determined by the
following integral

E
z

w g~1,0,s!

sh~0!
ds50. ~3.3!

Again, the relationship betweenz and w(z) is
diffeomorphic.20–22More specifically, by simplifying the in-
tegral equation, we find thatz and w satisfy the equation
z exp(2z/zI)5wexp(2w/zI). Because the functiony5x
3exp(2x/zI) increases in (0,zI # and decreases in@zI ,`), cov-
ering the same range (0,zI /e#, the correspondence betweenz
andw is indeed diffeomorphic. In particular, if we consid
the shaded region in Fig. 3~a! bounded by pointszspk andz* ,
then each vertical segment of the flow in this region cor
sponds to a unique vertical flow segment in the shaded
gion bounded byw* andwspk. This pair of vertical segment
together with the«-slow horizontal flowline fromz to w
along$x51,y50% form the singular orbit for an initial con
dition below theg curve.

IV. RETURN MAPS AND CHAOS

We now describe the singular orbits of the full syste
Eq. ~2.3! for z50 and 0,«!1. In particular, we only con-
sider initial points on the junction curveS. Any typical orbit
from S will eventually hit the parabola foldx5 x̄,y5 ȳ be-
causezspk, z̄ and« is small. Once the orbit hits the fold,
will jump to the trivial x-nullcline x50, move down along
x50, jump back toS at y5yspk. This defines the singula
Poincare´ return mapp« for z50. Note that the image ofp«

is the point where the orbit hitsS after first visiting x50. So
orbits starting on the right side ofzspk on S will hit S exactly
once before returning toS as the image of the Poincare´ map.

One effective way to view this map is by looking d
rectly into thex axis as shown in Fig. 3. The solid oriente
curves are thez-slow orbits on the attracting branch of th
parabola $ f (x,y)50,x̄<x<1%. The dotted, downward
oriented curves are those on the trivialx-nullcline x50 for
y>yspk. The fast jumps from the fold to the planex50 as
well as from the Pontryagin turning curvey5yspk to S are
perpendicular to the projectedyz plane, and thus hidden
from our view. We now describe in greater detail the sing
lar return mapp« in this setting.

First, we identify S with an interval and the singula
return mappe as an interval map, depicted in Fig. 3~b!.
There are two special points onS that are essential to th
definition ofpe . The first point, labeled asd, corresponds to
the unique point onS for which the orbit @of Eq. ~3.2!#
passing through it intersects the fold at (x̄,ȳ,z̄). From this
Downloaded 16 Jan 2004 to 129.93.51.85. Redistribution subject to AIP
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point, the orbit can either jump to thex50 plane or stay on
the nullcline f 50 and pass horizontally throughg. In the
first case, the orbit travels downx50 and jumps back toS.
The point it hitsS is denoted byz«* 5p«(d), which we will
take to be the rightmost end point of the interval of definiti
of p« . In the second case, the orbit comes down and in
sectsS at a point far right ofz̄. It then goes aroundpf , up to
the fold, downx50 and returns toS at a point, denoted by
w«* , nearz50. This point marks the left end point of th
interval. Notice thatd divides S into two subintervals, the
left and right intervals. On the left interval,p« is strictly
increasing and its graph lies above the diagonal. This is
cause the left interval lies above thez-nullcline y5yf and
the z-component of the singular orbit increases. The sec
special point, denoted byc, corresponds to a junction-fold
point10 whereS is tangent to thez-slow vector field on the
parabola$ f 50,x̄,x% for 0,«!1. ~If S is parallel to thez
axis, which is the case whend150, thenc is the point of
intersection of they-nullcline curveg with S. If S is mono-
tone decreasing inz, the point c lies to the right of the
intersection.! For any initial condition onS to the right ofc,
the singular orbit swings down and aroundpf before hitting
the fold y5 ȳ. From there it jumps tox50 and then eventu-
ally returns toS. ~The first hit onS is not thereturning hit
because it has not visited the trivialx-nullcline x50 yet.!
For initial conditions onS betweend andc, the orbit crosses
g after moving abovec, develops downward, goes aroun
pf , moves up to the fold, jumps tox50, and eventually
returns toS. The image of the interval@d,c# is @w«* ,p«(c)#
and the image of the interval@c,z«* # is @p«(c),p«(z«* )#. p«

has a local maximum at the junction-fold pointc. It is mono-
tone increasing in the interval@d,c# and monotone decreas
ing in the interval@c,z«* #.

What makes the return mapp« potentially chaotic is the
existence of the transcritical pointzI . As «→0, p05 lim p«

exists. More specifically, pointsd and c collapse to one
point, denoted byd in Fig. 3~a!. The graph on the left inter-
val converges to the diagonal. The graph right ofc converges
to a strictly decreasing curve determined diffeomorphica
by the Pontryagin integral~3.3!, see also Figs. 3~a! and 1~b!.
As a result, the length of the interval@p0(c),p0(z* )# must
be nonzero. We call this lengthh0 . It is because of this
property and the property that the return map’s graph on
left interval collapses down to the diagonal at«50 that p«

must be chaotic for sufficiently small 0,«!1.
There are several ways to demonstrate the chaos.

present one argument here. LetI 05(d,z«* # be the right in-
terval ofS, andI n5p«

2n(I 0)ù@0,d#. I n is the part of thenth
pre-image ofI 0 that is in the left interval. See Fig. 4 for a
illustration. Define the end pointsd05d and dn

5p«
21(dn21) so thatI n5(dn ,dn21#. We know eachdn ex-

ists because of the monotonicity ofp« on (0,d# and the fact
that p«(0)50. Thenth image ofI n underp« is I 0 and so,
under one more iteration, the graph ofp«

n11u I n
is a unimodal

map similar top«u I 0
with the same values at the end poin

and the same maximum value. In Fig. 4~b!, graphs are shown
for p«

2u I 1
, p«

3u I z
, andp«

n11u I n
.

To see why p« is chaotic, choosen so that dn11
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 4. ~Color! Symbolic dynamics on
two symbols follows whenp«

n11 is re-
stricted to the upper right corner bo
~red! in the intervalI n5(dn11 ,dn#.
st
<p«(c)2h0/2,dn and zoom in on the intervalI n as shown
in Fig. 4. Because the graph ofp« on the left interval@0,d)
collapses onto the diagonal as«→0, the length ofI n must be
orderO(«). On the other hand, by the choice ofn, the image
Downloaded 16 Jan 2004 to 129.93.51.85. Redistribution subject to AIP
p«
n11(I n) of I n must cover an interval of length at lea

h0/2.0, thus it must coverI n , i.e., p«
n11(I n).I n . In Fig.

4~a!, we blow up the picture in Fig. 4~b! on the interval
@0,dn#. In this picture, we can see part ofp« and p«

n11u I .

n

FIG. 5. ~Color! Numerical simulation with parameter valuesz50.1, «50.34,b150.35,b250.1, d150.1, d250.3. ~a! A three-dimensional view.~b! A
Poincare´ return map.~c! Projected on to thexy plane.~d! Projected on thezy plane (z axis horizontal!.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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We also markI n on the vertical axis so that we can s
I n,p«

n11(I n) easily. We can further restrictp«
n11 to the box

in the upper right corner. We defineJ0 ,J1 to be two disjoint
closed interval pre-images of the part of the graph in the b
This implies immediately,33 that there is a Cantor subs
V,J0øJ1 on which the dynamics ofp«

n11 is conjugate to
the shift dynamics on two symbols: .s0s1¯°.s1s2¯ with
siP$J0 ,J1%. Therefore, we have proved the following the
rem.

Theorem 4.1: Under the conditions that zI,zf,zspk, z̄
and z50, the singular Poincare´ return mapp« for every
sufficiently small0,«!1 has a subset on whichp«

n11 is
conjugate to the shift map on two symbols.

Guided by the conditions of Eq.~2.5!, a perturbed attrac
tor was numerically found and shown in Fig. 5.

V. CLOSING REMARKS

We have demonstrated that in a certain parameter ra
the food chain model~2.1! must have a chaotic invariant s
on which the shift dynamics on two symbols can be emb
ded. This phenomenon is due to the existence of a transc
cal point for the predator-superpredator interaction. With
such a point, the graph of the Poincare´ return mapp« over
the right interval (d,b# may lay flat at the singular limit«
50 which is the case at a fold turning point.8 When such is
the case, the argument for the existence of symbolic dyn
ics does not apply.

We have left open the question of whether or not t
chaotic set is part of a strange attractor. This question ca
be answered without further partitioning the parame
space. This is because the return map could have a su
stable periodic orbit if the critical point of the graph ov
some intervalI m happens to cross the diagonal. We also l
open the question of whether the Lyapunov exponents of
orbits found in Theorem 4.1 are greater than 0. We stron
believe this is the case. One formal argument follows t
line of reasoning. At the limit«→0, the graph ofp«

n11 over
the intervalI n becomes vertical while that over the left in
terval, @0,d), collapses onto the diagonal and that over
right interval, (d,z* #, becomes strictly decreasing. Thus f
sufficiently small 0,«!1, the slopes of the graphs ofp«

n11

over the subintervalsJ0 ,J1,I n are strictly greater than 1
implying that all Lyapunov exponents are greater than 0.
have also left open the persistence question, that of whe
or not part of the chaotic dynamics persists when the sys
is perturbed by 0,z!1. This question is closely related t
the last one. The structure must persist if one can show
hyperbolic.

In relation to the other two mechanisms analyzed
Refs. 15 and 19, we point out that asyf increases and crosse
yspk, the transcritical chaos generating mechanism chan
to the junction-fold mechanism.15 With increasing«, the
transcritical chaos generating mechanism then gives wa
the Shilnikov mechanism.19 We will examine the role these
Downloaded 16 Jan 2004 to 129.93.51.85. Redistribution subject to AIP
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different types of chaos play in questions regarding chao
ecology after most and enough, if not all, chaos genera
mechanisms are categorized for the food chain model
~2.1!.
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