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This paper is to show that most discrete models used for population dynamics in ecol-

ogy are inherently pathological that their predications cannot be independently verified by

experiments because they violate a fundamental principle of physics. The result is used

to tackle an on-going controversy regarding ecological chaos. Another implication of the

result is that all dynamical systems must be modeled by differential equations. As a result

it suggests that researches based on discrete modeling must be closely scrutinized and the

teaching of calculus and differential equations must be emphasized for students of biology.

© 2008 Elsevier B.V. All rights reserved.
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the north-to-south latitude gradient, correlating well with
. Introduction

o models in ecology are better known than the Logistic
ap, or have played a greater role in the development of

he chaos theory (May, 1974; Hassel, 1975; Hassel et al., 1975;
erryman and Millstein, 1989; Logan and Allen, 1992). Surpris-

ngly, however, there is not a greater controversy than what
as generated by the model’s prediction that one-species pop-
lations are inherently chaotic.
Please cite this article in press as: Deng, B., The Time Invariance Principle,
modeling, Ecol. Model. (2008), doi:10.1016/j.ecolmodel.2008.03.013

The key prediction of the Logistic Map, xn+1 =
(xn, r):=rxn(1 − xn), says that increasing the intrinsic repro-
uctive rate r leads to chaotic oscillations in population.

∗ Tel.: +1 4024727219; fax: +1 4024728466.
E-mail address: bdeng@math.unl.edu.

304-3800/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
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However, contradicting evidence existed even before the
chaos theory was popularized in ecology. One noticeable
example was given by McAllister and LeBrasseur (1971)
who showed that enriching an aquatic system led to stable
equilibrium. Ensuing extensive search for field chaos came
up empty-handed. For example, well-established geographic
patterns on microtine species (Hanski et al., 1991; Falck et al.,
1995) showed that ecological systems tend to stabilize down
the absence of ecological chaos, and a fundamental pitfall of discrete

the ultimate resource abundance in liquid water and sunlight
towards the equator. A comprehensive hunt for ecological
chaos was down by Ellner and Turchin (1995) who used three

dx.doi.org/10.1016/j.ecolmodel.2008.03.013
mailto:bdeng@math.unl.edu
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different Lyapunove exponent estimators to analyze a large
collection of empirical data and showed rather conclusively
that ecological chaos is not to be expected in the wild.

The glaring irreconcilability between the theory and real-
ity can only lead to one logical conclusion: the theory is
wrong. Concluding it otherwise would have to imply that logic
imperatives do not apply to ecology. However, a definitive
explanation to the theory’s failure is lacking while efforts to
justify it continue (e.g. Eskola and Geritz, 2007). The purpose of
this paper is to make a case that the Logistic Map and most dis-
crete maps used in ecology and life sciences cannot be models
for any physical process, population dynamics in particular
because their predictions cannot be independently verified by
experiments.

2. The result

This conclusion rests on a fundamental principle of physics
held since the time of Copernicus in the 15th century that
a physical law should be the same anywhere and anytime
in the universe. In other words, a law must take the same
mathematical form, derivable from experiments carried out
at independently chosen times and spaces. As a result, the
mathematical formulation of a law must be endowed with
such time invariance property. Taken to be self-evident, we
state the principle in the following formulation more suited
for the issues under consideration:

Time Invariance Principle (TIP): A physical law has the same
mathematical form to every independent choice of obser-
vation time.

This principle has an important implication to dynamical
systems as laws of physical processes. To be precise, let y be
the set of state variables and p be the set of parameters of a
physical process. As a dynamical system, y changes in time
t. Suppose an observation is made at t0 and the state is y0,
where t0 is the time passage since the start of the process.
Another observation is made t > 0 time after t0 and the state
is yt. Then, as a physical law, yt is governed by a function,
denoted by yt = t (y0, t0, p), depending on the passage of time
t beyond t0, the state y0 at t0, and the system parameter p. As
a default requirement, it must satisfy the unitary condition

 0(y0, t0, p) = y0,

that is, with time increment 0, the law  0 leaves every state
fixed. Now by the Time Invariance Principle, if another obser-
vation is made s > 0 unit time later, the same functional form
(yt)s = s (yt, t + t0, p) must hold. Most importantly, the function
 t must satisfy the following group property and the unitary
condition

(yt)s =  s( t(y0, t0, p), t + t0, p) =  s+t(y0, t0, p) = ys+t,

and  0(y0, t0, p) = y0, (1)

which together is referred to being TIP-conforming. That is, if
Please cite this article in press as: Deng, B., The Time Invariance Principle,
modeling, Ecol. Model. (2008), doi:10.1016/j.ecolmodel.2008.03.013

an observation is made t time after the initial observation,
and another is made s time later, then the result must be the
same if only one observation is made s + t time after the initial
observation. More generally, the state at s + t after the state
 PRESS
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y0 at t0 is the same state at s after an intermediate state yt

which is the state at t after the same initial y0 at t0. A violation
of this property that  s+t (y0, t0, p) �= s( t (y0, t0, p), t + t0, p)
implies that either such an “experiment” is not reproducible,
i.e., using independent observing times lead to irreconcilable
conclusions, or such a functional form  does not govern the
laws that the experiment is to establish or to verify.

A physical process is called autonomous if its dynamical law
 t (y0, t0, p) is independent of t0. In fact, every process can be
considered as autonomous by augmenting the state only one-
dimension higher. More specifically, let x = (y, �) and denote
x = (y0, �0) = (y0, t0), xt = (yt, �t) with

�t = t + �0 = t + t0,

Then the augmented state x is autonomous even if y is not.
More specifically, let

�t(x0, p) = ( t(y0, �0, p), t + �0),

then it is straightforward to check the following

Lemma 1. The functional form satisfies the TIP-conforming prop-
erty (1) if and only if the augmented functional form � satisfies the
autonomous TIP-conforming property

(xt)s = �s(xt, p) = �s(�t(x0, p), p) = �s+t(x0, p),

and �0(x0, p) = x0, (2)

Thus, from now on we will assume all TIP-conforming func-
tional forms are autonomous, and both properties (1) and
(2) are interchangeably referred to as the TIP-conforming group
property.

As a result, an immediate consequence to the Time Invari-
ance Principle is the following.

Lemma 2. If a TIP-conforming dynamical system �t(x, p) is con-
tinuously differentiable at t = 0 and any x in its domain of definition,
then x(t) =�t(x0, p) must be the unique solution to an initial value
problem of a differential equation:

dx(t)
dt

= F�(x(t), p), x(0) = x0,

where

F�(x, p) = ∂�h
∂h

(x, p)|h=0

is the generating vector field of �t. Conversely, if the vector field
F is continuous differentiable, then the solution to the initial value
problem satisfies the TIP-conforming group property (2).

Proof. Because � is differentiable and is TIP-conforming (2),
we have the following derivative

dx(t)
dt

= lim
h→0

�t+h(x0, p) − �t(x0, p)
h

the absence of ecological chaos, and a fundamental pitfall of discrete

= lim
h→0

�h(�t(x0, p), p) − �0(�t(x0, p), p)
h

= ∂�h
∂h

(�t(x0, p), p)|h=0 = F�(x(t), p),

dx.doi.org/10.1016/j.ecolmodel.2008.03.013
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Table 1 – TIP-nonconforming and possible TIP-nonconforming maps

Generalized Beverton–Holt (Maynard-Smith and Slatkin, 1973; Hassel, 1976; Hassel et al., 1975) Nt+1 = bNt
1+(hNt )

� , � �= 1

Bernoulli Nt+1 = aNt (mod 1)

Logistic Nt+1 = Nt[1 + r(1 − Nt/K)]

Richard (Richards, 1959) Nt+1 = Nt[1 + r(1 − (Nt/K)m)], m �= 1

Ricker (Ricker, 1954) Nt+1 = Nt exp(r(1−Nt/K))

Nicholson–Bailey (Nicholson and Bailey, 1935)

{
Nt+1 = Nt exp(−aPt)
Pt+1 = Nt(1 − exp(−aPt))

LPA (Denis et al., 1995)

{
Lt+1 = bAt exp(−celLt − ceaAt)
Pt+1 = Lt(1 − �1)
At+1 = Pt exp(−cpaAt) +At(1 − �a)

Leslie (Leslie, 1945) �Nn+1 =

⎡
⎢⎢⎢

0 f1 · · · fk−1 fk
s1 0 · · · 0 0
0 s2 · · · 0 0
. . . .

⎤
⎥⎥⎥ �Nn
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howing x(t) is a solution of the equation. Since F�(x, p) is con-
inuous differentiable in x because �t(x, p) is, the solution to
he initial value problem is unique. The converse follows from
well-known result on the existence and uniqueness of the

olution to the initial value problem. �

We now conclude that the Logistic Map does not model
ny population dynamics subject to time-independent obser-
ations. More precisely, we have the following result.

heorem. Let xn + 1 = Q(xn, r) be the Logistic Map with x ∈ [0,
]. Then, there does not exist a continuously differentiable,
IP-conforming, 1-dimensional autonomous or nonautonomous
ynamical system so that �t0 (x, r) = Q(x, r) at any time t0 and for
ll x from any interval containing [0, 1] or  t1 (x, t0, r) = Q(x, r) at
ny time t0 and for all x from any interval containing [0, 1] and any
assage of time t1 after t0.

roof. By the preceding lemmas, we can assume without loss
f generality that x(t) =�t(x0, r) and that x(t) is the solution of
n autonomous differential equation x′ = F�(x) generated by �.
s such, Q(x, r) = �t0 (x, r) (or Q(x, r) =  t1 (x, t0, r)) would be the

ime-fixed Poincaré map of the continuous flow. We know by
n elementary property of differential equations that this is
mpossible since such time-fixed Poincaré maps are invertible
ut Q is not in the interval [0,1]. �

This conclusion not only applies to the Logistic Map, but
lso to most discrete maps in ecology. Table 1 lists some
opular discrete models in ecology. To be more precise, the
ame argument can be used to show that the generalized
everton–Holt map, the Bernoulli model, the Richard map, and
he Ricker map are not TIP-conforming.

Applying the same argument for any dimensional, TIP-
onforming functionals shows that such functionals must
e solutions to higher dimensional differential equations for
Please cite this article in press as: Deng, B., The Time Invariance Principle,
modeling, Ecol. Model. (2008), doi:10.1016/j.ecolmodel.2008.03.013

hich the time-fixed Poincaré maps must be invertible. Thus,
or invertible maps, the argument above does not apply, and
heir TIP-conformity needs be established by some other ways
ased on the group property (1) or (2). If short of definitiveness,
⎣ .. ..
. . . .. ..

0 0 · · · sk 0

⎦

here is a diagnostic test for probable TIP-nonconformity. More
specifically, we certainly assume that all biological processes
are governed by physical laws that are TIP-conforming, allow-
ing time-independent observation and verification on their
states. Assume observation is made every unit of time and xn

is the state at time t = n. Because the state is TIP-conforming,
we must have

xn = �1(xn−1, r) = �1(�1(xn−1, r), r) = · · · = �n1(x0, r)

where the exponent stands for iterative composition. There-
fore,

�n(x0, r) = �n1(x0, r)

that is, the nth iterative composition of �1 must have the same
functional form as itself since both �1 and �n have the same
functional form. This property can be used as a diagnostic test
for probable TIP-nonconformity. For example, the nth iterate of
the Logistic Map is a 2n-degree polynomial with evolving coef-
ficients for each n. This implies that the map is very unlikely
to be TIP-conforming because of the ever-changing functional
forms of its iterates or its TIP-conforming functional would
be extremely complex, in which case it is unlikely that such
a complex functional happens to satisfy a stringent condition
that is of the TIP-conformity and at the same time arises from
a relatively simplistic modeling exercise that is typical of most
discrete modeling. This diagnostic test can be used to cast
serious doubts on the TIP-conformity of a model if the test
fails to be conclusive. For example, we can conjecture based
on the preliminary diagnostic test that the remaining maps
from Table 1, the Nicholson–Bailey map, the LPA map, and
the Leslie matrix map, are unlikely to be TIP-conforming. The
same can be said for all nonlinear models in cell-automata in
the absence of ecological chaos, and a fundamental pitfall of discrete

games of life that they are very unlikely to model any physical
processes subject to TIP-conformity. Without TIP-conformity,
time-independent observations can neither verify nor estab-
lish such maps as models, theories, or laws.

dx.doi.org/10.1016/j.ecolmodel.2008.03.013
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3. Discussions

A plausible model for a physical process needs to pass two
types of objective scrutiny: the internal conceptual consis-
tency in the model’s structure and the external empirical
verification of its prediction. The Logistic Map and its variants
from Table 1 have failed both. They are theoretically patho-
logical for not being TIP-conforming. They make the wrong
chaos prediction for one-species system that empirical obser-
vations do not support as pointed out in Section 1. In the
view of their TIP-nonconformity, these fundamental defects
are inextricably intertwined: TIP-nonconforming functional
forms cannot be established by independent observations to
model any underlying physical law.

While the conventional TIP-nonconforming models predict
diametrically the opposite, their TIP-conforming counterparts
are consistent with a variety of converging observations that
enrichment and reproductive efficiency promote ecological
stability. To make this point, we comment below from two
mechanistically constructed models: a one-species model and
a three-trophic food chain model.

The one-species model can be derived in two ways. The
first derivation is based on the following postulate:

One-Life Rule: Every individual organism dies at most once
in any fixed time span and exactly once in any fixed time
span at an infinite density of its species.

More specifically, fix any time interval and use it as the unit
of time. Denote x0 the initial population of a species and xn

the population at the nth unit of time. Then we consider the
per-capita growth functional (xn+1 − xn)/xn. Translate the One-
Life Rule in terms of the per-capita growth, the latter must
be greater than −1 and approach −1 as xn → ∞. The simplest
functional form satisfying this property is the following

xn+1 − xn
xn

= b−mxn
1 +mxn

,

where b is the maximum per-capita growth parameter and m
is the intra-competition-induced mortality parameter because
of the One-Life Rule. Solving for xn+1 leads to

xn+1 = (b+ 1)xn
1 +mxn

:= rxn
1 +mxn

:=B1(xn, r,m)

where r = b + 1 > 1, resulting in the Beverton–Holt model which
was first used by Beverton and Holt in 1956 for fishery stud-
ies (Beverton and Holt, 1956). The second derivation is based
on a mass balance law or stoichiometry. More specifically, an
organism is recognized to be a package of elemental atoms,
obeying the law of mass conservation. For example, let us use
carbon (C) as a basic unit to measure an individual organ-
ism’s biomass for a one-species system. Arbitrarily fix a time
increment, again say t = 1 for definitiveness. Let xn and xn+1

be the numbers of individuals for the current generation and
the “next” generation, respectively. Let N be the amount of C
available in the time interval, i.e., a nutrient flux rate in C. Let
c be the amount of C that is needed during the period for each
Please cite this article in press as: Deng, B., The Time Invariance Principle,
modeling, Ecol. Model. (2008), doi:10.1016/j.ecolmodel.2008.03.013

individual which is to make to the next generation, i.e., the
per-capita maintenance cost rate in C. Let a be the efficiency
ratio, which measures the proportionality of the new genera-
tion that each individual of the current generation gives rise
 PRESS
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to for each unit of resource in C. It is the per-capita growth-
to-consumption ratio. Then N − cxn+1 is the amount available
for the transition to the next generation, and the product of
N − cxn+1, a, and xn gives the next generation’s population:

xn+1 = (N− cxn+1) × a× xn.

Solve for xn+1 to have

xn+1 = rxn
1 +mxn

with r = Na, m = ac,

the same Beverton–Holt model obtained above.
Basic properties of the Beverton–Holt model include the fol-

lowing. First, it is straightforward to check that the model is
TIP-conforming:

Bk1(xn, r,m) = B1

(
xn, r

k,m
rk − 1
r − 1

)
= Bk(xn, r,m)

that is, its kth iterate has the same functional form as itself,
which then can be extended to all continuous time t:

Bt(x0, r,m):=B1

(
x0, r

t,m
rt − 1
r − 1

)
= rtx0

1 +m[(rt − 1)/(r − 1)]x0
,

which in turn satisfies the defining Eq. (2) for TIP-conformity
for time-independent observations. In fact, the discrete
Beverton–Holt map is simply the time-1 Poincaré map of
the continuous counterpart. Also, the generating differential
equation to which xt is a solution is obtained as

dxt
dt

= d
dh
Bt+h(x0, r,m)|h=0 = d

dh
Bh(xt, r,m)|h=0 =

(
ln r −m

ln r
r − 1

xt

)
xt,

the Logistic Equation. In contrast to the per-capita growth
in any fixed time interval, the instantaneous per-capita growth
rate is linear which can be arbitrarily negative at high-
population density. More importantly, any non-zero initial
population converges to an equilibrium, the carrying capacity
of the Logistic Equation:

lim
t→∞

xt = lim
t→∞

Bt(x0, r,m) = lim
t→∞

rtx0

1 +m[(rt − 1)/(r − 1)]x0
= r − 1

m
,

for which r > 1 as a default assumption. In the context of
our stoichiometric modeling for which r = Na, m = ca we see
that the greater the nutrient influx N, the greater the stable
equilibrium, and the same holds for smaller per-capita main-
tenance cost c as well. The model predicts that prosperity
or efficiency or both promote stability, not chaos, consistent
with experimental findings cited in Odum, 1971; McAllister
and LeBrasseur, 1971; Ellner and Turchin, 1995.

The same enrichment and efficiency stabilization principles hold
for a mechanistically constructed three-trophic food chain
model as well. More precisely, consider this system of differ-
ential equations for a prey, X, a predator, Y, and a top-predator,
Z, of the predator:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ẋ = X(b1 − d1 −m1X) − a1X

1 + h1a1X
Y

Ẏ = Y

(
b2a1X

1 + h1a1X
− d2 −m2Y

)
− a2Y

1 + h2a2Y
Z

Ż = Z

(
b3a2Y − d3 −m3Z

) (3)
the absence of ecological chaos, and a fundamental pitfall of discrete

1 + h2a2Y

Mechanistic justification of this model is threefold. First,
being a unique solution to this autonomous ordinary differ-
ential equation, xt =�t(x0) with x0 = (X0, Y0, Z0) is automatically

dx.doi.org/10.1016/j.ecolmodel.2008.03.013
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IP-conforming by Lemma 2. Second, each species obeys the
ogistic Equation because of the incorporation of the intra-
pecific mortality rates mi. It in turn implies that each species
beys the One-Life Rule even if the other two species are fixed
t a constant density, respectively. Third, the per-predator
redation rates, (a1X)/(1 + h1a1X), (a2Y)/(1 + h2a2Y), are mecha-
istically TIP-conforming in their own right. To see this, let hd

e the average time a predator needs to discover a prey start-
ng from a search and let hk be the average time the predator
eeds to kill the prey after its discovery. Then h = hk + hd is the
otal handling time from the start of searching for a prey to the
nd of killing it. The reciprocal rd = 1/hd is the number of prey
iscovered per unit time that results in kills, i.e., the discov-
ry rate, and r = 1/h is the number of prey discovered and then
illed per unit time, i.e., the predation rate. Assuming the dis-
overy rate rd is proportional to the prey density, rd = aX with
being the discovery probability rate, then the predation rate

s

= 1
h

= 1
hd + hk

= 1/hd

1 + hk(1/hd)
= aX

1 + ahkX
,

ith the last functional form being the Holling Type II
isc function (Holling, 1959). Because of the Time Conserva-

ion Law, h = hk + hd, one can check that the rate function is
IP-conforming. That is, it has the same functional form
= (aX)/(1 + ahkX) regardless of the temporal cut-off defining
he killing time hk—which can end at the moment of killing
he prey, or the moment of consuming the prey, or digest-
ng the prey, or all the above before starting a new search
gain. More importantly, the model predicts the enrichment
nd efficiency stabilization principles. In fact, the result of
Deng, 2006) shows that any oscillation, periodic or chaotic, of
he model must bifurcate into a steady state as the efficiency
arameters b1, b2 increase for the top-predator and the preda-
or, respectively. In fact, one can show that all oscillations,
haotic or otherwise, must bifurcate into a steady state by
ncreasing any two of the three reproductive efficiency param-
ters in b1, b2 and b3. Moreover, it is shown in (Deng, 2001,
004, 2006; Deng and Hines, 2002, 2003) that when b3 and

2 are small relative to b1 the model can exhibit a variety of
istinct chaotic attractors. In other words, reproductive inef-
ciency fosters chaos whereas efficiency promotes ecological
tability, consistent with not only empirical findings but also
he hypothesis that evolution by natural selection promotes
pecies efficiency in survival fitness.

Empirical data are almost always collected at discrete
imes. Discrete modeling is an instinctive reaction to that
eality to use discrete models to fit discrete data. However,

discrete model has little to say about data collected at
ifferent discrete times of the same process if the process
ermits. If it is not TIP-conforming, it does not model the
nderlying process subject to time independent observation.
his may underlie many attempts via stochastic inclusion

o discrete modeling, attributing noise as the chief cause
f the irreconcilability between a theory and the reality
hen in fact TIP-nonconformity of the theory may have
Please cite this article in press as: Deng, B., The Time Invariance Principle,
modeling, Ecol. Model. (2008), doi:10.1016/j.ecolmodel.2008.03.013

een the problem. This paper advocates the approach to
se time-continuous models (i.e., differential equations) to
t discrete data because all differential equations (ODE, PDE,
elayed DE, stochastic DE) with independent time evolu-
 PRESS
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tion are automatically and necessarily TIP-conforming. Unlike
their TIP-nonconforming counterparts, such models permit
the scrutiny by all time-independent, continuous or discrete,
observations. This approach makes sure that its models are
theoretically consistent in their internal structure, allowing
their refinement within the framework of TIP-conformity.

Our TIP-equivalence result for fixed time-step Poincaré
maps and differential equations implies that autonomous
one- and two-dimensional TIP-conforming maps cannot
be chaotic because one- and two-dimensional autonomous
differential equations of continuously differentiable vec-
tor fields cannot be chaotic. Equivalently, chaotic one-
and two-dimensional maps must not be TIP-conforming.
(One-dimensional, noninvertible, chaotic maps do arise as sin-
gular limits of two-dimensional, invertible, but time-varying
Poincaré maps of 3 or higher dimensional differential equa-
tions (Deng, 1999, 2001, 2004; Deng and Hines, 2002, 2003;
Deng et al., 2007). However, such maps alone do not model
the physical processes in any time-independent fashion.) As a
result, an ecological conclusion can be made unequivocally
that single- and two-species population dynamics cannot be
chaotic. The fact that the controversy has lasted this long
was due to the combination of a few understandable fac-
tors. To name a few obvious ones: first, the derivations of
all popular discrete ecological models seemed logical, but
TIP-nonconforming nevertheless. Secondly, because of their
TIP-nonconformity, all predictions could not be independently
and objectively reproduced, leading to the inevitably con-
fusing state between a seemingly reasonable theory and an
uncompromising reality. Thirdly, the empirical irreproducibil-
ity against all low dimensional chaos theory was conveniently
masked by the inherent unpredictability of all chaotic sys-
tems. And fourthly, the irreconcilability was also conveniently
masked by a noisy reality that is for most biological experi-
ments and observations.

Comparing to differential equations, discrete maps are eas-
ier to teach, easier to do research with. But we should not
compromise the Time Invariance Principle just for their sim-
plicity. TIP-conformity is the minimal necessary condition a
conceptually consistent model must satisfy. More importantly,
the requirement is fundamental to all branches of science,
governing the reproducibility of experiments. Because of these
reasons, the usage of stand-alone TIP-nonconforming maps
is difficult to justify in most circumstances. This conclusion
has some important implications to both research and train-
ing: both past and future researches based on discrete models
must be scrutinized against their TIP-conformity and be justi-
fied for their TIP-nonconformity. The subject of discrete maps
may have to be de-emphasized in the classrooms and be
viewed through the lens of TIP-conformity. On the other hand,
training in calculus and differential equations must be further
enhanced and greatly emphasized for future generations of
theoretical biologists.
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