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Abstract: The all-purpose communication model proposed bythe author previously for DNA

replication suggests that if the base pairing time ofGC bases is between1.65 and 3 times the

base pairing time ofAT bases (with the proportional ratio denoted byα), then the quaternary

DNA system has the optimal information rate for all species on average. In the absence of a

definitive experimental determination of the base pairing time ratio α, previous theoretical

estimates based on hydrogen bonding energy put its range near 1.6667, 1.8268, 2, all inside

the optimal α interval (1.65, 3) of the quaternary system. In this paper, we attempt to gauge

the theoretical range alternatively. The basic assumptionis that organisms which have an

intrinsic capability to replicate the most information at b ase-4’s optimalα ratio should be

the most successful by evolutionary considerations.Pelagibacter ubique and Prochlorococcus

are believed to be such organisms. Here we show that if these marine bacteria are capable

of replicating the most information, then their α ratios indeed lie inside base-4’s optimal

interval.

Introduction. An organism has the same amount of genomic information when it is alive and

dead. The difference is replication. The DNA code and its replication are two inseparable facets

of cellular life. Each must have left telltale marks on the other through evolution. In this paper

we take the view that replication exerts the foremost evolutionary pressure on species genomes

because it operates at a time scale immeasurably faster thanthat of natural selection. We aim to

find such evolutionary imprints of replication and to formulate an optimization theory by which its

impact on the DNA code can be understood.

A communication model of DNA replication was proposed by theauthor in [4]. It treats species

genomes as individual information sources but the DNA replication as an all-purpose communica-

tion channel when the DNA bases,A, T, G, C, are paired one at a time with their complementary

bases along the single strands of the double helix. By this conceptual model, a cell can be thought

as a receiver when it is newly formed and a transmitter when itis to duplicate. That however good

a transmitter or receiver is for a communication system is not as critical as the system’s channel

which defines a definitive time bottleneck for information transmission.

Any Internet connection, such as dial-up, DSL, cable, opticfiber, etc, is an all-purpose channel

through which all types of information travel. An all-purpose channel is characterized by its mean

information rate (in bits per second), which measures the best average the channel does for all

information types. However, each signal type, such as video, audio, spam, computer virus, etc,

has its own information rate which may be more or less than themean rate. However fast, there

is an upper limit that no information rate can exceed, and thelimit is called the channel capacity.

A particular piece of information source may happen to go through the channel at the capacity
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Figure 1: Discussed in detail in [4] are two critical valuesα = 5/3 andα = 2.

rate. Surprisingly,any information source can bemade to go through the channel at a rate as close

to the capacity rate as possible by properly encoding the source, one of the greatest discoveries

by Claude E. Shannon’s ([9]). However only the existence of such codes is guaranteed not the

construction in general. Even if such a code is available, additional time is needed both before

and after transmission to encode the source and to decode thesignal respectively. Therefore, an

information source that can naturally go through the channel at the capacity rate takes advantage

of the channel the fullest.

The main finding of [4] is that if the pairing time of the hydrogen bonds of theGC pair is

between 1.65 and 3 times that of theAT pair, then the information mean rate of the quaternary

DNA system is greater than that of the binary model in eitherAT bases orGC bases alone, and

greater than that of the model of any even bases. Thus, the result suggests that Nature may have

favored the quaternary system because it can produce the best information rate for all species and

on average, allowing the most species diversity to pass through the time bottleneck constrained by

replication.

Of particular interest to this paper is the following simplemean rate model considered in [4].

Let n be the (even) number of bases of our communication model for DNA replication. Letτ
AT

be

the base pairing time between theAT bases,τ
GC

be the base pairing time between theGC bases,

and letα = τ
GC

/τ
AT

be the base pairing time ratio. Then the maximum informationis log2n bits

per base, and the mean replication rate is

Rn =
log2n

τ
AT

[1 + (α − 1)(n − 2)/4]

in bits per time. (See Appendix for a derivation of the formula.) Fig.1 shows the normalized rates

τ
AT

Rn as functions of the base pairing time ratioα for a few even integers of base numbern.

It says the following. Ifα > 3, then having theAT bases alone gives the best mean rate. On

the other hand, ifα ∈ (1.8268, 3), then having the quaternary system inATGC bases gives the
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optimal mean rate. However, ifα ∈ (1.5, 1.8268), then the mean rate would reach optimal with

ATGC bases plus a third hypothetical base pair. In other words, for each even base numbern, the

mean rateRn is optimal only in an interval of the parameterα. Notice also that not allα values in

base-4’s optimal interval give the same mean rateR4. It reaches the absolute maximum at the left

end pointα = 1.8268 of the base-4 optimal interval.

The technical focus of this paper is instead on individual species which can naturally replicate

at their channel capacity, also referred to asthe replication capacity below. Such species make

out the most that the quaternary replication machinery can offer, rushing through time the most

genomic information ahead of other species.

The Result. Typically, an Internet channel has its own particular signal makeup in electrical

waves or optical pulses, and its own number of signaling states referred to as symbols, sayn

of them. When an individual information source is encoded bythe signal symbols for trans-

mission, it results in a symbol frequency distribution, denoted byp = {p1, p2, . . . , pn} with

entries for symbol1, 2, . . . , n respectively. Letτ = {τ1, τ2, . . . , τn} denote the transmission

times respectively for the1st, 2nd, . . . , nth signal symbols. Then for this source only, thekth

symbol containsH(pk) = log2 1/pk bits of information, and on average, each symbol contains

H(p) = p1 log2 1/p1 + p2 log2 1/p2 + · · · + pn log2 1/pn bits for the source. Also on average and

for this source only, each symbol takesT (p, τ) = p1τ1 + p2τ2 + · · · pnτn units of time to transmit.

Therefore, the particular information transmission rate for the source isR(p, τ) = H(p)/T (p, τ),

measured now in bits per unit time.H(p) is called theentropy of the source, approximately mea-

suring how diverse the source is per-symbol. It is a fact thatH(p) ≤ Hn = log2 n for all p, and

Hn = H(p) if and only if the probability distributionp is the equidistribution:pk = 1/n. That

is, H(p) reaches the maximum entropy, or per-base diversity, when each symbol is equally prob-

able at every position of the transmitted signal. It is a trivial fact that the average or mean value

of any probability distribution is the equidistribution:(p1 + p2 + · · · + pn)/n = 1/n. Thus, the

channel’smean information rate is by definitionRn(τ) = Hn/Tn(τ) in bits per unit time, where

Tn(τ) = (τ1 + τ2 + · · ·+ τn)/n is the mean transmission time per symbol with the equiprobability

assumption for the symbol frequencies. At the mean rate, thechannel is maximal in transmitting

the information content or per-base diversity, embracing all possible sources.

Although an information source’s entropy after encoded in the signal symbols cannot exceed

the channel entropyHn, its source information rateR(p, τ) may be greater or smaller than chan-

nel’s mean rateRn(τ) depending on the symbol frequencyp of the individual source because the

source may take up very few or too many time-consuming signalsymbols. By definition, the

channel capacity is the maximum ofR(p, τ) over all possible choices of the frequency distribution

p, denoted byK(τ) = maxp R(p, τ). By a theorem from the Appendix,K(τ) is finite and the

capacity-generating frequency satisfies

pi = p
τi/τ1
1 ,

n∑

i=1

p
τi/τ1
1 = 1, K(τ) =

log2 1/p1

τ1

(1)
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Table 1: Base frequency distributions of various organisms
Frequency

Genomes A T G C d ∆AT H(p) τ
AT

R(p)∗∗

S. coelicolor 13.9 14.0 36.1 36.0 0.2% -44.2% 1.85 1.16

E. coli K-12 24.6 24.6 25.4 25.4 0.0% -1.6% 1.99 1.41

E. coli O15:H7 24.8 24.7 25.2 25.2 0.1% -1.0% 1.99 1.41

Human∗ 29.4 29.7 20.5 20.4 0.4% 18.2% 1.98 1.40

P. ubique 35.3 35.0 14.9 14.8 0.4% 40.6% 1.87 1.51

W. glossinidia 38.8 38.7 11.2 11.3 0.2% 55.0% 1.76 1.49
∗ TheA, T, G, C contents shown are those of the chromosome #14 which has the greatest

deviation from the generalized Chargaff law withd = 0.4% of all 23 chromosomes.
∗∗ α = 1.8268 is used for the rateR of all genomes.

or equivalently the same equations replacingp1, τ1 by any fixed pairpj, τj for anyj.

For our communication model of DNA replication,τ
A

= τ1, τ
T

= τ2, τ
C

= τ3, τ
G

= τ4;

τ1 = τ2, τ3 = τ4; andτ
GC

= ατ
AT

with τ
GC

= τ
G

= τ
C
, τ

AT
= τ

A
= τ

T
. Using the general result

above, the capacity-generating base frequency satisfies:

p
T

= pτ
T

/τ
A

A
= p

A
, p

G
= p

C
= pτ

GC
/τ

AT

A
= pα

A

p
A

+ p
T

+ p
G

+ p
C

= 2(p
A

+ pα
A
) = 1

K(τ) =
1

τ
AT

log2

1

p
A

(2)

Table 1 shows the base frequencies of some selected bacteriaas well as the base frequencies of

Human chromosome #14. Letp = {p
A
, p

T
, p

G
, p

C
} denote the base frequencies of a single strand

DNA of the double helix of a chromosome, andp̄ = {p̄
A
, p̄

T
, p̄

G
, p̄

C
} denote the base frequencies

of its complementary strand. Then by Watson-Crick’s base pairing principle, p̄
A

= p
T
, p̄

T
= p

A
,

and similarly for theGC pair. Because of the complementarity, we see immediately that the base

entropyH and the replication rateR are all invariant with respect to the choice of single strands.

That is,H(p) = H(p̄) andR(p) = R(p̄). The table introduces two more strand invariant measures

about which detailed discussions follow later. They are: the intrapair frequency distance

d = |p
A
− p

T
| + |p

G
− p

C
|,

and theinterpair frequency AT displacement

∆AT = (p
G

+ p
C
) − (p

A
+ p

T
).

Alternatively, withGC being the reference pair we have∆GC = −∆AT . The data are sorted in the

increasing order of theAT content or∆AT .

Of 303 sequenced bacterial genomes ([11]), it shows the lestAT content forStreptomyces

coelicolor ([11]); the mostAT content forWigglesworthia glossinidia ([1]); the first sequenced
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Figure 2: (a) For each pairing time ratioα, the capacity base distribution is

solved from equations (2), and the jointA + T frequencyp
A+T

= 2p
A

is plot-

ted. (b) Comparison of the normalized replication capacityτ
AT

K, the individual

replication ratesτ
AT

R, and the mean diversity rateτ
AT

R4.

organismE. coli K-12 ([2]) and a relative strainE. coli O15:H7 ([6]), both of which happen to

have a near equidistribution of the bases. It also shows the base frequencies forP. ubique ([5, 10])

and the Human chromosome #14 ([12, 8]).

The single strand entropy columnH of the table is self-explanatory. It is determined by organ-

isms base frequencies. As for the replication information rateR, only the normalized rateτ
AT

R

is considered in this paper since individual species base pairing/replicating times may vary, (more

discussions on the distinction follow below.) The last column of Table 1 shows the normalized rate

for theα ratio at base-4’s optimal value1.8268. It shows thatP. ubique has the best normalized

replication rate.

Figure 2(a) shows the graphs of these organisms pairwiseAT frequency:p
A+T

= p
A

+ p
T
,

which is also strand invariant. It also shows the capacity-generatingAT frequency curve as a func-

tion of the base pairing time ratioα, and how the curve crisscrosses organismsAT frequency lines.

For example, the result implies that ifα = 1.825, thenP. ubique replicates at the corresponding

capacity rate. At one extreme,C. michiganensis is a capacity-replicating organism ifα = 0.55,

and at the other extremeW. glossinidia is so ifα = 2.35. It depends on the ratioα. However, these

two extremeα values lie outside the optimal mean rate range for the base-4system.

In addition to mirroring the same information of Fig.2(a), Fig.2(b) shows the following. First,

regardless theα value, no organism can replicate more information than the replication capacity

K. Second, it shows that the slower theC andG bases pair with each other (largerα value), the

smaller the replication capacity becomes, and the less frequent theGC pair should be in order to

achieve the replication capacity. Third, it shows that the relationship between the replication rate
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and the base distribution is not linear. For example, the human genome replicates more information

per base thanW. glossinidia does atα = 1.5 but less information atα = 2.

Discussion.P. ubique is considered to be one of the most successful organisms on Earth ([5]). It

has the shortest genome that has the complete biosynthesis pathways for all20 amino acids. It

has no junk DNA. Its clad (SAR11) accounts for25% of all microbial cells throughout the oceans.

Our result above suggests that ifP. ubique replicates at the information capacity, then its lowGC

to AT base content corresponds to a pairing time ratioα equal to1.825, which is less than0.1%

difference from the optimal theoretical ratio1.8268 predicted from the simplest communication

model of DNA replication discussed in the Introduction. In fact, Fig.2(b) shows thatP. ubique

consistently has a greater normalized replication rate than others do for the range ofα ≥ 1.4

which contains base-4’s optimal mean rate range(1.65, 3). Although there are alternative theories

proposed for the lowGC to AT content problem for bacteria in the oceans where nitrogen and

phosphorous are frequently limited, they do not explain theproblem forP. ubique according to [5].

Prochlorococcus is the smallest-known photoautotroph in the ocean whose biomass is similar

to that ofP. ubique. It is responsible for a significant fraction of global photosynthesis and carbon

cycling ([3, 7]). A high-light-adapted strain (MED4) has anAT content, 69.2%, similar to that

of P. ubique. The correspondingα value is 1.75, pushing even closer to the absolute optimal of

base-4’s optimal mean rate range(1.65, 3). Taken together, their summed biomass in the ocean

would spike against all other marine bacteria and the spike would be near the 70%AT -content

range, which in turn corresponds to anα range near 1.8268. Interestingly, a low-light-adapted

strain, MIT9313 ([7]), in deep sea has a significantly lowerAT content (49.3%), and about 40%

of its genes is not shared with its high-light-adapted counterpart ([7]).

Our communication model applies to single strand replication as well as to double strand repli-

cation. With respect to the single strand replication, the model, together with the complementary

base pairing time assumption thatτ
A

= τ
T
, τ

G
= τ

C
, leads to the followinggeneralized Chargaff

law (GCL):

p
A

= p
T
, p

G
= p

C

as seen in (2). This result is completely counterintuitive because it is the purine pair (AG) and

the pyrimidine pair (TC) respectively that are similar in structure and elemental composition.

However, the genome samples from Table 1 indeed support thisGCL conclusion. We see now

that the intrapair frequency distanced introduced in Table 1 measures a genome’s deviation from

GCL (d = 0). Contrasting the large variation in the interpair frequency displacement∆AT , the

uniformity in the intrapair frequency distanced is striking. For the Human genome, for example,

the largest discrepancy occurs on chromosome #14 (and #21),and the difference is no greater than

0.4% from the law. Of the 23 chromosomes, 9 satisfy GCL under the thousandth percentage point,

and the rest are between 0.1% and 0.4%, see [8].

Applying our model to the double strand replication, it automatically recovers the classical

Chargaff law (d ≡ 0). In fact, the double helical complementarity gives aperfect solution to the

capacity optimization problem withp
A
≡ p

T
, p

G
≡ p

C
. This single-to-double Chargaff law pro-
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gression is well in line with a well-known hypothesis that there was an RNA world before DNA

evolved. More specifically, applying our communication model to single strand RNA replication

leads to the GCL prediction. Hence, an argument can be made that GCL predated its double strand

version, which only evolved later to give the perfect solution (d ≡ 0) to the capacity optimiza-

tion problem. It can also be argued that the double helix structure of DNA is an evolutionary

consequence of GCL rather than the other way around.

The homogeneity in the intrapair frequency distance (d ∼ 0) for the replicating samples of

Table 1 and the predicted GCL by the capacity theory togetherimply that all replicating organisms

distribute their bases to achieve their own replication capacity. However, the heterogeneity in the

interpair frequency displacement (−44.2% < ∆AT < 55%) implies that the pairing/replicating

timesτ
AT

, τ
GC

are species specific, with individualα ratios determined by the capacity frequency

relationp
G

= p
C

= pα
A

= pα
T
. The normalized replication rate comparison suggests thatif the

absolute pairing/replicating timeτ
AT

for theAT pair were the same for all species, thenP. ubique

would have aninherent advantage over all others of Table 1 and for allα values from base-4’s

optimal mean rate interval.

For the mean rate replication model and for most of the preceding discussion on replication

capacity, the basepairing times are assumed to be determined by the bonding energy of the hy-

drogen bonds of the nucleotides ([4]). In contrast, we did not gave a definitive definition tocell

replication time. With the dichotomy of cells being transmitter and receiver, such a definition may

aggregate some or all of the encoding and decoding times. In other words, it can be context depen-

dent. Likewise, we did not consider theabsolute pairing/replicating timesτ
AT

, τ
GC

. They too can

be context dependent because they may change not only throughout their evolutionary histories

but also change with organisms developmental stages, or nutrient compositions, or ambient tem-

peratures, etc. Our model did not nor could have taken into account all these context dependent

variances. However, if one assumes that the absolute pairing/replicating times change proportion-

ally with the same proportionality for both pairs from one given replication condition to another,

then the time ratioα = τ
GC

/τ
AT

will remain constant for the changing replication conditions. As

a result, the normalized information rateτ
AT

R remains as a dimensionless constant, which in turn

can be used for an intrinsic comparison among different species as we did here with Table 1 and

Fig.2. This approach is analogous to that of [4] as well as Fig.1 where the normalized mean rate

instead is used as an intrinsic comparison over replicationmodels of different number of bases.

However context specific may it be, a particular definition ofthe base or cell replication times

may have to be subjected to some more fundamental context-invariant rules. For instance, assum-

ing that each species replicates at its own capacity, then the homogeneity in the intrapair frequency

distance for the replicating samples of Table 1 again implies that whatever the definition of replica-

tion time may be, the moment that replication is considered completed is suggested by our model

to be the moment when the hydrogen bonds of the complementarybases are paired, given rise to

the pairing/replicating time symmetry:τ
A

= τ
T

= τ
AT

, τ
G

= τ
C

= τ
GC

. In other words, it is

the base pairing time symmetry rather than a particular definition of replication times that leads
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to the generalized Chargaff law. Further, it also suggests that it is by the same base pairing time

symmetry rather than by chance, or base structure, or elemental composition, or individual fitness

of natural selection that the generalized Chargaff law is satisfied.

Our model together with the empirical data from Table 1 implies that organisms settle down to

their individual base pairing/replicating timeτ
AT

, τ
GC

, which in turns determine their ownα ratio,

which in turn determines their base frequency distributionp according to Eq.(2). Thus, an argument

can be made that each species genome is the result of its own information rate optimization.

The prevalence of intrapair distance homogeneity (d ∼ 0) also suggests a base selection domi-

nance over natural selection with respect to genomic composition. Thinkd = 0 as an evolutionary

equilibrium, referred to as thereplication capacity equilibrium below, for which the corresponding

base frequency distribution is selected through replication optimization. Then, the empirical data

suggests that the genomic composition that is due to evolution by natural selection falls inside a

small vicinity (0 ≤ d < 0.4%) of the capacity equilibrium. More specifically, for a givenbase

capacity distributionp, there are different base permutations to realize the equilibrium distribution.

Thus, our result suggests that a species genome take up at anygiven time in its evolutionary history

one particular realization in a small neighborhood of its replication capacity equilibrium.

Our model also provides an implicit, mechanistic explanation to this replication dominance.

The mechanistic principle holds for any dynamical process which has two or more competing

subdynamics operating at diverse time scales. That is, between a slow subdynamics and a fast

subdynamics, the fast process always dominates — with the combined dynamics closely tracking

the fast constituent’s equilibrium. With regard to genomicevolution, DNA replication operates at a

much faster time scale than natural selection does, with fractions of a second v.s. hundreds of thou-

sand years, a practical order of infinity. As a result, the replication capacity equilibrium dominates.

Hence, it can be argued that whenever natural selection forces a particular base distribution away

from its replication equilibrium, the information rate optimizing force always brings the distur-

bance quickly back to a new realization of the equilibrium. As an interpretation to this replication

v.s. evolution tug, a conjecture can be made that the greaterdeviation the intrapair distance is from

its equilibriumd = 0, the more recent evolutionary changes took place. For example, with regard

to the microbes from Table 1, this conjecture would apply toP. ubique, the Human chromosome

#14, as well as chromosome #21 withd = 0.4%, chromosome #16, #20, and the Y chromosome,

all having the second largestd = 0.3%.

This does not mean the capacity theory can replace the theoryof natural selection. Quite to the

contrary, it leaves a huge opening for natural selection to operate. More specifically, the theory does

not address the question of species-specific ratioα, which leads to the heterogenous distribution

in the interpair frequency displacement∆AT . This heterogeneity appears to correlate with species

differentiation. Thus, a conjecture can be made that natural selection primarily impacts on the

interpair frequency displacement∆AT while DNA replication primarily impacts on the intrapair

frequency distanced.

With few exceptions, viruses do not self-replicate. Without the primary replication pressure,
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Table 2: Base frequency distributions of various viruses
Frequency

Genomes A T G C d ∆AT H(p) H(P )

phage VT2-Sa 25.6 24.5 26.9 23.0 5.0% 0.2% 1.9976 2.0000

phage 933W 27.6 22.8 27.4 22.2 10.4% 0.8% 1.9927 1.9999

phage P1 26.1 26.6 23.5 23.8 0.8% 5.4% 1.9978 1.9979

phage phiX174 24.0 31.3 23.3 21.5 8.1% 10.6% 1.9846 1.9921

phage T4 31.8 32.9 16.5 18.8 3.4% 29.5% 1.9355 1.9367

there is no reason to expect their genomes to track closely the replication capacity equilibrium

d = 0 for self-replicating organisms. Table 2 indeed supports this observation. Surprisingly

though the displayed entropy patterns can also be explainedby the optimization paradigm proposed

here. Without replication, the static single- and double-strand per-base diversity entropies reach

the maximumH4 = 2.0 bits per base when all bases are equally probablep
A

= p
T

= p
G

= p
C

=

1/4. As shown in Table 2, the entropies are indeed uniformly nearthe maximum even though

d varies considerably, suggesting that the equiprobabilityis not a too stringent condition for the

maximization. When both strand are taken together, the basefrequencies are further homogenized

asP
A

= P
T

= (p
A

+p
T
)/2, P

G
= P

C
= (p

G
+p

C
)/2 so thatd ≡ 0 for the double-strand Chargaff

Law. As a result, the aggregated double-strand per-base entropyH(P ) gets even closer to the 2 bits

per-base maximum. Hence, an argument can be made that the primary function of virus genomes

is to maximize their stationary per-base information entropy. Furthermore, the heterogeneity in

bothd and∆AT can be viewed as indicators of their ongoing evolutionary differentiations.

Genomic diversity is at least two dimensional, one is obvious and the other is not. The obvious

is of the genome length of an organism. The not-so-obvious isthe information entropyH(p) each

base carries for a base distributionp, which is length independent. The total information content of

a genome of lengthL and of base distributionp is H(p) × L. The replication rate is not about the

genomic length nor the base entropy per se rather than the information entropy that is replicated

in a unit time. In particular, it is sampling time invariant —i.e., the rate calculation results in the

same value whether a time interval of one second or one hour isused by an observer. Given the

same length of genomes, the work of [4] shows that the quaternary replication system gives the

best mean information rate ifα ∈ (1.65, 3). In contrast, our result here strongly suggests thatP.

ubique andProchlorococcus have the best intrinsic rate for the sameα range.

DNA code is unique in a fundamental way that it has to be constantly maintained and up-

dated by replication. This is reflected by the ways how information is measured in our model.

The measurement by the information entropyH(p) is static whereas the measurement by the in-

formation rateR(p) is dynamic. As an illustration, compare a genome of 50%AT content to a

genome of 70%AT content but both having the sameα value 1.825 asP. ubique’s. Then the

former has a static entropy of 2 bits per base and a replication rate of 1.4125 bits per unit ofAT
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pairing time. Respectively, the latter has a static entropyof 1.8813 bits per base but a replication

rate of 1.5081 bits per unit ofAT pairing time. Thus, the 70%AT -content genome has about

(2 − 1.8813)/2 = 0.0594 ∼ 6% less static information than its 50% counterpart. This lost is

accumulative only in length not in time. That is, a 50%AT -content genome of twice the length of

a 70% counterpart has about2 × 0.0594 ∼ 12% more total information. In contrast, the 70%AT -

content genome replicates about(1.5081 − 1.4159)/1.4159 = 0.0651 = 6.5% more information

in each unit ofAT pairing time than its 50% counterpart does. This gain is accumulative in time:

in two units ofAT pairing time, the 70% genome replicates2 × 6.5 = 13% more information

than the 50% genome does, and3 × 6.5 = 19.5% more information in 3 units ofAT pairing time,

etc. This is due to the time dynamical nature of the information rate measurement. Multiplying

this small gain by a factor of millions or billions ofAT pairing time unit throughout their common

evolutionary history, the net information gain is astronomical. We simply suggest here that this

extra amount of information must translate in part into somegreater evolutionary successes for the

replicator of higherR(p) rate. In other words, as far as information is concerned, short in genome

length, such as the case forP. ubique andProchlorococcus, is not necessarily disadvantageous as

long as it is compensated in time by a capacity information rate. Chromosome length seems to

be spacially and physically limited, but replication time lasts as long as life is permitted in the

universe.

Our communication model for DNA replication inevitably implies that the principle of DNA

replication is information rate optimization. This idea also gives rise to a logical explanation to the

problem of junk DNA present in many species genomes. Take theHuman genome for example,

which is known to contain about 97% junk DNA. A leading conventional explanation surmises junk

DNA to be evolutionary left-over, a notion inconsistent with evolutionary optimization. However,

if life is to replicate information, then junk or not makes little difference as far as information is

concerned — every base carries the same amount of information which is context and observer

independent. We also see this in the generalized Chargaff law which both Human andP. ubique

genomes satisfy.P. ubique has adopted a lean and mean genome of 1,308,759 base pairs to build

a complete set of biosynthesis pathways. Each replication replicates the machinery only. It is an

exception to junk DNA but not to information replication. Itis a bargain in itself because of its

numerical abundance so that the net information replicatedis huge. At the other extreme, we use

only 3% of our genome for our replication machinery. It too isa bargain because the partition

results in a 32:1 (= 97:3) payoff-to-cost gain.

In conclusion, our model suggests that what is worth replicating has to be optimal — be it

the best mean rate for the choice of the number of bases; be it the best per-base entropy for non-

replicating virus genomes; and be it the best information replication rate for cellular organisms.

Given the abstractness of the concept of information and thenear impossibility of simulating evo-

lution in laboratories, the most we can hope for is to build empirical consistency for the theory.

Expanded data surveys and new experiments specifically designed to determine base pairing and

cell replicating times are certainly needed to further testthe model.
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Appendix. Recall the definitions forHn, Tn(τ), H(p), T (p, τ), R(p, τ) from the main text.
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For the mean rateRn of the replication model, we have

Tn(τ) =
2

n

n/2∑

k=1

[τ
AT

+ ∆τ(k − 1)] = τ
AT

[1 + (α − 1)(n − 2)/4],

using the identity that1+2+3+· · ·+n = n(n+1)/2. Hence, the mean rateRn as presented in the

Introduction. Here,∆τ represents a constant pairing time increment so thatτ
GC

= τ
AT

+∆τ , under

the assumption that theGC pair takes longer to pair than theAT pair does for having an additional

hydrogen bond. As for a third, and additional base pairs, it is assumed thatτ56 = τ
AT

+ ∆τ × 2,

andτ(2k−1)(2k) = τ
AT

+ ∆τ × (k − 1), etc. Replacing∆τ by ∆τ = τ
GC

− τ
AT

= τ
AT

(α− 1) gives

rise to the formula forTn(τ).

For the replication capacityK(p) of the model, we have the following result.

Theorem 1. The source transmission rate R(p, τ) has a unique constraint maximum K(τ) with

respect to p when p
1/τi

i is a constant for all i. In particular, pi = p
τi/τ1
1 ,

∑n
i=1 p

τi/τ1
1 = 1, and

K(τ) = − log2 p1/τ1 = − log2 pi/τi.

Proof. We use the Lagrange method to maximizeR(p, τ) subject to the constraintg(p) =
∑n

k=1 pk =

1. This is to solve the joint equations:∇R(p, τ) = λ∇g(p), g(p) = 1, where∇ is the gradient

operator with respect top andλ is the Lagrange multiplier. DenoteRpk
= ∂R/∂pk, then the first

system of equations becomesRpk
= [Hpk

T − Hτpk
]/T 2 = λgpk

= λ, componentwise. Write out

the partial derivatives ofH andT and simplify, we have−(log2 pk + 1/ ln 2)T − Hτk = λT 2 for

k = 1, 2, . . . , n. Subtract equation (k = 1) from each of the remainingn−1 equations to eliminate

the multiplierλ and to get a set ofn − 1 new equations:−(log2 pk − log2 p1)T − H(τk − τ1) = 0

which solves tolog2
pk

p1
= R(τ1 − τk) and hencepk = µτ1−τkp1 for all k whereµ = 2R = 2H/T or

H = T log2 µ. Next we express the entropyH in terms ofµ andp1, τ1:

H = −
n∑

k=1

pk log2 pk = −
n∑

k=1

pk[(τ1 − τk) log2 µ + log2 p1]

= −[τ1 log2 µ −
n∑

k=1

pkτk log2 µ + log2 p1]

= −[τ1 log2 µ + log2 p1] + T log2 µ,

where we have used
∑n

k=1 pk = 1 andT =
∑n

k=1 pkτk. Since we have by definitionH = T log2 µ,

equating the 2 expressions gives rise tolog2 p1 + τ1 log2 µ = 0 and consequently2R = µ = p
−1/τ1
1

andpk = µτ1−τkp1 = p
τk/τ1
1 . Last solve the equationf(p1) = g(p) =

∑n
k=1 p

τk/τ1
1 = 1 for p1.

Sincef(p1) is strictly increasing inp1 andf(0) = 0 < 1 andf(1) = n > 1, there is a unique

solutionp1 ∈ (0, 1) so thatf(p1) = 1. The channel capacityK(τ) = R(p, τ) = − log2 p1/τ1 =

− log2 pk/τk follows. This completes the proof.
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