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Abstract

Motivation: Proteins often include multiple conserved domains. Various evolutionary events including
duplication and loss of domains, domain reshuffling, as well as sequence divergence generate complex
proteins and affect their functions. As a consequence, a large variation exists in the numbers, combinati-
ons, and orders of domains among protein families and subfamilies, and their evolutionary history is best
modeled through networks that incorporate information from the entire domain content of the proteins. We
have previously proposed a game-theoretic approach to constructing protein networks. In this study we
adapt our method into the framework of multi-objective optimization and examine its application to cluster
multi-domain proteins.
Results: We applied our method to cluster a multi-domain protein family, the Regulator of G-Protein
Signaling family, as well as protein sets from ten genomes. We compared our classification results with the
results from two other methods, Markov clustering and phylogenetic clustering. We showed that compared
to other techniques, our approach, which uses both domain composition and quantitative sequence simi-
larity information, can generate more functionally coherent protein clusters and better differentiate protein
subfamilies.
Availability: MOCASSIN-prot source code, implemented in Perl and Matlab, is freely available on the web
at NEED TO FILL THIS IN!!.
Contact: emoriyama2@unl.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins often include conserved sequence regions. They are called
domains, and in eukaryotes, 70% or more proteins are multi-domain
proteins (Chothia and Gough, 2009; Levitt, 2009). Domains are often
associated to discrete functions, and shuffling and accretion of domains
(Graur and Li, 2000; Kooninet al., 2000) are important mechanisms for

1 Mention of a trade name, proprietary product, or specified equipment
does not constitute a guarantee or warranty by the USDA and does not
imply approval to the exclusion of other products that may besuitable.
2 The USDA is an equal opportunity provider and employer.

evolutionary innovation in protein functions. Among multi-domain pro-
teins, families are often recognized based on their domain composition and
sometimes their specific arrangements of domains (Chothia and Gough,
2009; Vogelet al., 2004).

One way to infer protein function is through phylogenomic analysis,
where protein functions are assigned in the context of protein families
based on evolutionary relationships. Classifying proteins into families and
subfamilies has been shown to improve the accuracy of functional clas-
sification (Sjölander, 2004). Protein clustering is usually done based on
similarity among their sequences. One of the simplest and most common
ways to identify sequence similarity is to perform a pairwise alignment-
based sequence similarity search, such as BLAST (Altschulet al., 1997)
or FASTA (Pearson and Lipman, 1988). More sensitive similarity searches
can be done using profile hidden Markov models (pHMMs) (Finnet al.,
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2014). Clustering algorithms often use the information from such simila-
rity searches to generate clusters of protein sequences. For proteins that
share one or more domains, phylogenetic analysis can be performed based
on a multiple sequence alignment generated from these domain(s).

There are, however, two fundamental issues in using phylogenetic
approaches when trying to classify groups of divergent proteins in protein
families. The first is how to construct clusters given that the sequences are
not alignable in their entirety when the proteins have multiple domains
in varied composition and arrangement, limiting their application to pro-
teins that share at least one alignable domain. If common domains are
not found throughout the proteins, each subgroup of proteins needs to be
independently analyzed based on different sets of domains.Another dra-
wback to phylogenetic clustering is that it usually assumesevolution to
be a bifurcating process. However, reticulate evolutionary events, such as
domain shuffling, lead to evolutionary histories that are more accurately
represented by networks.

In order to get a more complete picture of the evolutionary process of
multi-domain proteins the domain architectures of the proteins must be
considered. Phylogenetic profile methods (Bhardwajet al., 2012; Chang
et al., 2008) have tried to address this issue by constructing a phylogenetic
tree that takes into consideration the entire domain content by viewing each
protein sequence as a vector of domain scores. A tree is builtusing the
Euclidean distance between the vectors of domain scores as the pairwise
distance between the proteins. Just as for classic phylogenetic methods,
network relationships among the proteins cannot be detected using this
approach.

Protein similarity networks have been introduced to address the multi-
domain protein clustering problem (Atkinsonet al., 2009; Pipenbacher
et al., 2002). Many protein similarity networks are constructedusing local
sequence similarities such as BLAST E-values (Altschulet al., 1997). The
Markov clustering algorithm (TRIBE-MCL), a graph clustering algorithm
that simulates random walks within a graph, has been used to cluster pro-
teins inasimilaritynetwork into families (Enrightet al., 2002; Van Dongen,
2000). Sequence similarity networks based only on local similarities, such
as TRIBE-MCL, are used to cluster proteins on a larger,e.g. proteome,
scale, where more variation in domain composition exists among proteins
and commonly shared domains across all proteins are not required. In
some sense these methods incorporate domain conservation information.
However, they use information from only one region of similarity between
two proteins. More detailed domain architecture information (such as the
entire domain content and domain order) needs to be utilizedin order to
get a clearer picture of the evolutionary histories.

Domain co-occurrence networks (Wanget al., 2011; Wuchty and
Almaas, 2005) and related graph-theoretic approaches (Kummerfeld and
Teichmann, 2009; Przytyckaet al., 2006; Xieet al., 2011) incorporate
domain composition (and sometimes order) information. However, these
methods are employed to depict relationships among the domains, and
the relationships between the proteins are usually not considered. Bipar-
tite graphs have also been used to identify co-occurring domain sets in
proteins (Cohen-Gihonet al., 2007; Nacheret al., 2009).

Existing methods construct domain networks and protein networks
individually, with practically no connection between them. With the reali-
zation that protein functions cannot be understood fully without integrating
their constitutive domain information, our aim is to build protein netw-
orks in terms of domain architectures and to improve and enhance protein
function prediction. Protein sequence evolution is primarily governed by
selective constraints on their sequences to maintain functions and also
by modularity of domains that allows functional innovation. With this
assumption, we have previously introduced a game-theoretic method for
constructing protein networks (Denget al., 2013). In this work we adapt
our approach into the framework of multi-objective optimization. Our
method, MOCASSIN-prot, not only provides protein classifications using
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Fig. 1. Workflow for constructing a directed protein similarity network using MOCASSIN-

prot. First the domain architecture of each protein in the set is identified by a profile hidden

Markov model search (using the HMMER software). Then for each ofthe proteins a simila-

rity matrix is constructed, using a log-transformed BLAST E-value as the similarity score.

This matrix serves as the input to a multi-objective optimization problem. Eachof these

optimization problems is solved, and the solutions are used to construct a graph adjacency

matrix for the protein network.

network clustering, but also gives us a better interpretation of the rela-
tionships between proteins and domains. Comparing our approach with
other clustering methods, including phylogenetic clustering and Markov
clustering, through analysis of both small and large-scaleprotein data sets,
we illustrate the advantages of our method over others.

2 Methods

2.1 Workflow for MOCASSIN-prot protein clustering

A protein space is defined to be a set of proteins, each of whichis in turn
defined by a set of domains. Given the protein space and the corresponding
domain space we can construct a similarity network that gives us a set of
protein clusters, where a protein cluster is defined to be a weakly connected
component in the similarity network. Adirected protein similarity graph,
G = (V, E), for a given set of proteins, is a directed graph such that
each vertex in the setV = {P1, P2, ..., Pn} uniquely corresponds to one
protein and all edges have nonzero weights with the incomingedges to any
given vertex summing to 1. This definition is similar to that of Holloway
and Beiko (2010).

The complete workflow for obtaining the clusters for a protein set
via multi-objective optimization is shown in Figure 1. The first step is
to identify the domain architecture for each of the proteins. This can be
done using any domain sequence search algorithm. In our analysis we
use a profile hidden Markov model search. Next, for each of theproteins
we construct a similarity matrix using each domain as the unit, which
serves as the input to a multi-objective optimization problem. We solve one
optimization problem for each protein and use the solutionsto construct a
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graph adjacency matrix for the protein network. Each step inthis process
is described in greater detail in the following sections.

2.1.1 Similarity matrix construction
As mentioned before, the network graph is constructed in a protein-by-
protein approach. We begin by first determining the domain architecture for
each protein. This is done by using thehmmscan program of HMMER3
(version v3.1) (Eddy, 2011) to search against the Pfam protein families
database (release 27.0) (Finnet al., 2014). These results are then filtered
to include only those domains whose E-value lies below a given user-
specified threshold. For our analysis we used non-overlapping domains
and an E-value threshold of 1.0.

Once the domains have been identified, we construct a set of similarity
matrices using each protein as the reference. In these matrices, we compare
the amino acid sequences of all domain regions found in the reference
protein to all other protein sequences usingblastp with the default E-
value threshold of 10.0. For a given reference protein,Pi, we extract
the amino acid sequence from the top hit region for each domain on the
protein. Suppose there are a total ofm domains,d1, d2, ..., dm, found on
the proteins in the protein space,V . Then, as exhibited in Figure S1, the
similarity matrix,Ai = ai(s, j), for the reference proteinPi is anm×n

matrix, whereai(s, j) is the similarity score of domains from proteinPi

to proteinPj , andn is the number of proteins in the protein space.
For each entry in the similarity matrix we used a log-transform of the

BLAST E-value,ai(s, j) = − log(αsj), whereαsj is the E-value obtai-
ned for the query domainds of proteinPi against the subject proteinPj .
This score could be considered a proxy for the mutual information betw-
een proteinsPi andPj with respect to domainds in that the higher the
value the more similar the pair are in domainds. If a domain,dk, was
not found on the subject protein,Pj , then the similarity score was assi-
gned to beai(k, j) = − log(2870), an arbitrarily chosen low similarity
score. The values in the reference column (theith column) are not used
in calculation and are therefore marked as ‘-’ as shown in Figure S1. It
should be noted that in our current method, each domain is represented
only once in the similarity matrix. If a protein includes repetitive domains,
such information is not included.

2.1.2 Protein similarity network construction
The construction of the edge weights is based on the assumption that
protein sequence evolution is primarily governed by selective constraints
on their sequences to maintain function along with modularity of domains
that allows functional innovation. This assumption leads to maximizing the
sequence similarity between proteins along shared domains. The outcome
is a set of protein clusters with similar domain architectures in the protein
space.

For each protein,Pi, we search for the other proteins in the protein
space to which it is most uniquely similar (in terms of domainarchitecture).
This is done using our multi-objective optimization method, which starts
by definingSi to be the index of integers{1, 2, ...,m} such thats ∈ Si if
and only ifds is a domain of proteinPi. For ease of notation, letyj = wij

for all j = 1, 2, ..., n, denote the weight of the edge from proteinPj to
Pi. Thus we haveyi = 0,

∑
jyj = 1, andyj ≥ 0. The incoming

edge weight vectory = (y1, y2, ..., yn) to proteinPi is then chosen to
simultaneously “maximize” the mean similarity score

fs(y1, y2, ..., yn) =
∑

j

ai(s, j)yj , s ∈ Si,

for each domainds of proteinPi (namely for eachs fromSi). The theory
of multi-objective optimization does not imply that each ofthe similarity
scores is maximized in the strict mathematical sense, but rather in the sense
of Pareto optimality, where any other choice of the probability vectory will

make at least one of the objective functionsfs assume a smaller similarity
score.

In our method, for each reference protein,Pi, we solve for the vector
y in the following linear programming (LP) problem

max
(y,v)

Ei = v

subject to fs =
∑

j

ai(s, j)yj ≥ v, for s ∈ Si

∑

j

yj = 1, yj ≥ 0, j = 1, 2, ..., n, yi = 0.

(1)

Holloway and Beiko (2010) used this approach to construct a genome
network. Because this is a LP problem a solution must exist and in general
is unique. It is straight forward to verify that the solutionis Pareto efficient,
namely, for any probability vector (i.e. any non-solution)y there is at least
one domain indexs ∈ Si whose corresponding mean similarity score is
smaller than the optimal value, i.e.fs < v for at least ones ∈ Si.

By the theory of LP we know that the primary LP (1) has a dual linear
programming problem (Denget al., 2013; Nash, 1951):

max
(x,v)

Ei = v

subject to gj =
∑

s∈Si

ai(s, j)xs ≤ v, for j = 1, 2, ..., n, j 6= i

∑

s∈Si

xs = 1, xs ≥ 0.

(2)

The solution probability vectorx is the so-called Lagrange multiplier (or
shadow price) of the primary LP problem (1). Conversely, thesolutiony
of the primary LP (1) is the Lagrange multiplier of the dual LP(2). The
optimal objective values,v, of (1) and (2) are identical.

This dual LP problem solves for the “maximal” divergence distribution
of proteinPi with respect to the domain space. That is, for each proteinPj

its least similar (i.e., most divergent) structure to the reference proteinPi

will be a domain,ds, shared with proteinPi having the smallest similarity
scoreai(s, j). Since this may happen on different domains for different
proteins, the task is to find a domain distribution vectorx to simultaneously
“minimize” all of the mean similarity scores

gj =
∑

s∈Si

ai(s, j)xs j = 1, 2, ..., n, j 6= i.

The dual LP problem (2) is a way to solve this multi-objectiveoptimization
problem. The solution vectorx is Pareto efficient (or optimal), that is, any
other choice of the probability vectorx will violate at least one of the
objectives so thatgj > v for at least one1 ≤ j ≤ n, j 6= i.

In the final step of our method we use the solutions of (1) and (2) for
each of the proteins in the protein space to construct both the directed
protein similarity network and the diversity profile. The edge weightwij

from nodePj toPi is assigned to beyj from the solution to the primary LP
(1) for nodePi. That is, they solution, which obviously depends oni but
the dependence is suppressed for simplicity, for nodePi gives theith row
of the network matrixW in Figure S1. ArrangingW in a block diagonal
form results in the cluster formation for the network with each irreduci-
ble block defining a cluster. A high edge weight in the graph indicates a
strong similarity between proteins. This network can be interpreted to be
optimally conserved in that any other choice of network topology or edge
weights will result in a network with at least one weaker conserved protein
(namely a node in the network with weaker connections to the others in
its cluster).

The solution vectorx (which obviously depends on the node numberi)
is referred to as the domain diversity vector for proteinPi. A high diversity
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weight,xs indicates that the reference protein,Pi, is more dissimilar or
unique to the other proteins with respect to domainds. Arranging thex
solution vectors for the proteins in the protein space into rows for their
corresponding proteins yields the so-called diversity profile matrix.

Thus, by our framework the edge weights of the protein similarity
network and the corresponding diversity profile are the result of the search
for minimally shared regions (inx) of maximal similarity (iny) for each
protein in relation to all other proteins in the protein space. The optimal
objective values also yield important information about the network clu-
sters. In fact, the optimal valueEi = v is a measure for how tight the
connection of proteinPi is to the other proteins. The higher the value,
the higher the mean similarity scoresfs for all s ∈ Si, which can be
interpreted to mean that proteinPi is more conserved with respect to the
proteins in the protein space. In addition, for two topologically identical
clusters, it is their average optimal objective values thatset them apart, by
which the cluster with higher average optimal objective value is a ‘tighter’
or more similar subnetwork than the other.

2.1.3 Network refinement
The MOCASSIN-prot method described above gives rise to clustered
networks on minimally shared regions of maximal similarity. We can
extend the method to obtain secondary clusters from within aprimary netw-
ork cluster. This is done by removing the least conserved domain for each
protein in the protein space. That is, for the domaindk having the largest
diversity weight for proteinPi , we purposely remove its objective function,
fk in (1). We then find the solution to the new corresponding LP problem.
This secondary clustering structure will capture the next minimally shared
region of maximal similarity for the proteins inside the primary cluster,
increasing each protein’s optimal objective value and identifying further
subgroupings of similar proteins within the primary cluster. This zoom-in
procedure can continue to reveal the tertiary, the quaternary, and so on,
similarity relationship of the proteins. Thus unlike othermethods, we are
able to define a more refined network clustering structure from the original
network without the use of arbitrary thresholds for pruning.

2.2 Data sets used in this study

Two types of protein data sets were used in this study. The first, the Regu-
lator of G-Protein Signaling (RGS) protein family data set includes 55
proteins from the mouse (Mus musculus) genome (NCBI Annotation Rele-
ase 103). They were found by performing HMMER3 (Eddy, 2011) search
using Pfam (?) pHMMs PF00615 (RGS) and PF09128 (RGS-like) as que-
ries, with an E-value threshold of 1.0. This RGS family sequence set was
subsequently used to HMMER3 search against the entire Pfam database to
find other domains that coexist in the sequences. Twenty six Pfam domains
(including RGS and RGS-like) were identified on the proteins. The 55 RGS
proteins and the Pfam domains found in each protein are shownin Table S1.

Large-scale protein sets from ten genomes (including sevenbacte-
ria and three eukaryotes) were also examined in this study. For each
proteome set obtained from the UniProt Knowledgebase (UniProtKB,
www.uniprot.org, release 2014_08), proteins from the SwissProt sector
that had at least one identifiable domain and UniProt proteinfamily anno-
tation were collected. Table S2 lists the numbers of proteins and domains
for each of these protein sets.

2.3 Evaluation of the method

The protein clustering results of MOCASSIN-prot were compared against
two other methods, phylogenetic clustering and Markov clustering.

2.3.1 Phylogenetic clustering
For a regular phylogenetic analysis of multi-domain proteins, a multiple
sequence alignment of a domain shared across all proteins isrequired. The-
refore phylogenetic clustering could only be applied to theRGS data set in
this study. A multiple alignment of the commonly shared domain (RGS or
RGS-like domain) of the 55 RGS sequences was done using MAFFT(ver-
sion v7.182, Katoh and Standley, 2013) using the L-INS-i algorithm with
the default parameters. The maximum likelihood phylogeny was recon-
structed using PHYML (version v3.1, Guindonet al., 2010) using the LG
amino-acid substitution model, the gamma distribution shape parameter
with the maximum-likelihood estimate, and bootstrap analysis with 1,000
pseudoreplicates. Bootstrap values of 70% were used to define the clusters
of RGS sequences.

2.3.2 Markov clustering
The TRIBE-MCL algorithm (Enrightet al., 2002) clusters proteins using
the following steps: (a) for a given set of proteins, an all-vs.-all BLAST
hit table is generated using theblastp program, (b) themcxdeblast
application is used to parse the BLAST table and generate an all-vs.-all
similarity matrix using an E-value threshold of 1.0, (c) themcxassemble

program creates a probability matrix from the similarity matrix, and (d)
the probability matrix is used as the input to themcl program, which
generates the protein clusters. Clusters were obtained using varied values
of the inflation parameter, including the default I = 2.0 as well as I =
3.0, 4.0, 5.0. The MCL package (version v12-068) was downloaded from
www.micans.org/mcl.

2.3.3 Cluster comparison metric
To compare the sets of clusters generated by two different clustering
methods, we use a symmetric similarity measure similar to the average
maximum Jaccard index (Prelicet al., 2006). Given two sets of protein
clusters, A and B, the per-cluster similarity is given by

S(A,B) =
σ(A,B) + σ(B, A)

|A|+ |B|
(3)

whereσ(A, B) =
∑

A1∈A

max
B1∈B

|A1
⋂

B1|

|A1
⋃

B1|
. Thus, this comparison metric

has values ranging from 0 to 1, with 0 indicating no proteins were clustered
correctly and 1 indicating all proteins were clustered correctly.

3 Results

3.1 MOCASSIN-prot clustering of RGS family proteins

The set of 55 mouse RGS proteins was clustered using MOCASSIN-prot.
A total of 26 Pfam domains were identified on these proteins (Table S1).
Nine clusters were found using our method (Figure 2). The clusters are
labeled according to their average optimal objective values, in descending
order. As mentioned before, these objective values yield important infor-
mation about the inter-cluster similarities in the network. For example,
Cluster 2 and Cluster 5 each include three proteins and are topologically
identical. However, their average optimal objective values are 146.7074
and 71.9517, respectively, indicating that Cluster 2 is a ‘tighter’ or more
conserved subnetwork than Cluster 5.

Even though all 55 proteins in this data set belong to the RGS family
(they all contain either the RGS or RGS-like domain), the proteins in each
of the network clusters differ from those in the other clusters with respect
to their domain composition and varying levels of similarity between their
domain sequences. The domain profile across the proteins in the RGS
network is exhibited in Figure 3, where the proteins are grouped according
to the clusters (1-9) in the network graph.
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Fig. 2. RGS family primary MOCASSIN-prot network. From 55 mouse RGS family

proteins, 9 clusters were identified using MOCASSIN-prot. The nodes represent disti-

nct proteins, and the edges are directed so that the incoming edge weightsof each node

sum to 1. The edge color (in varying shades of gray) indicates the edge weight, with darker

edges indicating high edge weights and lighter edges indicating low weights. The optimal

objective value for each protein is represented in the network by the lengthof its incoming

edges, with longer edges corresponding to small objectives values. Clusters in the network

are labeled in descending order according to their average optimal objective value.

There are some clear differences in profile patterns betweenthe clu-
sters. For many of the clusters, specifically Clusters 1, 2, 7, 8, and 9, the
proteins within the cluster all contain the same set of domains, and the
weights placed on these domains are the same. The profile alsohighlights
domains that are unique to specific clusters. For example, Pfam domain
PF00018.23 is hallmark to Cluster 8 because it is present in all members
of Cluster 8 but none of the other proteins in the network.

As an initial validation of the network clusters, we examined the pro-
tein type for the proteins within each cluster, taken from the NCBI website
(Table S3). We saw that, generally speaking, proteins of thesame type
tended to fall in the same cluster. Figure S2 clearly shows that different
domain architectures are represented in different clusters. Sequence diver-
gence within the same domain type (e.g., RGS domain for RGS 17vs.
RGS 19/20 proteins) is recognized in separating Clusters 1 and 2. Note
also that two isoforms of the same beta-adrenergic receptorkinase 2 gene
(P3 and P47) fall into the same cluster (Cluster 4in Figure 2)even though
one isoform (P47) lacks two domains (Figure S2). Hence with our multi-
objective optimization framework, we can incorporate not only domain
architecture information, but also sequence similarity, which produced an
RGS protein network with valid clusters.

3.1.1 Comparison of RGS clustering to other clustering methods
To evaluate the protein clusters generated using MOCASSIN-prot against
other methods, the 55 RGS protein sequences were clustered using the
maximum-likelihood phylogenetic method and TRIBE-MCL. Asmentio-
ned before, for the phylogenetic method, only sequence information from
the domain shared across all proteins (here, RGS or RGS-likedomain) can
be used. The MCL algorithm uses only the one most significantly similar
region between pairs of proteins, which is identified by ablastp sea-
rch prior to the clustering. In contrast, our multi-objective optimization

Table 1. Comparison of methods for RGS

proteins.

MOC (9) PHY (25) MCLa (5)

MOC - - -
PHY 0.4473 - -
MCL 0.2018 0.1605 -

a Default inflation parameter, I=2.0, used.

technique incorporates both domain architecture and sequence similarity
information. The clustering patterns were compared based on the symme-
tric Jaccard index (Equation (3)) calculated for each pairing of the three
methods as shown in Table 1 (default TRIBE-MCL inflation paraemeter).
Results for the other TRIBE-MCL inflation parameter values are shown
in Table S4.

The maximum-likelihood phylogenetic analysis produced 25clu-
sters when 70% bootstrap values were used as the clustering threshold
(Figure S3). Four of those clusters, Clusters 1, 11, 18, and 22 indi-
cated by circled cluster numbers, were identical to clusters found by
MOCASSIN-prot (Table S5). Although the phylogenetic clusters exhibi-
ted some similarity to the MOCASSIN-prot clusters (S(PRD, PHY ) =

0.4473), the phylogenetic analysis cannot represent informationfrom
domains that are included in the multiple alignment. Therefore, it misses
some relationships that our network approach reveals.

For example, seven of the RGS proteins (P2, P18, P20, P27, P35, P37,
and P38) contain the RGS-like domain (PF09128.6). ProteinsP2, P20,
P35, P37, and P38 are grouped into the same cluster by both MOCASSIN-
prot and the phylogenetic method. However, for the other twoproteins
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Fig. 3. RGS family diversity profile. Each row represents one of the 55 RGS proteins,

while each column represents one of the 26 Pfam domains (RGS and RGS-likedomains

are shown in bold). Each cell is color-coded based on the diversity weights x from the LP

problem (1): black forxi = 1, a black X forxi = 0 (but domain exists), and from

light gray to dark gray for0 > xi > 1. Blank cells indicate domain absence. Proteins in

each cluster (identifiers shown on the left) are arranged according to theiroptimal objective

value, with the largest appearing as the lowest row in the cluster. The objective value for

each protein is shown on the right.
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containing the RGS-like domain, proteins P18 and P27, thereis a discre-
pancy between the two methods in cluster membership. Although the
phylogenetic method clusters P18 with the five proteins containing RGS-
like domain mentioned above (Cluster 23 in Figure S3), the phylogeny also
shows that the RGS-like domain sequence of P18 is significantly different
from those of the five proteins (the bootstrap value for the node clustering
P18 with the others is 99.4%). P27 exists as a single protein cluster in the
phylogeny (Cluster 15 in Figure S3).

In contrast, MOCASSIN-prot places both P18 and P27 in another clu-
ster (Cluster 6 in Figure 2). Moreover, the edge weights indicate that
relative to the other proteins in the RGS data set, P18 is P27’s closest nei-
ghbor and vice versa. This relationship is a direct result ofour method’s
use of information from all domains. As shown in Figure 3 (also see
Figure S2), P18 contains two other domains, PF00595.19 (PDZ) and
PF00621.15 (RhoGEF), in addition to the RGS-like domain (PF09128,6).
All three of these domains are shared with P27, and one additional domain
(PF03938.9, OmpH-like) is unique to P27. In the MOCASSIN-prot netw-
ork P27 also exhibits similarity to both P50 and P12. Figure 3shows
that similar regions to domain PF00595.19 (PDZ) are uniquely found
in proteins P12, P18, P27, and P50. While uniquely divergentdomain
compositions of P18 and P27 compared to other proteins containing the
RGS-like domain combined with their less-conserved RGS-like domain
sequences were enough to cluster them separately from otherproteins
with the RGS-like domain, sequence similarities of domainsshared with
proteins belonging to Cluster 6 were strong enough to make them clu-
ster with these proteins. The same clustering pattern for P18 and P27 was
seen in the secondary MOCASSIN-prot network (Figure S??). Since the
phylogenetic clustering is based only on the RGS and RGS-like domains,
these similarity relationships are not captured, illustrating the limitation
of alignment-based phylogenetic clustering.

Clusters for the RGS sequences were also constructed using TRIBE-
MCL. With the default inflation parameter, I = 2.0, the methodidentified
5 clusters (Figure S4(a)). Results for the other values of the inflation
parameter are shown in Figure S4(b)-(d). The number of clusters gene-
rated by TRIBE-MCL was much smaller compared to MOCASSIN-prot
and the phylogenetic method. None of the clusters generatedby TRIBE-
MCL clusters were 100% consistent with a cluster from MOCASSIN-prot
(Table S5). The seven proteins containing the RGS-like domain were
spread between two clusters in all runs of TRIBE-MCL (C1 and C5 in
Figure S4(a); C1 and C7 in Figure S4(b); C1 and C4 in Figure S4(c))
except for the case when I = 5.0, where they were found in threeof the
clusters (C1, C5, and C7 in Figure S4(d)). As mentioned before, the MCL
method clusters the sequences based on the single most significant region
between them. The existence of highly conserved domains common to all
of the proteins, such as the RGS and RGS-like domains, obscures fur-
ther subgroup relationships among proteins. By incorporating information
from all of the domains on the proteins, our method is able to cluster the
RGS proteins on a finer scale than the TRIBE-MCL method.

As described before, our method can correctly cluster isoforms of the
same gene, even when the domain compositions are different.This is not
the case with the other two methods. For the two beta-adrenergic receptor
kinase 2 isoforms (P3 and P47) mentioned before, P47 lacks two domains
and contains only the RGS domain (Figure S2). In the phylogenetic clu-
stering (Figure S3) P3 clusters with P40, beta-adrenergic receptor kinase
1, comprising Cluster 16, while P47 makes up Cluster 24, a single pro-
tein cluster located distantly from Cluster 16. Regardlessof the inflation
parameter, TRIBE-MCL places each of the three proteins in a separate
cluster. For example, in Figure S4(a), P3 is in C2, P40 is in C3, and P47 is
in C5. In the MOCASSIN-prot network all three beta-adrenergic receptor
kinase proteins, including the two isoforms, cluster together (Cluster 4 in
Figure 2). Our approach was able to pick out the relationships between

Table 2. Clustering accuracy for MOCASSIN-prot and TRIBE-MCL for ten

reference protein sets.

Genome # REFa S(MCL2,REF)b S(MOC1,REF)c S(MOC2,REF)d

B. subtilis 1322 0.1334(226) 0.1881(198) 0.5968(1617)
E. coli 1766 0.1215(276) 0.1429(188) 0.6285(1921)
T. pallidum 298 0.0608(16) 0.0444(9) 0.6919(188)
S. pyogenes 358 0.2738(276) 0.0612(15) 0.7020(232)
S. epidermidis 604 0.0827(45) 0.0841(31) 0.6907(414)
S. aureus 662 0.1001(62) 0.1036(45) 0.6918(496)
Y. pestis 829 0.0653(45) 0.0786(44) 0.7207(604)
D. melanogaster 1528 0.0996(161) 0.1315(161) 0.5552(1502)
M. musculus 3702 0.1330(1217) 0.2565(1207) 0.4263(6936)
S. cerevisiae 2243 0.1423(428) 0.1711(291) 0.5833(2523)

a Total number of reference clusters.
b MCL2 denotes TRIBE-MCL with default inflation parameter, I=2.0.
c MOC1 denotes primary MOCASSIN-prot network.
d MOC2 denotes secondary MOCASSIN-prot network.

these proteins correctly because they were highly similar in their shared
RGS domain sequence.

3.2 MOCASSIN-prot clustering of large-scale protein
sets

To test the performance of MOCASSIN-prot on larger scale data, we
used protein sets from seven prokaryote and three eukaryotegeno-
mes. Figures S5-S14 show the primary and secondary protein similarity
networks obtained from MOCASSIN-prot for these protein sets. For com-
parison, the clusters generated using TRIBE-MCL for each protein set are
shown in Figures S15-S24.

We used the UniProt family assignments as the set of reference clusters
and tested theperformance ofMOCASSIN-prot compared to TRIBE-MCL
for each of the protein sets. The clustering accuracy results, assessed using
the similarity measure in Equation (3), are summarized in Tables 2 and
S6.

The TRIBE-MCL method, in general, exhibited lower clustering
performance compared to MOCASSIN-prot. In only a few cases,TRIBE-
MCL outperformed the primary MOCASSIN-prot clustering. The secon-
dary MOCASSIN-prot networks especially were highly consistent with the
reference clusters, surpassing the performance of TRIBE-MCL in all data
sets. The reason that TRIBE-MCL was consistently outperformed is that
TRIBE-MCL uses information from only one region of local similarity,
i.e., it does not use information from all conserved domainson the proteins.
MOCASSIN-prot incorporates information from all domains,leading to
clusters that are more consistent with the UniProt family assignments.

The secondary MOCASSIN-prot networks were much more accurate
than the primary networks because removing the least conserved domain
for each protein, i.e., the domain with the maximum diversity weight, in
a primary cluster and reclustering increases each protein’s optimal obje-
ctive value, identifying subgroupings of highly similar proteins within the
primary cluster. We also tested the tertiary and quaternaryMOCASSIN-
prot networks and found little increase in method performance (Table S6),
suggesting that the secondary network is sufficient for classifying the
proteins.

4 Conclusion

Large-scale clustering of protein sequences incorporating their domain
composition information is a challenging problem. Traditional approaches
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to the protein clustering problem, including TRIBE-MCL andphylogene-
tic clustering, use information from only one local region of similarity
between proteins or information from only domain sequencesshared
among the majority of proteins. To obtain an accurate classification of pro-
tein families one needs to incorporate information from theentire domain
composition.

In this study, we presented MOCASSIN-prot, a multi-objective optimi-
zation approach for protein classification. This method utilizes quantitative
sequence similarity information from all domains on the proteins and
builds a network that houses clusters of similar protein sequences. The
method is scalable to the complete proteome level. Evaluation of pro-
tein clusters from MOCASSIN-prot, especially those from secondary
networks, and TRIBE-MCL showed that MOCASSIN-prot exhibited
consistently higher performance.

We should note that with our method the network structures and domain
profiles depend critically on the similarity matrices that serve as input
to the model. Therefore, in future work we must examine different sco-
ring schemes (e.g., E-values based on profile HMMs, composition-based
similarity scores, etc.) for their robustness and sensitivity. Improving the
protein-domain similarity scores will give us better resolution in protein-
domain classification, reflecting more accurate evolutionary and functional
relationships between proteins.
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