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Abstract

Motivation: Proteins often include multiple conserved domains. Various evolutionary events including
duplication and loss of domains, domain reshuffling, as well as sequence divergence generate complex
proteins and affect their functions. As a consequence, a large variation exists in the numbers, combinati-
ons, and orders of domains among protein families and subfamilies, and their evolutionary history is best
modeled through networks that incorporate information from the entire domain content of the proteins. We
have previously proposed a game-theoretic approach to constructing protein networks. In this study we
adapt our method into the framework of multi-objective optimization and examine its application to cluster
multi-domain proteins.

Results: We applied our method to cluster a multi-domain protein family, the Regulator of G-Protein
Signaling family, as well as protein sets from ten genomes. We compared our classification results with the
results from two other methods, Markov clustering and phylogenetic clustering. We showed that compared
to other techniques, our approach, which uses both domain composition and quantitative sequence simi-
larity information, can generate more functionally coherent protein clusters and better differentiate protein
subfamilies.

Availability: MOCASSIN-prot source code, implemented in Perl and Matlab, is freely available on the web
at NEED TO FILL THIS IN!!.

Contact: emoriyama2@unl.edu

Supplementary information:  Supplementary data are available at Bioinformatics online.

1 Introduction evolutionary innovation in protein functions. Among mwdomain pro-
teins, families are often recognized based on their donmaiposition and
sometimes their specific arrangements of domains (ChotidaGough,
2009; Vogelet al., 2004).

One way to infer protein function is through phylogenomialgsis,
where protein functions are assigned in the context of prdemilies
based on evolutionary relationships. Classifying prat@io families and
subfamilies has been shown to improve the accuracy of fumaticlas-
sification (Sjolander, 2004). Protein clustering is usudtbne based on
similarity among their sequences. One of the simplest anst cwnmon
ways to identify sequence similarity is to perform a paieviignment-
based sequence similarity search, such as BLAST (Altsetrail, 1997)
or FASTA (Pearson and Lipman, 1988). More sensitive sifitylaearches
can be done using profile hidden Markov models (pHMMs) (Fénal.,

Proteins often include conserved sequence regions. Theycalled
domains, and in eukaryotes, 70% or more proteins are maitiein
proteins (Chothia and Gough, 2009; Levitt, 2009). Domaires aften
associated to discrete functions, and shuffling and aocretf domains
(Graur and Li, 2000; Koonimt al., 2000) are important mechanisms for
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2014). Clustering algorithms often use the informatiomfreuch simila-
rity searches to generate clusters of protein sequenceqréieins that
share one or more domains, phylogenetic analysis can berped based
on a multiple sequence alignment generated from these d¢shai

There are, however, two fundamental issues in using phgietge
approaches when trying to classify groups of divergentgimstin protein
families. The first is how to construct clusters given thatgequences are
not alignable in their entirety when the proteins have mldtidomains
in varied composition and arrangement, limiting their &ggilon to pro-
teins that share at least one alignable domain. If commonadwrare
not found throughout the proteins, each subgroup of pretegeds to be
independently analyzed based on different sets of domaimsther dra-
wback to phylogenetic clustering is that it usually assueegution to
be a bifurcating process. However, reticulate evolutiprevents, such as
domain shuffling, lead to evolutionary histories that areeraccurately
represented by networks.

In order to get a more complete picture of the evolutionagcpss of
multi-domain proteins the domain architectures of the g@inst must be
considered. Phylogenetic profile methods (Bhardevajl., 2012; Chang
etal., 2008) have tried to address this issue by constructinylagénetic
tree that takes into consideration the entire domain cobteviewing each
protein sequence as a vector of domain scores. A tree isusiilg the
Euclidean distance between the vectors of domain scordegmtrwise
distance between the proteins. Just as for classic phydtigemethods,
network relationships among the proteins cannot be detacéng this
approach.

Protein similarity networks have been introduced to adsitles multi-
domain protein clustering problem (Atkinsah al., 2009; Pipenbacher
etal., 2002). Many protein similarity networks are construatsthg local
sequence similarities such as BLAST E-values (Altsehal., 1997). The
Markov clustering algorithm (TRIBE-MCL), a graph clustagialgorithm
that simulates random walks within a graph, has been usdddtec pro-
teinsinasimilarity network into families (Enrigétal ., 2002; Van Dongen,
2000). Sequence similarity networks based only on localaiities, such
as TRIBE-MCL, are used to cluster proteins on a largey, proteome,
scale, where more variation in domain composition existeranproteins
and commonly shared domains across all proteins are noiredgun
some sense these methods incorporate domain conservatomation.
However, they use information from only one region of simiijebetween
two proteins. More detailed domain architecture inforomaf{such as the
entire domain content and domain order) needs to be utilizedder to
get a clearer picture of the evolutionary histories.

Domain co-occurrence networks (Wameg al., 2011; Wuchty and
Almaas, 2005) and related graph-theoretic approaches ifarfeld and
Teichmann, 2009; Przytycket al., 2006; Xieet al., 2011) incorporate
domain composition (and sometimes order) information. el@y, these
methods are employed to depict relationships among the idemand
the relationships between the proteins are usually notideresl. Bipar-
tite graphs have also been used to identify co-occurringaiorsets in
proteins (Cohen-Gihogt al., 2007; Nacheet al., 2009).

Existing methods construct domain networks and proteinvords
individually, with practically no connection between thewiith the reali-
zation that protein functions cannot be understood fulljpaut integrating
their constitutive domain information, our aim is to buildbfein netw-
orks in terms of domain architectures and to improve andmcgprotein
function prediction. Protein sequence evolution is priipajoverned by
selective constraints on their sequences to maintain ibmetand also
by modularity of domains that allows functional innovatiowith this
assumption, we have previously introduced a game-theamegthod for
constructing protein networks (Dergal., 2013). In this work we adapt
our approach into the framework of multi-objective optiation. Our
method, MOCASSIN-prot, not only provides protein classifiens using
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Fig. 1. Workflow for constructing a directed protein similarity network using MOCASSIN
prot. First the domain architecture of each protein in the set is identified yfilegridden
Markov model search (using the HMMER software). Then for eatheproteins a simila-
rity matrix is constructed, using a log-transformed BLAST E-value as thiesity score.
This matrix serves as the input to a multi-objective optimization problem. Bathese
optimization problems is solved, and the solutions are used to construmpla adjacency
matrix for the protein network.

network clustering, but also gives us a better interpi@tatf the rela-
tionships between proteins and domains. Comparing ouroapprwith

other clustering methods, including phylogenetic clusgeand Markov

clustering, through analysis of both small and large-spedéein data sets,
we illustrate the advantages of our method over others.

2 Methods
2.1 Workflow for MOCASSIN-prot protein clustering

A protein space is defined to be a set of proteins, each of wiichturn
defined by a set of domains. Given the protein space and thespanding
domain space we can construct a similarity network thatsgivea set of
protein clusters, where a protein cluster is defined to besklyeonnected
component in the similarity network. directed protein similarity graph,
G = (V, E), for a given set of proteins, is a directed graph such that
each vertex in the s&t = { P, P», ..., P, } uniquely corresponds to one
protein and all edges have nonzero weights with the incomilygs to any
given vertex summing to 1. This definition is similar to thaHwlloway
and Beiko (2010).

The complete workflow for obtaining the clusters for a proteét
via multi-objective optimization is shown in Figure 1. Thesfistep is
to identify the domain architecture for each of the proteifisis can be
done using any domain sequence search algorithm. In ouysisaie
use a profile hidden Markov model search. Next, for each optheeins
we construct a similarity matrix using each domain as the, wahich
serves as the input to a multi-objective optimization peainl We solve one
optimization problem for each protein and use the soluttorconstruct a
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graph adjacency matrix for the protein network. Each stehigiprocess  make at least one of the objective functighsassume a smaller similarity

is described in greater detail in the following sections. score.
In our method, for each reference proteif), we solve for the vector
2.1.1 Similarity matrix construction y in the following linear programming (LP) problem
As mentioned before, the network graph is constructed inogepr-by-
protein approach. We begin by first determining the domainitecture for max Ei=v
each protein. This is done by using themscan program of HMMER3 )
(version v3.1) (Eddy, 2011) to search against the Pfam jprdéenilies subjectto fs = Zai(s,j)yj >wv,fors e S; )
database (release 27.0) (Fieral., 2014). These results are then filtered J

to include only those domains whose E-value lies below angivser-
specified threshold. For our analysis we used non-overigpgomains
and an E-value threshold of 1.0.

Once the domains have been identified, we construct a sehidsty
matrices using each protein as the reference. In thesecemtrie compare
the amino acid sequences of all domain regions found in tfezemrece
protein to all other protein sequences usiiaast p with the default E-
value threshold of 10.0. For a given reference protéi, we extract
the amino acid sequence from the top hit region for each dowithe
protein. Suppose there are a totahofdomainsds , da, ..., dm,, found on
the proteins in the protein spacé, Then, as exhibited in Figure S1, the
similarity matrix, A; = a;(s, j), for the reference proteiR; is anm x n

. N R . . max E,=v
matrix, whereu; (s, j) is the similarity score of domainfrom proteinP; (x,v)
to proteinP;, andn is the number of proteins in the protein space.

yi=1,9;>0,j=1,2,...,n, y; =0.
J

Holloway and Beiko (2010) used this approach to construcerome
network. Because this is a LP problem a solution must existrageneral
is unique. Itis straight forward to verify that the solutisrPareto efficient,
namely, for any probability vector (i.e. any non-solutigrthere is at least
one domain index € S; whose corresponding mean similarity score is
smaller than the optimal value, i.§; < v for at least one € S;.

By the theory of LP we know that the primary LP (1) has a duadin
programming problem (Deng al., 2013; Nash, 1951):

subjectto g; = Zai(s,j)xs <w,forj=1,2,...,n,5 #1

For each entry in the similarity matrix we used a log-transfof the (2)
BLAST E-value,a;(s, j) = — log(as;), whereag; is the E-value obtai- S€5
ned for the query domaids of protein P; against the subject protei;. Z s =1, x5 > 0.
This score could be considered a proxy for the mutual inféionebetw- SES;

een proteinsP; and P; with respect to domaid in that the higher the
value the more similar the pair are in domain. If a domain,dy, was
not found on the subject proteid;, then the similarity score was assi-
gned to beu; (k, j) = —log(2870), an arbitrarily chosen low similarity
score. The values in the reference column (#eolumn) are not used
in calculation and are therefore marked as ‘-’ as shown iufeig1. It
should be noted that in our current method, each domain resepted
only once in the similarity matrix. If a protein includes egjtive domains,
such information is not included.

The solution probability vectax is the so-called Lagrange multiplier (or
shadow price) of the primary LP problem (1). Conversely, dbkitiony
of the primary LP (1) is the Lagrange multiplier of the dual (3. The
optimal objective values;, of (1) and (2) are identical.

This dual LP problem solves for the “maximal” divergenceritsition
of protein P; with respect to the domain space. That is, for each prdtgin
its least similar (i.e., most divergent) structure to thiemence protein?;
will be a domaind,, shared with proteitP; having the smallest similarity
scorea; (s, 7). Since this may happen on different domains for different
proteins, the task is to find a domain distribution veatty simultaneously

2.1.2 Protein similarity network construction “minimize” all of the mean similarity scores

The construction of the edge weights is based on the assumiitat

protein sequence evolution is primarily governed by sileatonstraints g; = Z ai(s,Nzs j=1,2,...,n,j #1.
on their sequences to maintain function along with moduylafidomains SES;

that allows functional innovation. This assumption leadsaximizing the
sequence similarity between proteins along shared donilfiesoutcome ~ The dual LP problem (2) is a way to solve this multi-objectyimization
is a set of protein clusters with similar domain architeesuin the protein  problem. The solution vectoris Pareto efficient (or optimal), that is, any

space. other choice of the probability vector will violate at least one of the
For each proteinp;, we search for the other proteins in the protein objectives so thag; > v for atleast ond < j < n,j # 1.
space to which itis most uniquely similar (in terms of donsaichitecture). In the final step of our method we use the solutions of (1) ando{2

This is done using our multi-objective optimization methadhich starts ~ each of the proteins in the protein space to construct bethdifected
by definingS; to be the index of integergl, 2, ..., m} such thaks € S; if protein similarity network and the diversity profile. Thegedveightw;;
and only ifds is a domain of proteid;. For ease of notation, lgt; = w;; from nodeP; to P; is assigned to bg; from the solution to the primary LP
forall j = 1,2, ...,n, denote the weight of the edge from protém to (1) for nodeP;. That is, they solution, which obviously depends @mut
P;. Thus we havey; = 0, 35,y; = 1, andy; > 0. The incoming the dependence is suppressed for simplicity, for nBdgives thei™ row
edge weight vectoy = (y1,v2, ..., yn) 10 protein P; is then chosen to  of the network matriXV in Figure S1. ArrangingV in a block diagonal

simultaneously “maximize” the mean similarity score form results in the cluster formation for the network witlclearreduci-
ble block defining a cluster. A high edge weight in the graplidates a
FsW1, Y2, yn) = Zai(s,j)yj, s€S;, strong similarity between proteins. This network can berimteted to be

;i optimally conserved in that any other choice of network togy or edge

weights will result in a network with at least one weaker @wmed protein
for each domainl of protein P; (namely for eacls from S;). The theory (namely a node in the network with weaker connections to thers in
of multi-objective optimization does not imply that eachtted similarity its cluster).
scores is maximized in the strict mathematical sense, theran the sense The solution vectox (which obviously depends on the node numi)er
of Pareto optimality, where any other choice of the prolighikctory will is referred to as the domain diversity vector for protgjnA high diversity
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weight, zs indicates that the reference proteifi,, is more dissimilar or
unique to the other proteins with respect to domain Arranging thex

solution vectors for the proteins in the protein space inotesr for their
corresponding proteins yields the so-called diversityfifgronatrix.

Thus, by our framework the edge weights of the protein sityla
network and the corresponding diversity profile are theltedthe search
for minimally shared regions (ir) of maximal similarity (iny) for each
protein in relation to all other proteins in the protein spathe optimal
objective values also yield important information abow ttetwork clu-
sters. In fact, the optimal valug; = v is a measure for how tight the

connection of proteinP; is to the other proteins. The higher the value,

the higher the mean similarity scorgs for all s € S;, which can be

interpreted to mean that proteif} is more conserved with respect to the

proteins in the protein space. In addition, for two topatadly identical
clusters, it is their average optimal objective values sieghthem apart, by
which the cluster with higher average optimal objectiveieds a ‘tighter’
or more similar subnetwork than the other.

2.1.3 Network refinement

The MOCASSIN-prot method described above gives rise toteted
networks on minimally shared regions of maximal similariye can
extend the method to obtain secondary clusters from witpiinaary netw-
ork cluster. This is done by removing the least conservedaitofor each
protein in the protein space. That is, for the dom@inhaving the largest
diversity weight for proteirP; , we purposely remove its objective function,
fx in (1). We then find the solution to the new corresponding Lébfam.
This secondary clustering structure will capture the nerimmally shared
region of maximal similarity for the proteins inside therpéry cluster,
increasing each protein’s optimal objective value andtifigng further
subgroupings of similar proteins within the primary clust&his zoom-in
procedure can continue to reveal the tertiary, the quatgraad so on,
similarity relationship of the proteins. Thus unlike otimeethods, we are
able to define a more refined network clustering structurra fiee original
network without the use of arbitrary thresholds for pruning

2.2 Data sets used in this study

Two types of protein data sets were used in this study. Thethes Regu-
lator of G-Protein Signaling (RGS) protein family data setlides 55
proteins from the mous&/{us musculus) genome (NCBI Annotation Rele-
ase 103). They were found by performing HMMER3 (Eddy, 20®hysh

using Pfam?) pHMMs PF00615 (RGS) and PF09128 (RGS-like) as que-

ries, with an E-value threshold of 1.0. This RGS family semeeset was
subsequently used to HMMERS3 search against the entire Ritabake to
find other domains that coexist in the sequences. Twentyfair Bomains
(including RGS and RGS-like) were identified on the proteifise 55 RGS
proteins and the Pfam domains found in each protein are simolable S1.

Large-scale protein sets from ten genomes (including seeete-
ria and three eukaryotes) were also examined in this study.eich
proteome set obtained from the UniProt Knowledgebase (OtiiB,
www.uniprot.org, release 2014_08), proteins from the SRiist sector
that had at least one identifiable domain and UniProt prdéemmly anno-
tation were collected. Table S2 lists the numbers of pretaimd domains
for each of these protein sets.

2.3 Evaluation of the method

The protein clustering results of MOCASSIN-prot were comnepaagainst
two other methods, phylogenetic clustering and Markovtehirsg.

2.3.1 Phylogenetic clustering

For a regular phylogenetic analysis of multi-domain prageia multiple
sequence alignment of adomain shared across all protegtgised. The-
refore phylogenetic clustering could only be applied toRI@&S data set in
this study. A multiple alignment of the commonly shared don{RGS or
RGS-like domain) of the 55 RGS sequences was done using MAFFT
sion v7.182, Katoh and Standley, 2013) using the L-INS-0atgm with
the default parameters. The maximum likelihood phylogeiag wecon-
structed using PHYML (version v3.1, Guindenal., 2010) using the LG
amino-acid substitution model, the gamma distributionpshparameter
with the maximum-likelihood estimate, and bootstrap asialyith 1,000
pseudoreplicates. Bootstrap values of 70% were used teedbgrclusters
of RGS sequences.

2.3.2 Markov clustering

The TRIBE-MCL algorithm (Enrightt al., 2002) clusters proteins using
the following steps: (a) for a given set of proteins, an all-all BLAST
hit table is generated using thé ast p program, (b) thertxdebl ast
application is used to parse the BLAST table and generatdl-as.all
similarity matrix using an E-value threshold of 1.0, (c) thexassenbl e
program creates a probability matrix from the similaritytria and (d)
the probability matrix is used as the input to threl program, which
generates the protein clusters. Clusters were obtained varied values
of the inflation parameter, including the default | = 2.0 adlws | =
3.0, 4.0, 5.0. The MCL package (version v12-068) was dov@derom
www. m cans. or g/ ntl .

2.3.3 Cluster comparison metric

To compare the sets of clusters generated by two differardtering
methods, we use a symmetric similarity measure similar ¢oaverage
maximum Jaccard index (Prel@ al., 2006). Given two sets of protein
clusters, A and B, the per-cluster similarity is given by

o(A,B)+0(B,A)

S(A,B) =
4. B) A+ B

(©)

A1NB
S max [A1 N Bl
AyeaBieB|AL U B
has values ranging from 0 to 1, with O indicating no proteieserclustered
correctly and 1 indicating all proteins were clustered ecity.

wheres (A, B) = . Thus, this comparison metric

3 Results
3.1 MOCASSIN-prot clustering of RGS family proteins

The set of 55 mouse RGS proteins was clustered using MOCAPEIN
A total of 26 Pfam domains were identified on these proteirbiE S1).
Nine clusters were found using our method (Figure 2). Thetehs are
labeled according to their average optimal objective \&luredescending
order. As mentioned before, these objective values yiefbittant infor-
mation about the inter-cluster similarities in the netwoRor example,
Cluster 2 and Cluster 5 each include three proteins and potogically
identical. However, their average optimal objective valaee 146.7074
and 71.9517, respectively, indicating that Cluster 2 isghter’ or more
conserved subnetwork than Cluster 5.

Even though all 55 proteins in this data set belong to the RGBSy
(they all contain either the RGS or RGS-like domain), thegins in each
of the network clusters differ from those in the other clusteith respect
to their domain composition and varying levels of similatietween their
domain sequences. The domain profile across the proteif®eilRGS
network is exhibited in Figure 3, where the proteins are gealaccording
to the clusters (1-9) in the network graph.
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Fig. 2. RGS family primary MOCASSIN-prot network. From 55 mouse RGS family

proteins, 9 clusters were identified using MOCASSIN-prot. The nodeesept disti-
nct proteins, and the edges are directed so that the incoming edge wafiglatsh node
sum to 1. The edge color (in varying shades of gray) indicates the eeigbtwvith darker
edges indicating high edge weights and lighter edges indicating low weiglgoptimal

objective value for each protein is represented in the network by the lehggincoming

edges, with longer edges corresponding to small objectives valueste@in the network
are labeled in descending order according to their average optimatioejealue.

There are some clear differences in profile patterns betwezlu-
sters. For many of the clusters, specifically Clusters 1, 8, @nd 9, the
proteins within the cluster all contain the same set of dosjaand the
weights placed on these domains are the same. The profilaiglsights
domains that are unique to specific clusters. For exampéen Rfomain
PF00018.23 is hallmark to Cluster 8 because it is preserit ineanbers
of Cluster 8 but none of the other proteins in the network.

As an initial validation of the network clusters, we exandriee pro-
tein type for the proteins within each cluster, taken fromNCBI website
(Table S3). We saw that, generally speaking, proteins of#me type
tended to fall in the same cluster. Figure S2 clearly shoasdifferent
domain architectures are represented in different clsisBgquence diver-
gence within the same domain type (e.g., RGS domain for RG$17
RGS 19/20 proteins) is recognized in separating Clustensd12a Note
also that two isoforms of the same beta-adrenergic recé&ptase 2 gene
(P3 and P47) fall into the same cluster (Cluster 4in Figureveh though
one isoform (P47) lacks two domains (Figure S2). Hence withnoulti-
objective optimization framework, we can incorporate nolyalomain
architecture information, but also sequence similarityiolv produced an
RGS protein network with valid clusters.

3.1.1 Comparison of RGS clustering to other clustering metbds

To evaluate the protein clusters generated using MOCAS®Btagainst
other methods, the 55 RGS protein sequences were clustsiregl the
maximume-likelihood phylogenetic method and TRIBE-MCL. ientio-

ned before, for the phylogenetic method, only sequencerirdton from
the domain shared across all proteins (here, RGS or RG8ldik&in) can
be used. The MCL algorithm uses only the one most signifigasithilar

region between pairs of proteins, which is identified blglast p sea-
rch prior to the clustering. In contrast, our multi-objgetioptimization

Proteins

Table 1. Comparison of methods for RGS

proteins.
MOC (9) PHY (25) MCL® (5)
MOoC - - -
PHY 0.4473 - -
MCL 0.2018  0.1605 -

@ Default inflation parameter, 1=2.0, used.

technique incorporates both domain architecture and sequamilarity
information. The clustering patterns were compared basedesymme-
tric Jaccard index (Equation (3)) calculated for each pgiof the three
methods as shown in Table 1 (default TRIBE-MCL inflation eanater).
Results for the other TRIBE-MCL inflation parameter values shown
in Table S4.

The maximum-likelihood phylogenetic analysis produced ch%
sters when 70% bootstrap values were used as the clustérieshold
(Figure S3). Four of those clusters, Clusters 1, 11, 18, ghdha@i-
cated by circled cluster numbers, were identical to clssfeund by
MOCASSIN-prot (Table S5). Although the phylogenetic oastexhibi-
ted some similarity to the MOCASSIN-prot cluste&{(PRD, PHY) =
0.4473), the phylogenetic analysis cannot represent informafiom
domains that are included in the multiple alignment. Thenefit misses
some relationships that our network approach reveals.

For example, seven of the RGS proteins (P2, P18, P20, P27PB35
and P38) contain the RGS-like domain (PF09128.6). ProteisP20,
P35, P37, and P38 are grouped into the same cluster by bothA8SIIN-
prot and the phylogenetic method. However, for the other pnaieins

Cluster 9

Cluster 8

Cluster 7

Cluster 6

Cluster 5

Cluster 4

Cluster 3

2
&

Cluster 2
Cluster 1

11
1
-
TR B R R B IR DT,0NS TOAD D20 T
AN N o N o oD e RO N AR N
Q«" “%"’@2 \9,;9«" '3:,9“ \2%",’5\%% @@&'\2%"‘ %‘b@%@.\%@&%

<< ‘< ‘< ~’<(<Q<<0 QQQQQ <<0<< K QQQQOQ%QQQQQQ QQQQQ((Q Q((Q((Q

Domains

Fig. 3. RGS family diversity profile. Each row represents one of the 55 RGSipmte
while each column represents one of the 26 Pfam domains (RGS and RGf#Htilens
are shown in bold). Each cell is color-coded based on the diversityhtgeigfrom the LP
problem (1): black forz; = 1, a black X forz; = 0 (but domain exists), and from
light gray to dark gray fon > z; > 1. Blank cells indicate domain absence. Proteins in
each cluster (identifiers shown on the left) are arranged according togteal objective
value, with the largest appearing as the lowest row in the cluster. Thetigbjealue for
each protein is shown on the right.
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containing the RGS-like domain, proteins P18 and P27, tisesigliscre-
pancy between the two methods in cluster membership. Adfihdbe
phylogenetic method clusters P18 with the five proteinsaioirtg RGS-
like domain mentioned above (Cluster 23 in Figure S3), theqaeny also
shows that the RGS-like domain sequence of P18 is signiljcdifterent
from those of the five proteins (the bootstrap value for thgendustering
P18 with the others is 99.4%). P27 exists as a single prolester in the
phylogeny (Cluster 15 in Figure S3).

In contrast, MOCASSIN-prot places both P18 and P27 in amatoe
ster (Cluster 6 in Figure 2). Moreover, the edge weightscaugi that
relative to the other proteins in the RGS data set, P18 issR235est nei-
ghbor and vice versa. This relationship is a direct resutitsfmethod’s
use of information from all domains. As shown in Figure 3 ¢atee
Figure S2), P18 contains two other domains, PF00595.19 YRd
PF00621.15 (RhoGEF), in addition to the RGS-like domairD34R28,6).
All three of these domains are shared with P27, and one edditdomain
(PF03938.9, OmpH-like) is unique to P27. In the MOCASSIgtpretw-
ork P27 also exhibits similarity to both P50 and P12. Figursh8ws
that similar regions to domain PF00595.19 (PDZ) are unigdietnd
in proteins P12, P18, P27, and P50. While uniquely divergembain
compositions of P18 and P27 compared to other proteins iogmgathe
RGS-like domain combined with their less-conserved R&&-tlomain
sequences were enough to cluster them separately from ptbeins
with the RGS-like domain, sequence similarities of domainared with
proteins belonging to Cluster 6 were strong enough to magen tblu-
ster with these proteins. The same clustering pattern f8ratl P27 was
seen in the secondary MOCASSIN-prot network (Figure SAageShe
phylogenetic clustering is based only on the RGS and RGSdidmains,
these similarity relationships are not captured, illugigathe limitation
of alignment-based phylogenetic clustering.

Clusters for the RGS sequences were also constructed uRIHBEF
MCL. With the default inflation parameter, | = 2.0, the methdentified
5 clusters (Figure S4(a)). Results for the other values efitiflation
parameter are shown in Figure S4(b)-(d). The number ofalsgene-
rated by TRIBE-MCL was much smaller compared to MOCASSINtpr
and the phylogenetic method. None of the clusters genebatddRIBE-
MCL clusters were 100% consistent with a cluster from MOCRAESrot
(Table S5). The seven proteins containing the RGS-like domere
spread between two clusters in all runs of TRIBE-MCL (C1 ardi©
Figure S4(a); C1 and C7 in Figure S4(b); C1 and C4 in Figure)34(
except for the case when | = 5.0, where they were found in tbfelee
clusters (C1, C5, and C7 in Figure S4(d)). As mentioned leetbe MCL
method clusters the sequences based on the single moéitsighiegion
between them. The existence of highly conserved domainsnconto all
of the proteins, such as the RGS and RGS-like domains, absdur-
ther subgroup relationships among proteins. By incorpuganformation
from all of the domains on the proteins, our method is ablduster the
RGS proteins on a finer scale than the TRIBE-MCL method.

As described before, our method can correctly cluster isadaof the
same gene, even when the domain compositions are différkistis not
the case with the other two methods. For the two beta-adyenerceptor
kinase 2 isoforms (P3 and P47) mentioned before, P47 lackdtwains
and contains only the RGS domain (Figure S2). In the phyletieriu-
stering (Figure S3) P3 clusters with P40, beta-adreneggieptor kinase
1, comprising Cluster 16, while P47 makes up Cluster 24, glesipro-
tein cluster located distantly from Cluster 16. Regardtesthe inflation
parameter, TRIBE-MCL places each of the three proteins iapaste
cluster. For example, in Figure S4(a), P3is in C2, P40 is inaDd8 P47 is
in C5. In the MOCASSIN-prot network all three beta-adrefergceptor
kinase proteins, including the two isoforms, cluster thge{Cluster 4 in
Figure 2). Our approach was able to pick out the relatiorssbhigtween

Table 2. Clustering accuracy for MOCASSIN-prot and TRIBESM for ten
reference protein sets.

Genome #REF S(MCL2,REFf S(MOC1,REF) S(MOC2,REFY
B. subtilis 1322 0.1334(226) 0.1881(198) 0.5968(1617)
E. coli 1766  0.1215(276) 0.1429(188) 0.6285(1921)
T. pallidum 298 0.0608(16) 0.0444(9) 0.6919(188)
S pyogenes 358 0.2738(276) 0.0612(15) 0.7020(232)
S epidermidis 604 0.0827(45) 0.0841(31) 0.6907(414)
S aureus 662 0.1001(62) 0.1036(45) 0.6918(496)
Y. pestis 829 0.0653(45) 0.0786(44) 0.7207(604)

D. melanogaster 1528  0.0996(161)  0.1315(161)  0.5552(1502)
M.musculus 3702 0.1330(1217)  0.2565(1207)  0.4263(6936)
Scerevisae 2243 0.1423(428)  0.1711(291)  0.5833(2523)

@ Total number of reference clusters.

b MCL2 denotes TRIBE-MCL with default inflation parameter2l8.
¢ MOC1 denotes primary MOCASSIN-prot network.

4 MOC2 denotes secondary MOCASSIN-prot network.

these proteins correctly because they were highly similahéir shared
RGS domain sequence.

3.2 MOCASSIN-prot clustering of large-scale protein
sets

To test the performance of MOCASSIN-prot on larger scale,date
used protein sets from seven prokaryote and three eukagete-
mes. Figures S5-S14 show the primary and secondary proteilasty
networks obtained from MOCASSIN-prot for these proteirs sebr com-
parison, the clusters generated using TRIBE-MCL for eaokepr set are
shown in Figures S15-S24.

We used the UniProt family assignments as the set of referensters
and tested the performance of MOCASSIN-prot compared t8ERVICL
for each of the protein sets. The clustering accuracy ieagsessed using
the similarity measure in Equation (3), are summarized inléa2 and
S6.

The TRIBE-MCL method, in general, exhibited lower clugteri
performance compared to MOCASSIN-prot. In only a few caSBSBE-
MCL outperformed the primary MOCASSIN-prot clustering.eT$econ-
dary MOCASSIN-prot networks especially were highly cotesiswith the
reference clusters, surpassing the performance of TRIBE-M all data
sets. The reason that TRIBE-MCL was consistently outperéat is that
TRIBE-MCL uses information from only one region of local slanity,
i.e., itdoes not use information from all conserved domamthe proteins.
MOCASSIN-prot incorporates information from all domaitesading to
clusters that are more consistent with the UniProt famisigrsnents.

The secondary MOCASSIN-prot networks were much more ateura
than the primary networks because removing the least caetselomain
for each protein, i.e., the domain with the maximum divgrsieight, in
a primary cluster and reclustering increases each pretejtimal obje-
ctive value, identifying subgroupings of highly similaiopeins within the
primary cluster. We also tested the tertiary and quaterN®CASSIN-
prot networks and found little increase in method perforoeaTable S6),
suggesting that the secondary network is sufficient forsdigag the
proteins.

4 Conclusion

Large-scale clustering of protein sequences incorpaatieir domain
composition information is a challenging problem. Traufil approaches
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to the protein clustering problem, including TRIBE-MCL apldylogene-
tic clustering, use information from only one local regiohsamilarity

between proteins or information from only domain sequersieared
among the majority of proteins. To obtain an accurate diaasibn of pro-
tein families one needs to incorporate information fromehgre domain
composition.

In this study, we presented MOCASSIN-prot, a multi-objestiptimi-
zation approach for protein classification. This metholizes quantitative
sequence similarity information from all domains on theteis and
builds a network that houses clusters of similar proteirusages. The
method is scalable to the complete proteome level. Evaluadf pro-
tein clusters from MOCASSIN-prot, especially those frontaseary
networks, and TRIBE-MCL showed that MOCASSIN-prot exhebit
consistently higher performance.

We should note that with our method the network structurdsiamain
profiles depend critically on the similarity matrices thatve as input
to the model. Therefore, in future work we must examine tkifé sco-
ring schemes (e.g., E-values based on profile HMMs, conipodiiased
similarity scores, etc.) for their robustness and serisitilmproving the
protein-domain similarity scores will give us better regimn in protein-
domain classification, reflecting more accurate evolutipaad functional
relationships between proteins.
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