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based on a

uew type of fast switching subsystem and the method of Deng [1994]. New atlractors of the

Lorenz type are found when parameters in th

€ systein are varied. The singular limit attractors

are also presented in terms of one-dimensional mappings

For

antonomous systems, chaos occurs only in
of three or higher dimensions. On the other
hand, singular perturbations provide a natural av-
enue for systems to evolve from lower dimensions to
higher dimensions. Thus, it seems only natural to
hypothesize that the birth of chaos must take place
at the onset of singular perturbation. This point
was demonstrated by Réssler [1976, 1979]. and by
Deng [1992. 1994] where many complex and chaotic
dynamics are consiructed systematically.

The main idea of Deng [1994] is Lo construet
two-dimensional slow
fast systems separate

B

spa

cms and one-dimensional
s building blocks, and then
modulate the former onto the latter via homotopy,

More specifically, the fast ern, also called
the swiu'hmy, tem, is of the form My, 2, 2)
with A{e, 0y = ( - 2l g, 2), where
s a pol\ nowmial, are constants, p is
refully chosen so Hml Z1, 23 consist of at-
tra(nng, and repelling equilibrium points, separated
only by turning points. Depending on the choices

5¢ Lo

one, thus, g witches capable of gener-

On the other hand.

fixoy

ating wany chaotic atiractors.
the slow
g,

e is of the form &
fpwith flr, oy, 2, 00 =
2 0)

it

roy)land glx, g

). When restricted on

1= 2)fela y) i =
—ahiz ) g =(
Lyh The wsul\mv system is a singularly

per!mh(d system of the form & =
=glx, Y. o2k
In certain mgions containing the switch, solu-
tions of the perturbed system (£ > 0) stay in a swall
neighborhood of the attracting branches of 2 1
z = z3 most of the time, that in turn is L()n]pl(’(f‘l\
determined by our choices of f1. g1 and fa, gy re-
spectively. So, the reduced dyuamics of the vector
fields (f1, g1) and {fo, g2) play decisive roles in an
alternating fashion, and the role changes take place
the wurning points of the switching s
Thus, the virtually unlimited ways in choosing p.
(f1. ¢1). (f2. g2) enable us to construct mathemati-
cal models according to our specifications. Systens
construcied in this manner are simple, robust, and
ideal for both theoretical and experimental manip-

It )

near Lo,

ulations. In this sense, they can be regarded as
the “normal forms” for the dynamical structures
modeled.

Although many complex and chaotic dynam-
ics. both old and new. can be mimicked by models
constructed in the way outlined above, the Lorens
attra is not of them. The of
this paper is to illustirate a systematic method for

tor one purpose
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constructing the Lotenz type attractors. The con-
struction requires a new type of switching system
which is differcut from the form Az, y. 2, 0) = (2 —
z1)(z—z2)p{a, o, =) used in Rassler {1976, 1979] and
Deng [1994]. The new switch is referred to as the
cusp-switch. We will use the same homotopic cou-
pling technique from Deng {1994] to modulate the
slow system onto the cusp-switch.

The paper is organized as follows. In Sce. 1,
we will discuss the geometry of the singular Lorenz
type atiractors when £ 0. Tn Sec. 2, we will
coustruct the cusp-switch as the set of equilibrium
points of the fast system. We will also construct the
slow system as the homotopy of two reduced sub-
systems. Section 3 contains numerical simulations
of the system constructed. Section 4 presents some
new altractors when parameters of the constructed
system are varied. In Sec. 5, we will discuss one-
dimensional models for the singular Lorenz attrac-
tors. We conclude with some remarks in Sec. 6.

1. Geometry of the Singular
Attractor

We will construct our singularly perturbed system
in the [ollowing forin

ei = hiz, y, 2, €),
=fl, s z08), (1

=gz, y, 2 €).

Unlike what has been said in the introduction, the
d-equation is the fast system and the gz-system is
the slow system. The differentiation is taken in the
fast time variable, call it ¢. There are parameters
other than the singular one, ¢, and they are sup-
pressed for the mement for simplicity. Under the
slow time-scale 7 = =/t, Eq. (1.1) becomes

hix, g, 2, €)

g =eflry 20, (12)
)

=eglz, y, 2, €

Setting ¢ = 0 in Eq. (1.2) gives rise to the fast

' = hlz, y, 2, 0}, (1.3)

with 3, = being constants.

Let & denote the set of equilibrium points,
hix, g, z, 0) 0. of the fast system. Then, we
wani. S to be a cusp-surface as illustrared in Fig. 1.

Fig. 1. The cuspswitch S for the fast
portrait of the reduced slow sysiem.

tem and the phase
ogether, they form the

singular Lorenz attractor

The folds of the surface are saddle-node bifurcation
points of Bq. (1.3). We also want all the equilib-
rium points on S, except for those on the branch
hounded by the two folds, asymptotically stable for
Eq. (1.3). S is called the slow manilold in the the-
ory of singular perturbations, cf. Fenichel [1979].
We will call such a cusp-surface a cusp-swiich.

Setting € = 0 in Eq. (1.1) gives risc to the slow
system

0= hix,y. 2 0),

g=Fflz, 520,
=gz, y. 2 0).

(1.4)

This is a planar system setting on the singular man-
ifold §. For our construction, we want the phase
plane diagram on 8 to be as illustrated in Fig. 1.
More specifically, there is a saddle point O below
the cusp point of the surface S. The two branches
of the unstable manifold of O spiral in opposite di-
rections, and intersect transversely at different folds
of S. Following the fast flow, each of the intersee-
tion point falls inside the other spiral arm of the
unstable manifold. Inside each spiral arm lies a re-
pelling center. Moreover, the eigenvalues A, g of
the lincarization at O satisfy 0 < —A < g In ad-
dition, all the solutions inside each spiral arm less
the repelling center spiral outwards, only to inter-
sect the fold transversely, probably with the excep-
tion of the stable manifold W*(©) on §. We call
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fast and slow systems of Eq. (1.1) a singular Lorens
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2. Construction of the System

For the fast system Eq. (1.3) and the cusp-switch
S, we take

)=y —p) - 5 - (= - g)a)

@1
5(z% — (2 — q)x) +p}.

Mz, y,

Figure 2 shows traces of § with 2z < g and = > ¢.
The cusp point is (0, p, ¢) and the folds arc given
by the local extrema of the function y = 5(x? —

(z—q)x)+p. Fory =p = =0, and q¢ > 0,
the equilibrium point x = 0 for the fast system
' = h(z, 0,0, 0) = —5(z* + ¢x) is asymptotically

stable. Since the two folds of S are the only place
at which the equilibrium point of Eq. (2.1) changes
its stability, all the points on S, except for those
between the two folds, are asymptotically stable.

For the slow system Eq. (1.4), we take f, ¢ of
the following form

(r+1)?

HIEN A TN+
(z+1)?
9y 5 ) =—r—unly,
H o is fixed at & = 1 and 2 = —1, the slow system

(1.4) is reduced to
y=h 2, 2 =al ),

and

(a) (b)

Fig 2 Traces of S on the planc 2 = z0 < ¢ in (a) and
2=z >giu (b).
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respectively. We will construct the vector field
(fr, g1) first and then, for simplicity, take the vec-
tor field (f2, g2) as the mirror image of (fy, ) with
respect to the z-axis, i.e.

faly, 2) = = fil=y. 2).
. (2.3)
w2y, 2) =g~y 2).

We constract fi, g7 in two steps. First, we take
this planar system

= -2z,

(2.4)
c) = =2y + 3% + 2(y" — v+t ).

where ¢ is a parameter. This system of equations
has saddle point at (y, =) = (0, §). The eigenvalucs
of the linearization at the point are

—c+ V2416
5 .

Ve +16
A= <0<yp=

Thus, [A[ > s for ¢ > 0 and |A| < @ for ¢ < 0. The
corresponding stable and unstable eigenvectors are
(1, 1) and (1, —1), respectively. (y, =) = (2/3, 0) is
a center with eigenvalues

IRER e el

It is a repelling center if —4 — 4/27 < ¢ < —4/27
and attracting center —4/27 < ¢ < 4 — 4/27. The
change of stability occurs at the llopf bifurcation
point ¢ = ¢y = —4/27. At e=0,9° -2 +:2 =10
defines an invariant curve for Eq. (2.4} and it is a
homeclinic orbit to the saddle point (0, 0}, It lo-
cally repels orbits from inside the loop because the
term (y* — y° + =) < 0 for points inside the loop.
{Note that at ¢ = 0, the saddle point is at resonance:
[Al = . The co-dimension-two bilurcation unfold-
ing is known, sec Chow ef al. {1990]. So. the hi-
furcation of the homoclinic orbit for ¢ # 0 near 0
depends on detailed information about how the onc
parameter family of Eq. (2.4) traces through the
bifurcation surfaces. But, such details are not cru-
cial for our construction here), Figure 3 shows as ¢
crosses ¢ = 0 from above, the unstable manifold of
the saddle point (0, 0) crosses the stable manifold
from inside the loop out.

To complete the construction, we rotate the
vector field (@, 4} through an angle ¢ to obtain
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Fig. 3
taken from Hale & Kogak [1981).

(fi. 1), ie

[fl(?/- l)] _ [Cos [

sin 6

—sin 9] [m}
g1(ys 2) cos 6 [l

—sin 0771y

cos } L] :
Note that the homoclinic orbit of Eq. (2.4) with
¢ = 0 converges to {0, 0) asympiotically tangent
toy =zast — 4ocand y = —z as t — —oc.
Also, it lies inside the sector bounded by y = ¢
and y = —z. Thus, for # = /4, the homoclinic
loop for the rotated vector field les in the closure
of the first quadrant. For the vector field (f1, 91)
and (fy, g2), the corresponding homoclinic orbits

are mirror images of each other with respect to the
z-axis.

[cos (4
o
sin 8

The resulting slow vector field (f. g) from (2.2)
defines a homotopy from (f2, g2) to (f1, ¢1) as z
ranges from —1 to 1. Thus, the vector field (f, g)
is determined by (f1, g1) when z is near 2 = 1 and
by {f2, g2) when z is ncar —1. The square
weights (x & 1)2/4 are just used to preserve the
signs of participating vector ficlds (fi, ;) in the ho-
motopy. For the reduced vector ficld of (f, g) on
the slow manifold 8, denote it by F, its behavior
is shaped by (fi, ;) differently in different regions
on S, For z < 0, both {fi. g;) behave essentially
the same, so does F. For = > 0 and on the front
branch of the cusp-switch &, F behaves similarly
1o both (fi, g;) when (z, y, z) is near the origin,
and only to behave gradually more like (fy, g1) as
the z-coordinate of the point (z, y, z) € § increases
and the #-coordinate moves toward and near 1. An
analogous description applies to the bebavior of F

(c)

The homodlinic bifureations of Eq. (24) with ¢ = —0.1, ¢ = 0, ¢ = 0.1 in (a), (b), (c) respectively. The equation is

on the back branch of the cusp-switch §. So, the dy-
namics of the reduced vector field F on § is similar
to that of (f1, g1) on the front branch for moderate
2 > 0 and similar to that of {f2, g2) on the back
branch for moderate & < 0. Moreover, for ¢ < ¢
(c* is the bifurcation value at which the homoclinic
orbit persists on 8), the iwo branches of the un-
stable manifold of the saddle point {0, 0) cross the
stable manifold from inside the respective loop out,
see Fig. 1. Hence, we can intuitively conclude that
a singular Lorenz attractor exits when (2.1)-(2.5)
are incorporated into Eq. (1.1).

3. Simulation of the System

TReplace the parameter ¢ and 8 in functions f;, g; of
(2.5) and (2.3) by four different parameters ¢; and
; respectively and combine (2.1) (2.5). we arrive
at the following singularly perturbed system

(3.1)

where ¢ is the singular paramcter, ¢1, e, 01, 02, p,
¢ are paramecters, and the functions f;. g, are given
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Fig. 4. These figures are gencraled by nsing PhasePlane ([Srmentront [1988]) for Bq. (3.1 with ci = ca = ~0.2,6) = #, = 7 /4,
Gear's methad was used with 0.003 tolerance, 0.0003 minimum step size, 0.3 maximum step size,
X {a, b, ¢) are the projeciions of the altractor to the ys-. xz-, zy-planes, respectively. The eigenvalues at the
saddle point O are —100 < —0.949907 < 1.01996

Fig. 5. The Lorenz attraclor of the Lorenz equalion & = a{—z+y), § = vz ~y—wz, 2 = —bz+zy with the original parameter
values @ = 10, » = 28, b = 8/3, cf. (Lorens [1963]). (a, b, ¢} are the projections to the yz-, xz-, zy-planes, respectively. The
eigenvalues at the saddle point (0, 0, 0) are —22.827723 < —2.666667 < 11.827723

(a) (1) ©

Fig. 6. Rissler's Lorenz type attracior. The equation is & = bley = ), § = y — 9= — 2, £ = y° — a2 with parameter valnes
a = 0.0 b= 0.08 c = 0125 cf. (Réssler [1979]). (a, b, ¢} are the projections to the yz xy-planes, respectively. The
cigenvalues at the saddle point (0, 0, 0) are ~0.1 < ~0.07066 < 0.99066




[image: image6.png]1638 . Deng

as follows

Saly, =0, 0)==fi(=y. =, ¢, 0},

g2y =z ¢ O)=qi(—y, 2, 0).

Fiy. z, ¢, 8)=—2a(-By+az]—8{-2]ay+32]
+3[ay+ﬁz]2+[‘/3;u+a:]([ay+

A},

a1y, =, e, )=—-23]-By+az]+o{-2[ay+ 53]

Bz

—lay+8:) +[-By+

By +az|([oy+ 52

+3[ay
—loy+82)" +l—fy+azP— o)} .

a=cos B,

f=sin f.

Figure 4 shows a numerical simulation of Eq. (3.1)

g o= =02, 0y = 0y = 7w/4, p = 0,
¢ = 0.1, z = 0.005, To compare and contrast our
system to the Lorenz equation, the Lorenz attrac-
tor is generated in Fig. 5. There is another sys-
tem which exhibits the Lorenz type attractor. It
is due to Rossler [1979]. For comparison, Fig. 6
shows Rossler's Loreuz type attractor. There arc
other systems for which the existence of the geo-
metric Lorenz attracior, defined by Guckenheimer
& Williams [1979], see also Guckenheimer & Holmes
{1983], is established through the bifurcation of a
pair of resonant, or orbit-flip homoclinic orbits, see
Rychlik [1990], Robinson [1992]. Dumortier ef al.
[1992], Matsumoto et al. [1993], Shil'nikov [1993],
and Shil'nikov et al. {1993].

for ¢; =

4. Changes with Parameters

Tn constructing Eq. (3.1), one can add many pa-
rameters besides the singular parameter < to control
many aspects of the attractor. We only include ¢y,
¢y, 61, 02, p, ¢ here which we believe represent most,
if not all, typical changes of the attractor when pa-
rameters are varied. Presented below arc some such
changes. Using different building components ¢,
% of (2.4) in constructing the system (3.1) is also
demonstrated below.

4.1. Changes with ¢; and ¢,

For ¢ = ¢* = 0.073073 with other parameter values
the same as in Fig. 4, Fig. 7 shows a pair of nu-
merical homoclinic orbits. The center equilibria on

the slow manifold are stable. The homoclinic pair

Fig. 7. A symmetric pair of homoclinic orbits in (a). A pair
of attracting centers on the perturbed cusp-switch in {(b)
The parameter values are ¢; = ¢z = 0.073073 with the others
the same as in Fig. 4. All attractors shown from now on are
projections to the yz-plane.

Fig. 8. A chaotic attractor with eigenvalues —100 <
~1.012457 < 0987510 af the origin O. The same param-
cter values as in Fig. 4 except for e = ez = 0.05

iy destroyed when ¢ > ¢*, and no chaotic atiraclors
are detected for cases of ¢ > c*.

For ¢ < ¢, each branch of the unstable mani-
fold for the saddle point O crosses the stable man-
ifold into the opposite loop. Al ¢ = 0.05, a chaotic
attractor seems to appear in Fig. 8. The eigenval-
at the saddle point are —100 < —1.012457 <
0.987510, i.e., the magnitude of the positive eigen-
value is smaller than that of the negative eigenvalue.
A Lorenz type attractor with such a relatively con-
tracting saddle point is reported in Palis & Takens
[1993].

For ¢ = —0.3, Fig. 9 suggests that the two un-
stable centers on the slow manifold becomes part of
the chaotic attractor. It is conceivable that at some
parameter value of ¢, the two unstable centers are
connecied together on a heteroclinic loop. It is also
likely that at some other value of ¢, cach branch of
the unstable manifold of the saddle point is directly
connected 1o the unstable center on the opposite
side.

ues
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Fig. 9. The two unstable centers becone part of the attrac-
tar for the sarue parameter values as in Fig. 4 except for
= =—03.

Fig. 10.  An asymmetric attractor for the same parameter
values as in Fig. 4 except for ¢y = —0.1 and ¢z = —0.2.

Tor ¢) # c9, the symmetric perturbation for the
homoclinic pair gives risc to an asymmetric one.
The resulting attractor is an asymmetric Lorenz
type attractor. Figure 10 is generated with ¢, ¢
sct to —0.1 and —0.2, respectively.

4.2. Changes with 6,, 6,

Changing parameter ), 6, in Eq. (3.1) mounts (o
rotating the two spiral arms on the unstable mani-
fold of O in any direction we want. For 8 = 6 =
1.4, Fig. 11 shows that the two arms are rotated
further towards each other and the attractor looks
like a hot air balloon. In this case, the two arms
have a symmetric relationship with respect to the
cusp-swilel S,

Fig. 11 Generaled for the samc parameter values as in
Fig. 4 except for ¢; = ¢z = ~0.00 and 6 = 02 = 1.4.

When 6 # 9, such a symmetric arrangement
no longer exists. Figure 12 shows two results of
such asymmetric rotations. Note that in Fig. 12(b),
another chaos generation mechanism, called relaz-
ation-fold (see Deng [1992]), emerges inside the
left arm.

4.3. Changes with p, ¢

Decreasing ¢ to ¢ = 0 amounts to lowing the cusp
point of the cusp-switch S 1o the equilibrium point
O. When ¢ = 0, O becomes a nonhyperbolic point.
In fact, numerical calculations indicate that one of
the non-positive cigenvalue of O is approxirately
—1000q for ¢ > 0. Figure 13(a) shows the atiractor
with ¢ = 0 and the eigenvalues are —0.949959 <
0 < 1.04996. Note that the positive eigenvalue is
greater than the absolute values of the two nonpos-
itive eigenvalues for approximately 0 < ¢ < 0.001.

Decreasing p mounts to shifting the cusp point
to the lefl. The attractor becomes asymmetric if
p # 0. Tigure 13(bh) shows such an asymmetric
attractor,

4.4. Changes with ¢, ¥

The method is very flexible in allowing different
Tunctions ¢, ¢ of (2.4) to enter into Eq. (3.1}, Fig-
ure 14 is generated with these two functions re-

placed by
My, z,¢)=—=z,
v (41
Wy, 5, 0) = —y+yt —ex.

Figure 15 is generated with functions of (4.1) re-
placing ¢, ¥ in f2, g2 only.
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(a) (b}

0.3 (b) is generated
¢ of a relaxation-fold.

Fig. 12, (a) is gencrated for the same parameter values as in Fig. 1 except for ¢) = —0.4, ¢y = 0.1
for the same parameter values as in Fig. 4 except for 1 = ¢z = 0, f = 1.5, The arrow marks the pr

(a) (b)

etbolic saddic ©. The parameter values arc the same as in Fig. 4 cxcept for ¢ = 0

Jig. 13, (a) Anp attractor with a nonhy
(b) An asymmetric atiractor with p = —0.

and all the other parameter values arc the same as in Fig. 4

Fig. 1. Generated for liq. (3.1) with ¢, @ replaced by (4.1). The parameter values are the same as in Fig. 4 except for
—0.03, 6, = f = L3 in (b). One orbit is generated in (bj on cach branch of the unstable manifold of the saddic

point

() )

Fig. 15, Generated for Eq. (3.1) with @, 1 in fa, g2 replaced hy (1.1} only. The parameter values are the same as in Fig. 4
except for ¢ = ez = 0. ¢ = 0p = L in (b).
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For the singular Lorenz attractor introduced in
Sec. 1, there is a natural way to describe it in terms
of a one-dimensional return map. For simplicity,
we only consider the cases for which the following
conditions are satistied for system (1.1):

Assume that by following the fast flow, the seg-
ment, denoted by €. on the fold of Sp that lies
between the cusp point p and the intersection of
the left branch of W*(0) falls to the “right” of
W) NSy on Sp. A similar assumption is made
for the fold segment, £), on Sp. See Fig. 1.

Liere is how the return map is defined. Let D)
be a line segment on Sp with one closed end point
at the unstable center and the other open end point
on W¥(O)NSp. 1t is chosen in such a way that the
fold segment £2 of Sp stated in the condition above
falls “below™ D) on S as illustrated in Fig. 1. A
similar segment Dy is chosen on Sg. Without loss of
generality, identify Dy = (0, 1], Dy = [—1, 0). Then
the return map, call it @, is defined from {—1, 0)U
0,1 to [-1, 1]

More specifically, divide the interval D into
two subintervals with the common end point, de-
noted by ;. being the first intersection point by
W*n &p. By following the slow flow on Sp, ¢ is
the flow-induced map from fm,, 1} onto [0, 1] = Ty,
For cach point from (0, m,), follow the correspond-
ing slow orbit to the fold segment £, then follow
the fast flow to a point on Sp. By the assumption
above, this point is associated with a point on the
domain Dy = [—1, 0) by following the correspond-
ing slow orbit on S backwards in time. This point,
from [—1, 0) defincs the image of ¢, thus complet-
ing the definition of ¢ on (0, 1]. The exact same
description applies to ¢ on [-1, 8). # is not de-
fined at 0. One typical return map is illustrated in
Fig. 16(a).

The class of such one-dimensional maps for sin-
gular Lorenz attractors is not just limited to the one
shown in Fig. 16(a). This can be seen from the ex-
amples in Sec. 4. To be more precise, let A < 0 <
be the eigenvalues of the origin O for the siow flow
(1.4). Then 0 < || < y implies that

PR )
_,,h,%k &x) = +oc

as shown in Fig. 16(a). But, if the magnitude re-

lationship is reversed, Le. 0 < p < {A, as with

the case of Fig. 8, then the side limits above are 0
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Fig. 16. Two return maps of singular attractors.

instead. Also, w2 need not be monotonous either
as with the case of Fig. 12(b), when a relaxation-
fold develops near Sp. The relaxation-fold occurs
when the projection of the fold segment ¢, along the
fast direction makes a gencric tangent contact with
a slow orbit on Sg. This relaxation-fold makes ¢
non-monotonous from (0, my) to Dy. As a result, a
local extreme point of ¢ emerges in (0, 1]. Such a
non-monotonous model is illustrated in Fig. 16(b)
We remark that the idea of reducing the study
of the Lorenz type attractors to one-dimensional
models is due to Guckenheimer [1976], Gucken-
heimer & Williams {1979), see also Guckenheimer
& Holmes {1983]. The same type of maps as in
Fig. 16(a) was constructed and studied by these au-
thors. Their reduction was based on the existence
kypothesis of a strong stable foliation. Ii. is plausi-
ble to see that such an invariant foliation exists for
the perturbed system of {1.1) if the corresponding
one-dimensional singular model is monotone. But,
it 1s highly unlikely that such a foliation also exists
should the singular attractor have a relaxation-fold
as with the case of Fig. 16(b). or a Réssler’s fold
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(sce Deng {1992]). In any event, a quaniitative and
geometric theory abont turning points is needed in
order to understand the persistence of the singular
attractors when perturbed.

6. Concluding Remarks

We have demonstrated that the birth of Lorenz type
attractors can be found at the onset of singular per-
turbations. The singularly perturbed attractors are
robust. Our construction also demonstrated that
the presence of the same type of symmetry as in
the Lorenz equations is not a prerequisite for chaos
generation. We have also demonstrated that the
singular attractors can be described rigorously by
one-dimensional return maps. The importance of
such singuiar attractors lics in the obscrvation that
they always persist for the perturbed systems in a
way vet to be understood.
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