Inverse systems, fat points and
the Weak Lefschetz Property

Alexandra Seceleanu

University of Illinois at Urbana-Champaign

AMS National Meeting in New Orleans
January 2011
The Weak Lefschetz Property

Let $I \subseteq S = \mathbb{K}[x_1, \ldots, x_r]$ be an ideal such that $A = S/I$ is Artinian.

Definition

A graded Artinian algebra A has the **Weak Lefschetz Property (WLP)** if there is an element $\ell \in S_1$ such that for all degrees j, the map $\mu_\ell : A_j \rightarrow A_{j+1}$ is either injective or surjective (equivalently μ_ℓ has maximum rank as a \mathbb{K}-vector space homomorphism).
Let $I \subseteq S = \mathbb{K}[x_1, \ldots, x_r]$ be an ideal such that $A = S/I$ is Artinian.

Definition

A graded Artinian algebra A has the **Weak Lefschetz Property (WLP)** if there is an element $\ell \in S_1$ such that for all degrees j, the map $\mu_\ell : A_j \rightarrow A_{j+1}$ is either injective or surjective (equivalently μ_ℓ has maximum rank as a \mathbb{K}-vector space homomorphism).

- The set of linear forms ℓ with this property is Zariski open in S_1.
- We assume henceforth that $\ell \in S_1$ is generic.
- We assume also that $char(\mathbb{K}) = 0$.
WLP is

- known to hold for monomial Artinian complete intersections (Stanley, 1980).
- expected to hold for Artinian ideals generated by generic forms.
- known to hold for Artinian ideals generated by generic forms in $\mathbb{K}[x_1, x_2, x_3]$ (Anick, 1986).
- known to hold for any Artinian ideal generated by powers of linear forms in $\mathbb{K}[x_1, x_2, x_3]$ (Schenck - S., 2009).
- known to hold for Artinian ideals generated by generic forms in $\mathbb{K}[x_1, x_2, x_3, x_4]$ (Migliore - Miró-Roig, 2003).
WLP is

- known to hold for monomial Artinian complete intersections (Stanley, 1980).
- expected to hold for Artinian ideals generated by *generic* forms.
- known to hold for Artinian ideals generated by *generic* forms in $\mathbb{K}[x_1, x_2, x_3]$ (Anick, 1986).
- known to hold for *any* Artinian ideal generated by powers of linear forms in $\mathbb{K}[x_1, x_2, x_3]$ (Schenck - S., 2009).
- known to hold for Artinian ideals generated by *generic* forms in $\mathbb{K}[x_1, x_2, x_3, x_4]$ (Migliore - Miró-Roig, 2003).

How about powers of linear forms in $\mathbb{K}[x_1, x_2, x_3, x_4]$?
Motivating Example: 5 points on a conic

Look ahead:

\[I = (\ell_1^3, \ell_2^3, \ell_3^3, \ell_4^3, \ell_5^3) \subseteq \mathbb{K}[x_1, x_2, x_3, x_4]. \]
Motivating Example: 5 points on a conic

Look ahead:

- \(I = (\ell_1^3, \ell_2^3, \ell_3^3, \ell_4^3, \ell_5^3) \subseteq \mathbb{K}[x_1, x_2, x_3, x_4] \).
- The space of quartics in \(\mathbb{P}^2 \) passing through five double points is nonempty \(\implies \) WLP fails for geometric reasons.
Let \(\{p_1, \ldots, p_n\} \subseteq \mathbb{P}^{r-1} \) be a set of distinct points defined by ideals \(I(p_i) = \mathfrak{p}_i \subseteq R = \mathbb{K}[y_1, \ldots, y_r] \). A **fat point ideal** is an ideal of the form

\[
F = \bigcap_{i=1}^{n} \mathfrak{p}_i^{m_i} \subseteq R.
\]
Let \(\{p_1, \ldots, p_n\} \subseteq \mathbb{P}^{r-1} \) be a set of distinct points defined by ideals
\(I(p_i) = \mathfrak{p}_i \subseteq R = \mathbb{K}[y_1, \ldots, y_r] \). A fat point ideal is an ideal of the form
\[
F = \bigcap_{i=1}^{n} \mathfrak{p}_i^{m_i} \subseteq R.
\]

Recall \(S = \mathbb{K}[x_1, \ldots, x_r] \) and define an action of \(R \) on \(S \) by partial differentiation:
\[
y_j \cdot x_i = \frac{\partial x_i}{\partial x_j}.
\]

Definition

The set of elements annihilated by the action of \(F \) is denoted \(F^{-1} \) and called the (Macaulay) inverse system associated to the ideal \(F \).
Linear forms come into play

Emsalem and Iarrobino proved that there is a close connection between ideals generated by powers of linear forms and ideals of fat points.

Theorem (Emsalem and Iarrobino)

Let F be an ideal of fatpoints:

$$F = \mathcal{P}_1^{m_1} \cap \cdots \cap \mathcal{P}_n^{m_n} \subset R.$$
Linear forms come into play

Emsalem and Iarrobino proved that there is a close connection between ideals generated by powers of linear forms and ideals of fat points.

Theorem (Emsalem and Iarrobino)

Let F be an ideal of fat points:

$$F = \varphi_1^{m_1} \cap \cdots \cap \varphi_n^{m_n} \subset R.$$

Then

$$(F^{-1})_j = \begin{cases} S_j & \text{for } j < \max\{m_i\} \\ L_{p_1}^{j-m_1+1} S_{m_1-1} + \cdots + L_{p_n}^{j-m_n+1} S_{m_n-1} & \text{for } j \geq \max\{m_i\} \end{cases}$$

and

$$\dim_K(F^{-1})_j = \dim_K(R/F)_j.$$
Second tool - the syzygy bundle

Harima-Migliore-Nagel-Watanabe have introduced the syzygy bundle as a crucial tool in studying the WLP.

Definition

If \(I = \langle f_1, \ldots, f_n \rangle \) is \(\langle x_1, \ldots, x_r \rangle \)-primary, and \(\deg(f_i) = d_i \), then the **syzygy bundle** \(S(I) = \tilde{\text{Syz}}(I) \) is a rank \(n - 1 \) bundle defined via

\[
0 \rightarrow \text{Syz}(I) \xrightarrow{} \bigoplus_{i=1}^{n} S(-d_i)[f_1, \ldots, f_n] \xrightarrow{} S \rightarrow S/I \rightarrow 0.
\]

Most importantly, \(H^1(S(I)(j)) = A_j \).
The long exact sequence in cohomology given by the restriction of the syzygy bundle to a hyperplane L defined by the linear form l yields:

$$
0 \rightarrow H^0(S(I)(j)) \rightarrow H^0(S(I)(j + 1)) \rightarrow H^0(S(I)|_L(j + 1))
$$

$$
\rightarrow A_j \xrightarrow{\cdot l} A_{j+1} \rightarrow H^1(S(I)|_L(j + 1))
$$

$$
\rightarrow H^2(S(I)(j)) \rightarrow \cdots
$$
Consider the fat points ideal \(F = \mathcal{O}_{1}^{m_1} \cap \cdots \cap \mathcal{O}_{n}^{m_n} \subset R \).

On the blowup \(X \) of \(\mathbb{P}^{r-1} \) at the points \(p_1, \ldots, p_n \), let

- \(E_i \) be the class of the exceptional divisor over the point \(p_i \)
- \(E_0 \) be the pullback of a hyperplane on \(\mathbb{P}^{r-1} \)

The divisor

\[
D_j = jE_0 - \sum_{i=1}^{n} (j - m_i + 1)E_i.
\]

describes the global sections of the syzygy bundle

\[
h^0(\mathcal{S}(I)(j)) = h^1(D_j)
\]
Definition

A linear system of degree d through a set of fat points \wp_1, \ldots, \wp_n with multiplicities m_1, \ldots, m_n in \mathbb{P}^2 is **special** if its dimension exceeds the expected dimension $(\frac{d+2}{2}) - \sum_{i=1}^{n} \left(\frac{m_i+1}{2} \right) - 1$.

- E.g. The linear system of quartics through 5 double points has negative expected dimension, but its actual dimension is 1.

- By Riemann-Roch, the space of global sections (or H^0 cohomology) is larger than expected iff the H^1 cohomology $\neq 0$.

Definition

We say $D = dE_0 - \sum_{i=1}^{n} m_iE_i$ is **special** if $h^0(D)$ and $h^1(D)$ are positive.
Motivating Example revisited

Let \(I = (\ell_1^3, \ell_2^3, \ell_3^3, \ell_4^3, \ell_5^3) \subset S = \mathbb{K}[x_1, x_2, x_3, x_4] \) and let \(A = S/I \).

The Hilbert function of \(A \) is:

\[
\begin{array}{cccccccc}
 j & 0 & 1 & 2 & 3 & 4 & 5 & 6 & \ldots \\
\dim_{\mathbb{K}} A_j & 1 & 4 & 10 & 15 & 15 & 6 & 0 & \ldots \\
\end{array}
\]
Motivating Example revisited

Let $I = (\ell_1^3, \ell_2^3, \ell_3^3, \ell_4^3, \ell_5^3) \subset S = \mathbb{K}[x_1, x_2, x_3, x_4]$ and let $A = S/I$.

The Hilbert function of A is:

<table>
<thead>
<tr>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>dim$_{\mathbb{K}} A_j$</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>6</td>
<td>0</td>
<td>...</td>
</tr>
</tbody>
</table>

\[
0 \rightarrow H^0(S(I)(3)) \rightarrow H^0(S(I)(4)) \rightarrow H^0(S(I)|_L(4)) \rightarrow A_3 \xrightarrow{\cdot \ell} A_4 \rightarrow H^1(S(I)|_L(4)) \rightarrow H^2(S(I)(3)) \rightarrow \cdots
\]
Motivating Example revisited

Let $I = (\ell_1^3, \ell_2^3, \ell_3^3, \ell_4^3, \ell_5^3) \subset S = \mathbb{K}[x_1, x_2, x_3, x_4]$ and let $A = S/I$.

The Hilbert function of A is:

<table>
<thead>
<tr>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>dim$_{\mathbb{K}} A_j$</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>6</td>
<td>0</td>
<td>...</td>
</tr>
</tbody>
</table>

\[0 \longrightarrow H^0(S(I)(3)) \longrightarrow H^0(S(I)(4)) \longrightarrow H^0(S(I)|_L(4)) \longrightarrow \]

\[H^0(S(I)(3)) \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \]

\[A_3 \quad \ell \quad A_4 \]

\[H^0(S(I)|_L(4)) \quad H^1(S(I)|_L(4)) \]

\[H^1(S(I)(3)) \longrightarrow \ldots \]
Special divisors and (-1)-curves in \mathbb{P}^2

Conjecture (Segre-Harbourne-Gimigliano-Hirschowitz SHGH)

If $D = dE_0 - \sum_{i=1}^{n} m_i E_i$ is a special divisor on a blowup of \mathbb{P}^2, then there exists a (-1)-curve E with $E \cdot D \leq -2$. ((-1)-curve means $E \cdot E = -1$)

- This conjecture is known to be true for $n \leq 8$ points.
Special divisors and \((-1)\)-curves in \(\mathbb{P}^2\)

Conjecture (Segre-Harbourne-Gimigliano-Hirschowitz SHGH)

If \(D = dE_0 - \sum_{i=1}^{n} m_i E_i\) is a special divisor on a blowup of \(\mathbb{P}^2\), then there exists a \((-1)\)-curve \(E\) with \(E \cdot D \leq -2\). \((-1)\)-curve means \(E \cdot E = -1\)

- This conjecture is known to be true for \(n \leq 8\) points.

Theorem (S.)

If \(E = dE_0 - \sum_{i=1}^{8} m_i E_i\) is the divisor of a \((-1)\)-curve on a blowup of \(\mathbb{P}^2\) at \(n \leq 8\) points, then the coefficients are given by

- \(d = 0, m_i = (-1, 0, 0, 0, 0, 0, 0, 0)\)
- \(d = 1, m_i = (0, 0, 0, 0, 0, 0, 1, 1)\)
- \(d = 2, m_i = (0, 0, 0, 1, 1, 1, 1, 1)\)
- \(d = 3, m_i = (0, 1, 1, 1, 1, 1, 1, 2)\)
- \(d = 4, m_i = (1, 1, 1, 1, 1, 2, 2, 2)\)
- \(d = 5, m_i = (1, 1, 2, 2, 2, 2, 2, 2)\)
- \(d = 6, m_i = (2, 2, 2, 2, 2, 2, 2, 3)\)
Main results

Set $D_j = jE_0 - \sum_{i=1}^{n} (t + j - 1)E_i$. Imposing that $D_j \cdot E \leq -2$, we obtain:

Theorem (Harbourne - Schenck- S.)

Let $I = \langle l_1^t, \ldots, l_n^t \rangle \subseteq \mathbb{K}[x_1, x_2, x_3, x_4] = S$ with $l_i \in S_1$ generic. If $n \in \{5, 6, 7, 8\}$, then WLP fails, respectively, for $t \geq \{3, 27, 140, 704\}$.
Set $D_j = jE_0 - \sum_{i=1}^{n} (t + j - 1)E_i$. Imposing that $D_j \cdot E \leq -2$, we obtain:

Theorem (Harbourne - Schenck- S.)

Let $I = \langle l_1^t, \ldots, l_n^t \rangle \subseteq \mathbb{K}[x_1, x_2, x_3, x_4] = S$ with $l_i \in S_1$ generic. If $n \in \{5, 6, 7, 8\}$, then WLP fails, respectively, for $t \geq \{3, 27, 140, 704\}$.

Conjecture (Harbourne - Schenck- S.)

For $I = \langle l_1^t, \ldots, l_n^t \rangle \subseteq \mathbb{K}[x_1, \ldots, x_r] = S$ with $l_i \in S_1$ generic and $n \geq r + 1 \geq 5$, WLP fails for all $t \gg 0$.