Oscillation of a Family of g-Difference Equations
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ABSTRACT. We obtain the complete classification of oscillation and nonoscil-
lation for the g-difference equation
b(=1)"
tC
where t = ¢" € T = ¢"°, ¢ > 1, ¢,b € R. In particular we prove that
this g-difference equation is nonoscillatory, if ¢ > 2 and is oscillatory,
if ¢ < 2. In the critical case ¢ = 2 we show that it is oscillatory, if
|b|] > Q(TI_I), and is nonoscillatory, if |b| < ﬁ.
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22 (t) + z(qt) =0, b#0,

1. Introduction

Let T be a time scale (i.e., a closed nonempty subset of R) with sup T =
oo. Consider the second order dynamic equation on time scale

(1.1) 222 (t) +p(t)a () = 0,

where o is the jump operator and f7 = f o o (composition of f with o), p
is right-dense continuous functions on T and

00 t
/ p(t)At:= lim [ p(s)As  exists (finite).
to t—o0 to

When T = R the dynamic equation (1.1) is the differential equation

(1.2) 2" +p(t)z =0,
1
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and when T = Z the dynamic equation (1.1) is the difference equation
(1.3) A%z(t) + p(t)z°(t) = 0.

When T = ¢"°, ¢ > 1, the dynamic equations (1.1) are called g-difference

equations, which have important applications in quantum theory [8]. Our

main results are for a family of ¢-difference equations. For T = R, in [10]

and [4], Willett and Wong proved, respectively, the following theorems.
Theorem A.(Willett-Wong, [10], [4]) Suppose that

for large t, where P(t) = [ P?(s)Qp(s,t)ds, Qp(s,t) = exp (2 [ P(7)dr).
Then the differential equation (1.2) is nonoscillatory.
Theorem B.(Willett-Wong, [10], [4]) If P(t) # 0 satisfies

/too P2(5)Qp(s, t)ds > - P,

for some € > 0 and large ¢. Then the differential equation (1.2) is oscillatory.
As applications of Theorems A and B, Willett [10] considered the very
sensitive differential equation

,  usinvt
tn
for |£| # %, w # 0,v # 0,n constants and proved that (1.4) is nonoscilla-

(1.4) x=0

tory, if n > 1 and is oscillatory, if n < 1. When 1 =1, (1.4) is oscillatory, if
|£] > %, and is nonoscillatory, if [£] < %

Wong proved the following very nice result. ~

Theorem C.(Wong, [4]) If there exists a functions B(t) such that

/t T1P(s) + B(s)2Qp(s,t)ds < B(1),

for large ¢, then the differential equation (1.2) is nonoscillatory.
As applications of Theorem C, Wong proved that the equation (1.4) is
1

i Bl = 1
nonoscillatory, for || = 7

In [1],[2], we extended Theorems A, B, and C to the time scale case using
a so-called ‘second-level Riccati equation’ (see [3] for the discrete case) or
what Wong refers to as a new Riccati integral equation in the continuous
case. Using this approach, one is able to handle various critical cases. These
ideas are novel in treating the case when P(t) := [ p(s)ds is not of one
sign for large t.

A special case of results in [1] and [2], is that the difference equation
b(=1)"

nC

(1.5) A%z (n) +

z(n+1)=0, b#0,

where b, ¢ € R is nonoscillatory, if ¢ > 1 and is oscillatory, if ¢ < 1. Also if
¢ =1, then (1.5) is oscillatory, if |b| > 1 and is nonoscillatory, if || < 1.
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LEMMA 1.1. [2, Theorem 3.2] Assume that ftzop(t)At is convergent,
P(t) = [ p(s)As, 1+ p(t)P(t) > 0, for large t. If [° P%(t) x iPP(E%’TT))At

18 convergent and

oo 2 s
(1.6) P(t) ::/t eﬁi!)(s,t)l_]/j(%As

satisfies

(1.7) ip(t) >/tooe e (5,0) DL

for large t, then (1.1) is nonoscillatory.

2. Main Theorem

Our main concern in this paper is the g-difference equation

b(—1)"
tC
where t = ¢ € T = ¢, ¢ > 1, b, ¢ € R and our main result is the following
complete classification of (2.1). Since the graininess function for T = ¢"o
is unbounded, we can not use Theorem 4.1 in [2], when we consider the

oscillation of the g-difference equation (2.1).

(2.1) BB () + z(qt) =0, b#0,

THEOREM 2.1. The q-difference equation (2.1) is nonoscillatory, if ¢ >
2, and is oscillatory, if ¢ < 2. If ¢ = 2, then (2.1) is oscillatory, if |b| >
ﬁ, and is nonoscillatory, if |b| < ﬁ.

PROOF. First consider the case ¢ > 2. Note that for t = ¢

e}

P(t) = / T pnAr= 3 pluld)
t =2k
b(g — 1)g* 2
¢ g—1)

= b 2R (g1 1 1)

Similarly, we have

¢ qg—1)

2k+1y _
Pg™) = —b @R+ (=1 1 1)

and hence in general
_, D a1 (=) (g - 1)

(2.2) P(t) = P(t")

qn(c—l)(qc—l + 1) tc—l(qc—l + 1)
Since ¢ > 2, we get that

A p(t)P() =l b e )
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which implies that for large ¢, =P are positively regressive.
By the definition of the exponential [5, Definition 2.30] we have for s > ¢

Int
o bg — 172(-1) i
erp(s,t) = exp/t mln (1:|: 21 5 g(1-9) AT

ply b(g — 1)%(~1)’
(2.3) = exp [Z In <1 + i(cq—2)(1)+(q1—)6)>] .

1=n q (

Note that In(1 + ) ~ +x, so when ¢ > 2, the two series

bl — (1)
24 Zl (1 e )

are absolutely convergent.
Using properties of the exponential [5, Theorem 2.36], we have

t
e op (s,1) = M.
TP e_p(s,t)

By (2.3), (2.4) and limy oo pu(t)P(t) = 0, given 0 < € < 1, there exists a
large N, so that when s = ¢ >t = ¢" > ¢V

(2.5) 1—6§€135P(S,t)w =

So from (2.2), we get that

s - [, P2(s) ) 2
P(t) —/t 22, (DT P 1+ / P
[ g =D <
< (1—|—e)b2q(q“_i_1);q(q—1)q 31

2(c=1) (5 — 1)3 2(c—1) n
(2.6) SR 7 E i C At L | [ a )} ,

(cT+1)2 @D g

for large t. It follows that

2e—1)(, _ 1\3 2(c—1) ntl
- 24 (¢-1)7° ¢ q
P(o(t)) < (1+¢€)b (¢ T+ 1)2 21 — ¢ [ )] ’
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So
> P(s)P(a(s))
| e 0T e
2
< +e)3b4 gD (q— 1)3 ' g2
N (qc Ly 1)2 q2(C_1) —q
© i+1 i
q q i
x Z |:q2(i+1)(c—1) ’ q2i(c—1)q (¢ — 1)]
- c— 2 L
@n = rot|Te - )T g | gm e
. (q671 + ]-)4 q2(c_1) — q 1 _ % )
q*le—

Similar to the proof of (2.6), we also have

(L—op* @ V(g-1° ¢ ¢ 1"
4 (qc—l + 1)2 q2(c—1) —q ) ’

for large t. Note that when ¢ > 2,

(2.8) %P(t) >

3n+1
(4n+2)(c—1)
: q —
q2n(c—1)

From (2.7), (2.8), we have that, for sufficiently large ¢,

o0 P(s)P(a(s)) 1-
/t e%(s,t)WAs< ZP(t).

By Lemma 1.1, equation (2.1) is nonoscillatory.
Next we consider the case ¢ = 2, that is we consider

(2.9) BB () + b(_tzl)n:n(qt) =0

where t = ¢" € T = ¢"°, ¢ > 1. Expanding out equation (2.9) we obtain
(2100 2(¢"™*) ~ g+ 1 —balg — *(~1)")z(¢" ") + qz(¢") = 0.
When b = ﬁ, we get from (2.10) when n = 2k is even z(¢**2) =

—qx(¢?%), which implies that (2.10) is oscillatory. Similarly, when b

_ﬁ, (2.10) is also oscillatory.

Let d, = ¢+ 1 —bg(q — 1)2(—1)" in equation (2.10). If we suppose that

(q+1)2, we have dg, < 0. From (2.10), we get for n = 2k

(2.11) (M%) + qz(q**) = doa ().

b >

which implies that (2.9) is oscillatory. Similarly, when b < —ﬁ, (2.10)

is also oscillatory.
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Therefore in the following, we can assume that |b| < T})Q, so we have

dp, > 0. Assume z(t) = x(¢") is a solution of (2.10) satisfying z(t) = z(q") #
0 for all large n. Then from (2.10), we get that

q  dprz(q"?) qz(q")

. =1.
dn+1 dn q$(qn+1) dnx(anrl)

Let y(n) = % and A :=

constant. We get

n+1dn = (q+1)2_b%q2(q_1)4 > 0 is a positive

1
9.12 Ay(n+1) + — = 1.
212 1)+
Letting y(n) = Z(;E::)l), we get the second order difference equation
(2.13) Az(n+2) — z(n+ 1) 4+ z(n) = 0.

The characteristic equation of (2. 13) is A2 — l)\ + % =0.
Whe 1— 4A

has complex roots )\ =re? )+ k:7r, k an integer. So (2.13) has an oscillatory

o] > - ZG—1) the characterlstlc equation of (2.13)

solution z(n) = r"sinnf. This means y(n) = Z(Z’z:)l) = rSi;(n";'el)e is an
n+1
oscillatory solution of (2.12). Noticing that d,, > 0 and y(n) = %,

we get that (2.10) has an oscillatory solution. Hence, we get that (2.10) is
oscillatory.

11_4§A > 0, that is |b| < J(g=1)> the characteristic equation of (2.13)

has a real root \ = 1Hv1=i4 V21A4A > 0. So (2.13) has a nonoscillatory solution

z(n) = A" > 0. This means y(n) = Z(Zrzz)l) = X > 0 is a nonoscillatory solu-

tion of (2.12). Noticing that d,, > 0 and y(n) = ;;"(Zgﬁ)), we get that (2.10)
has a nonoscillatory solution. Hence, we get that (2.10) is nonoscillatory.
Remark As in the case ¢ > 2, using Lemma 1.1, we can also prove

that (2.10) is nonoscillatory, when \b\ < q(q 7y but we can not use Theorem
Theorem 4.1 in [2] to prove the oscillation of (2.10) when [b] > -

1), since
the graininess function of ¢ is unbounded.

Finally we consider the ¢-difference equation for the case ¢ < 2.
b(—1)"
tC
where t =¢g" € T=¢",¢g>1,b#0, ¢ < 2.

To show that (2.14) is oscillatory, for all ¢ < 2, we need the following
useful comparison theorem [7].

(2.14) A2 (1) + z(qt) =0

THEOREM 2.2. Assume a € CL, a(t) > 1, u(t)a®(t) > 0 and a2 (t) <
0. Then (1.1) is oscillatory implies x> (t)+a(t)p(t)z(o(t)) = 0 is oscillatory
on [tg,o0).
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Letting by := q(gi)Q > we have by Theorem 2.1, that

1
q(g—1)’

A2 () £ by (_;)nx(qt) =0

is oscillatory. Let a(t) = At*, A > 0,0 < o < 1. We have a(t) > 1, for large
t and a®(t) > 0. Tt is easy to get that

a2 (1) = (6" — 1)@ —a) _
t2q(q — 1)?
Repeated applications of Theorem 2.2, gives us that

-1
A2 (1) + Btﬁbo( t2) z(qt) =0

is oscillatory, for all 3 > 0, B > 0. So the equation
_l)n
t2-6
is oscillatory, for all 3 > 0, B > 0. This means that the equation

BBt + Bbo( z(qt) =0

2B (t) + b(_;)nx(qt) =0

is oscillatory, for b # 0, ¢ < 2. O
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