
Oscillation of a Family of q-Difference Equations

Jia Baoguo, Lynn Erbe, and Allan Peterson
Department of Mathematics

University of Nebraska-Lincoln
Lincoln, NE 68588-0130, U.S.A.

lerbe2@math.unl.edu, apeterso1@math.unl.edu,
Jia Baoguo

School of Mathematics and Computer Science
Zhongshan University

Guangzhou, China, 510275
mcsjbg@mail.sysu.edu.cn

Abstract. We obtain the complete classification of oscillation and nonoscil-
lation for the q-difference equation

x∆∆(t) +
b(−1)n

tc
x(qt) = 0, b 6= 0,

where t = qn ∈ T = qN0 , q > 1, c, b ∈ R. In particular we prove that
this q-difference equation is nonoscillatory, if c > 2 and is oscillatory,
if c < 2. In the critical case c = 2 we show that it is oscillatory, if
|b| > 1

q(q−1)
, and is nonoscillatory, if |b| ≤ 1

q(q−1)
.
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1. Introduction

Let T be a time scale (i.e., a closed nonempty subset of R) with sup T =
∞. Consider the second order dynamic equation on time scale

(1.1) x∆∆(t) + p(t)xσ(t) = 0,

where σ is the jump operator and fσ = f ◦ σ (composition of f with σ), p
is right-dense continuous functions on T and∫ ∞

t0

p(t)∆t := lim
t→∞

∫ t

t0

p(s)∆s exists (finite).

When T = R the dynamic equation (1.1) is the differential equation

(1.2) x′′ + p(t)x = 0,
1
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and when T = Z the dynamic equation (1.1) is the difference equation

(1.3) ∆2x(t) + p(t)xσ(t) = 0.

When T = qN0 , q > 1, the dynamic equations (1.1) are called q-difference
equations, which have important applications in quantum theory [8]. Our
main results are for a family of q-difference equations. For T = R, in [10]
and [4], Willett and Wong proved, respectively, the following theorems.

Theorem A.(Willett-Wong, [10], [4]) Suppose that∫ ∞

t
P̄ 2(s)QP (s, t)ds ≤ 1

4
P̄ (t),

for large t, where P̄ (t) =
∫∞
t P 2(s)QP (s, t)ds, QP (s, t) = exp

(
2
∫ s
t P (τ)dτ

)
.

Then the differential equation (1.2) is nonoscillatory.
Theorem B.(Willett-Wong, [10], [4]) If P̄ (t) 6≡ 0 satisfies∫ ∞

t
P̄ 2(s)QP (s, t)ds ≥ 1 + ε

4
P̄ (t),

for some ε > 0 and large t. Then the differential equation (1.2) is oscillatory.
As applications of Theorems A and B, Willett [10] considered the very

sensitive differential equation

(1.4) x′′ +
µ sin νt

tη
x = 0

for |µν | 6=
1√
2
, µ 6= 0, ν 6= 0, η constants and proved that (1.4) is nonoscilla-

tory, if η > 1 and is oscillatory, if η < 1. When η = 1, (1.4) is oscillatory, if
|µν | >

1√
2
, and is nonoscillatory, if |µν | <

1√
2
.

Wong proved the following very nice result.
Theorem C.(Wong, [4]) If there exists a functions B̄(t) such that∫ ∞

t
[P̄ (s) + B̄(s)]2QP (s, t)ds ≤ B̄(t),

for large t, then the differential equation (1.2) is nonoscillatory.
As applications of Theorem C, Wong proved that the equation (1.4) is

nonoscillatory, for |µν | =
1√
2
.

In [1],[2], we extended Theorems A, B, and C to the time scale case using
a so-called ‘second-level Riccati equation’ (see [3] for the discrete case) or
what Wong refers to as a new Riccati integral equation in the continuous
case. Using this approach, one is able to handle various critical cases. These
ideas are novel in treating the case when P (t) :=

∫∞
t p(s)ds is not of one

sign for large t.
A special case of results in [1] and [2], is that the difference equation

(1.5) ∆2x(n) +
b(−1)n

nc
x(n + 1) = 0, b 6= 0,

where b, c ∈ R is nonoscillatory, if c > 1 and is oscillatory, if c < 1. Also if
c = 1, then (1.5) is oscillatory, if |b| > 1 and is nonoscillatory, if |b| ≤ 1.
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Lemma 1.1. [2, Theorem 3.2] Assume that
∫∞
t0

p(t)∆t is convergent,

P (t) =
∫∞
t p(s)∆s, 1 ± µ(t)P (t) > 0, for large t. If

∫∞
T P 2(t) × eP (t,T )

e−P (t,T )∆t

is convergent and

(1.6) P̄ (t) :=
∫ ∞

t
e 2P

1−µP
(s, t)

P 2(s)
1− µ(s)P (s)

∆s

satisfies

(1.7)
1
4
P̄ (t) ≥

∫ ∞

t
e 2P

1−µP
(s, t)

P̄ (s)P̄ (σ(s))
1− µ(s)P (s)

∆s.

for large t, then (1.1) is nonoscillatory.

2. Main Theorem

Our main concern in this paper is the q-difference equation

(2.1) x∆∆(t) +
b(−1)n

tc
x(qt) = 0, b 6= 0,

where t = qn ∈ T = qN0 , q > 1, b, c ∈ R and our main result is the following
complete classification of (2.1). Since the graininess function for T = qN0

is unbounded, we can not use Theorem 4.1 in [2], when we consider the
oscillation of the q-difference equation (2.1).

Theorem 2.1. The q-difference equation (2.1) is nonoscillatory, if c >
2, and is oscillatory, if c < 2. If c = 2, then (2.1) is oscillatory, if |b| >

1
q(q−1) , and is nonoscillatory, if |b| ≤ 1

q(q−1) .

Proof. First consider the case c > 2. Note that for t = q2k

P (t) =
∫ ∞

t
p(τ)∆τ =

∞∑
j=2k

p(qj)µ(qj)

=
b(q − 1)q2k

q2kc

[
1− q

qc
+

q2

q2c
− · · ·

]
= b

qc−1(q − 1)
q2k(c−1)(qc−1 + 1)

.

Similarly, we have

P (q2k+1) = −b
qc−1(q − 1)

q(2k+1)(c−1)(qc−1 + 1)
and hence in general

(2.2) P (t) = P (tn) = b
(−1)nqc−1(q − 1)
qn(c−1)(qc−1 + 1)

= b
(−1)nqc−1(q − 1)
tc−1(qc−1 + 1)

.

Since c > 2, we get that

lim
t→∞

µ(t)P (t) = lim
n→∞

b
(−1)nqc−1(q − 1)2

tc−2(qc−1 + 1)
= 0,
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which implies that for large t, ±P are positively regressive.
By the definition of the exponential [5, Definition 2.30] we have for s ≥ t

e±P (s, t) = exp
∫ s

t

1
τ(q − 1)

ln

(
1± b(q − 1)2(−1)

ln τ
ln q

τ c−2(1 + q(1−c))

)
∆τ

= exp

[
m−1∑
i=n

ln
(

1± b(q − 1)2(−1)i

qi(c−2)(1 + q1−c)

)]
.(2.3)

Note that ln(1± x) ∼ ±x, so when c > 2, the two series

(2.4)
∞∑

i=n

ln
(

1± b(q − 1)2(−1)i

qi(c−2)(1 + q(1−c))

)
.

are absolutely convergent.
Using properties of the exponential [5, Theorem 2.36], we have

e 2P
1−µP

(s, t) =
eP (s, t)
e−P (s, t)

.

By (2.3), (2.4) and limt→∞ µ(t)P (t) = 0, given 0 < ε < 1, there exists a
large N , so that when s = qm ≥ t = qn ≥ qN ,

1− ε ≤ e 2P
1−µP

(s, t)
1

1− µ(s)P (s)
≤ 1 + ε.(2.5)

So from (2.2), we get that

P̄ (t) =
∫ ∞

t
e 2P

1−µP
(s, t)

P 2(s)
1− µ(s)P (s)

∆s ≤ (1 + ε)
∫ ∞

t
P 2(s)∆s

≤ (1 + ε)b2 [qc−1(q − 1)]2

(qc−1 + 1)2

∞∑
i=n

qi(q − 1)
1

q2i(c−1)

= (1 + ε)b2 q2(c−1)(q − 1)3

(qc−1 + 1)2
· q2(c−1)

q2(c−1) − q

[
q

q2(c−1)

]n

,(2.6)

for large t. It follows that

P̄ (σ(t)) ≤ (1 + ε)b2 q2(c−1)(q − 1)3

(qc−1 + 1)2
· q2(c−1)

q2(c−1) − q

[
q

q2(c−1)

]n+1

.



Q-DIFFERENCE EQUATIONS 5

So ∫ ∞

t
e 2P

1−µP
(s, t)

P̄ (s)P̄ (σ(s))
1− µ(s)P (s)

∆s

≤ (1 + ε)3b4

[
q2(c−1)(q − 1)3

(qc−1 + 1)2
· q2(c−1)

q2(c−1) − q

]2

×
∞∑

i=n

[
qi+1

q2(i+1)(c−1)
· qi

q2i(c−1)
qi(q − 1)

]

= (1 + ε)3b4

[
q4(c−1)(q − 1)7

(qc−1 + 1)4

]
·

[
q2(c−1)

q2(c−1) − q

]2 q3n+1

q(4n+2)(c−1)

1− q3

q4(c−1)

.(2.7)

Similar to the proof of (2.6), we also have

(2.8)
1
4
P̄ (t) >

(1− ε)b2

4
· q2(c−1)(q − 1)3

(qc−1 + 1)2
· q2(c−1)

q2(c−1) − q

[
q

q2(c−1)

]n

,

for large t. Note that when c > 2,

lim
n→∞

q3n+1

q(4n+2)(c−1)

qn

q2n(c−1)

= 0.

From (2.7), (2.8), we have that, for sufficiently large t,∫ ∞

t
e 2P

1−µP
(s, t)

P̄ (s)P̄ (σ(s))
1− µ(s)P (s)

∆s <
1
4
P̄ (t).

By Lemma 1.1, equation (2.1) is nonoscillatory.
Next we consider the case c = 2, that is we consider

(2.9) x∆∆(t) +
b(−1)n

t2
x(qt) = 0

where t = qn ∈ T = qN0 , q > 1. Expanding out equation (2.9) we obtain

(2.10) x(qn+2)− [q + 1− bq(q − 1)2(−1)n]x(qn+1) + qx(qn) = 0.

When b = q+1
q(q−1)2

, we get from (2.10) when n = 2k is even x(q2k+2) =
−qx(q2k), which implies that (2.10) is oscillatory. Similarly, when b =
− q+1

q(q−1)2
, (2.10) is also oscillatory.

Let dn = q + 1− bq(q − 1)2(−1)n in equation (2.10). If we suppose that
b > q+1

q(q−1)2
, we have d2k < 0. From (2.10), we get for n = 2k

(2.11) x(q2k+2) + qx(q2k) = d2kx(q2k+1).

which implies that (2.9) is oscillatory. Similarly, when b < − q+1
q(q−1)2

, (2.10)
is also oscillatory.
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Therefore in the following, we can assume that |b| < q+1
q(q−1)2

, so we have
dn > 0. Assume x(t) = x(qn) is a solution of (2.10) satisfying x(t) = x(qn) 6=
0 for all large n. Then from (2.10), we get that

q

dn+1dn
· dn+1x(qn+2)

qx(qn+1)
+

qx(qn)
dnx(qn+1)

= 1.

Let y(n) := dnx(qn+1)
qx(qn) and A := q

dn+1dn
= q

(q+1)2−b2q2(q−1)4
> 0 is a positive

constant. We get

(2.12) Ay(n + 1) +
1

y(n)
= 1.

Letting y(n) = z(n+1)
z(n) , we get the second order difference equation

(2.13) Az(n + 2)− z(n + 1) + z(n) = 0.

The characteristic equation of (2.13) is λ2 − 1
Aλ + 1

A = 0.
When 1−4A

A2 < 0, that is |b| > 1
q(q−1) , the characteristic equation of (2.13)

has complex roots λ = reiθ, θ 6= kπ, k an integer. So (2.13) has an oscillatory
solution z(n) = rn sinnθ. This means y(n) = z(n+1)

z(n) = r sin(n+1)θ
sin nθ is an

oscillatory solution of (2.12). Noticing that dn > 0 and y(n) = dnx(qn+1)
qx(qn) ,

we get that (2.10) has an oscillatory solution. Hence, we get that (2.10) is
oscillatory.

When 1−4A
A2 ≥ 0, that is |b| ≤ 1

q(q−1) , the characteristic equation of (2.13)

has a real root λ = 1+
√

1−4A
2A > 0. So (2.13) has a nonoscillatory solution

z(n) = λn > 0. This means y(n) = z(n+1)
z(n) = λ > 0 is a nonoscillatory solu-

tion of (2.12). Noticing that dn > 0 and y(n) = dnx(qn)
qx(qn+1)

, we get that (2.10)
has a nonoscillatory solution. Hence, we get that (2.10) is nonoscillatory.

Remark As in the case c > 2, using Lemma 1.1, we can also prove
that (2.10) is nonoscillatory, when |b| ≤ 1

q(q−1) , but we can not use Theorem
Theorem 4.1 in [2] to prove the oscillation of (2.10) when |b| > 1

q(q−1) , since
the graininess function of qN0 is unbounded.

Finally we consider the q-difference equation for the case c < 2.

(2.14) x∆∆(t) +
b(−1)n

tc
x(qt) = 0

where t = qn ∈ T = qN0 , q > 1, b 6= 0, c < 2.
To show that (2.14) is oscillatory, for all c < 2, we need the following

useful comparison theorem [7].

Theorem 2.2. Assume a ∈ C1
rd, a(t) ≥ 1, µ(t)a∆(t) ≥ 0 and a∆∆(t) ≤

0. Then (1.1) is oscillatory implies x∆∆(t)+a(t)p(t)x(σ(t)) = 0 is oscillatory
on [t0,∞).
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Letting b0 := q+1
q(q−1)2

> 1
q(q−1) , we have by Theorem 2.1, that

x∆∆(t)± b0
(−1)n

t2
x(qt) = 0

is oscillatory. Let a(t) = Atα, A > 0, 0 < α < 1. We have a(t) ≥ 1, for large
t and a∆(t) ≥ 0. It is easy to get that

a∆∆(t) =
Atα(qα − 1)(qα − q)

t2q(q − 1)2
≤ 0.

Repeated applications of Theorem 2.2, gives us that

x∆∆(t)±Btβb0
(−1)n

t2
x(qt) = 0

is oscillatory, for all β > 0, B > 0. So the equation

x∆∆(t)±Bb0
(−1)n

t2−β
x(qt) = 0

is oscillatory, for all β > 0, B > 0. This means that the equation

x∆∆(t) + b
(−1)n

tc
x(qt) = 0

is oscillatory, for b 6= 0, c < 2. �
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