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Abstract. We obtain some oscillation criteria for solutions to the nonlinear dy-

namic equation

x∆∆ + q(t)x∆
σ

+ p(t)(f ◦ xσ) = 0,

on time scales. In particular, no explicit sign assumptions are made with respect to

the coefficients p(t), q(t). We illustrate the results by several examples, including a

superlinear Emden–Fowler dynamic equation.

1. Introduction

Consider the second order nonlinear dynamic equation

(1.1) x∆∆ + q(t)x∆σ

+ p(t)(f ◦ xσ) = 0,

where p and q are real–valued, right–dense continuous functions on a time scale

T ⊂ R, with sup T = ∞. We also assume throughout that f : R → R is continuously

differentiable and satisfies

(1.2) f ′(x) > 0 and xf(x) > 0 for x 6= 0.

In contrast to most results dealing with second order nonlinear oscillation, we do not

make any explicit sign assumptions on p and q.

For completeness, we recall the following concepts related to the notion of time

scales. A time scale T is an arbitrary nonempty closed subset of the real numbers

R and, since oscillation of solutions is our primary concern, we make the blanket

assumption that sup T = ∞. We assume throughout that T has the topology that it

inherits from the standard topology on the real numbers R. The forward and backward

jump operators are defined by:

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T, s < t},

where inf ∅ := sup T and sup ∅ = inf T, where ∅ denotes the empty set. A point t ∈ T,

t > inf T, is said to be left–dense if ρ(t) = t, right–dense if t < sup T and σ(t) = t,

left–scattered if ρ(t) < t and right–scattered if σ(t) > t. A function g : T → R is said

to be right–dense continuous (rd–continuous) provided g is continuous at right–dense

points and at left–dense points in T, left hand limits exist and are finite. The set of
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all such rd–continuous functions is denoted by Crd(T). The graininess function µ for

a time scale T is defined by µ(t) := σ(t) − t, and for any function f : T → R the

notation fσ(t) denotes f(σ(t)).

The assumption (1.2) allows f to be of superlinear or sublinear growth, say

f(x) = xγ , γ > 0 (quotient of odd positive integers).(1.3)

In several papers ([4], [13]), (1.1) has been studied with p > 0 and assuming the

nonlinearity has the property
∣

∣

∣

∣

f(x)

x

∣

∣

∣

∣

≥ K for x 6= 0.(1.4)

This essentially says that the equation is, in some sense, not too far from being

linear. In the papers [10] and [11] (see also [8]) it was shown that one may relate

oscillation and boundedness of solutions of the nonlinear equation (1.1) to a related

linear equation, which in the case q(t) ≡ 0 reduces to

x∆∆ + λp(t)xσ = 0,(1.5)

where λ > 0, for which many oscillation criteria are known (see e.g. [3], [4], [7],

and [12]). In particular, analogues of the results due to Erbe [6] and others for the

continuous case T = R were extended. However, in the papers [10] and [11] it was

assumed that the nonlinearity has the property

f ′(x) ≥ f(x)

x
for x 6= 0.(1.6)

We shall show by means of an example that this condition can be relaxed.

Throughout this paper, we shall restrict attention to solutions of (1.1) which exist

on some interval of the form [Tx,∞), where Tx ∈ T may depend on the particular

solution. In Section 2 we present some preliminary results on the chain rule, inte-

gration by parts, and an auxiliary lemma. Section 3 contains the main results on

oscillation and several examples are given in Section 4 as well as a comparison with

some previous results.

2. Preliminary Results

On an arbitrary time scale T, the usual chain rule from calculus is no longer valid

(see Bohner and Peterson [3], pp 31). One form of the extended chain rule, due to S.

Keller [15] and generalized to measure chains by C. Pötzsche [17], is as follows. (See

also Bohner and Peterson [3], pp 32.)

Lemma 2.1. Assume g : T → R is delta differentiable on T. Assume further that

f : R → R is continuously differentiable. Then f ◦ g : T → R is delta differentiable
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and satisfies

(f ◦ g)∆(t) =

{
∫ 1

0

f ′(g(t) + hµ(t)g∆(t))dh

}

g∆(t).(2.1)

We shall also need the following integration by parts formula (cf. [3, Theorem

1.77]), which is a simple consequence of the product rule and which we formulate as

follows:

Lemma 2.2. Let a, b ∈ T and assume f∆, g∆ ∈ Crd. Then

∫ b

a

f(σ(t))g∆(t)∆t = [f(t)g(t)]ba −
∫ b

a

f∆(t)g(t)∆t.(2.2)

We also introduce the following condition:

We say that a function g : T → R satisfies condition (A) if the following

condition holds:

lim inf
t→∞

∫ t

T

g(s)∆s ≥ 0 and 6≡ 0(2.3)

for all large T . It can be shown that (2.3) implies either
∫

∞

a
g(s)∆s = +∞ or that

∫

∞

T

g(s)∆s = lim
t→∞

∫ t

T

g(s)∆s

exists and satisfies
∫

∞

T
g(s)∆s ≥ 0 for all large T .

We state the following lemma which gives another simple consequence of condition

(A).

Lemma 2.3. Suppose that g satisfies condition (A). Then given any T0 there exists

T1 ≥ T0 so that

∫ t

T1

g(s)∆s ≥ 0 for all t ≥ T1.(2.4)

Proof. Indeed, if no such T1 ≥ T0 exists, then for any T > T0 fixed but arbitrary, we

define

T1 = T1(T ) := sup{t > T :

∫ t

T

q(s)∆s < 0}.

If T1 = ∞, then choosing tn → ∞ such that
∫ tn

T
q(s)∆s < 0 for all n, we obtain a

contradiction to (2.3). Hence, we must have T1 < ∞ which implies
∫ t

T1
q(s)∆s ≥ 0

for all t ≥ T1. �
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3. Main Results

We recall that a solution of equation (1.1) is said to be oscillatory on [a,∞) in

case it is neither eventually positive nor eventually negative. Otherwise, the solution

is said to be nonoscillatory. Equation (1.1) is said to be oscillatory in case all of its

solutions are oscillatory. We have the following lemma which describes the behavior

of a nonoscillatory solution of (1.1) for the case when (2.3) holds. In the statement

of the lemma we let the function r(t) (see [3]) be given in terms of the generalized

exponential function by r(t) := eq(t, t0). If q ∈ R+ (i.e., q is positively regressive),

it follows that r(t) > 0 for all t ≥ t0 and furthermore, may be characterized as the

unique solution of the IVP x∆ = q(t)x, x(t0) = 1.)

Note that after multiplying by r(t), (1.1) may be written as

(r(t)x∆)∆ + p1(t)(f ◦ xσ) = 0,(3.1)

where p1(t) := r(t)p(t).

Lemma 3.1. Let x be a nonoscillatory solution of (1.1) and assume that p1(t) sat-

isfies condition (A) , (1.2) holds, q ∈ R+, and
∫

∞

T

1

r(t)
∆t = ∞.

Then there exists T1 ≥ T such that

x(t)x∆(t) > 0 for t ≥ T1.

Proof. Suppose that x is a nonoscillatory solution of (1.1) and without loss of gener-

ality, assume x(t) > 0 for t ≥ T0. Since p1(t) satisfies condition (A), we may assume

by Lemma 2.3 that T1 ≥ T0 is sufficiently large so that
∫ t

T1

p1(s)∆s ≥ 0 for all t ≥ T1.(3.2)

Let us assume, for the sake of contradiction, that x∆(t) is not strictly positive for all

large t. First consider the case when x∆(t) < 0 for all large t. Then without loss of

generality x∆(t) < 0 for all t ≥ T1 ≥ T0. An integration of (3.1) for t > T1 gives

r(t)x∆(t) +

∫ t

T1

p1(s)f(xσ(s))∆s = r(T1)x
∆(T1) < 0.(3.3)

Now by the integration by parts formula (2.2) we have

∫ t

T1

p1(s)f(xσ(s))∆s = f(x(t))

∫ t

T1

p1(s)∆s(3.4)

−
∫ t

T1

(f ◦ x)∆(s)

∫ s

T1

p1(u)∆u∆s.
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By the chain rule (2.1) we have (with g(t) = x(t))

(f ◦ x)∆(t) =

{
∫ 1

0

f ′(x(t) + hµ(t)x∆(t))dh

}

x∆(t) ≤ 0,

since f ′(u) > 0 for all u 6= 0 and x∆(t) < 0. Hence, it follows that
∫ t

T1

(f ◦ x)∆(s)

∫ s

T1

p1(u)∆u∆s ≤ 0(3.5)

and so from (3.4) we have
∫ t

T1

p1(s)f(xσ(s))∆s ≥ f(x(t))

∫ t

T1

p1(s)∆s ≥ 0.(3.6)

Consequently, from (3.3) we have

r(t)x∆(t) ≤ r(T1)x
∆(T1) < 0, t ≥ T1,(3.7)

and now dividing by r(t) and integrating (3.7) yields

x(t) ≤ x(T1) + r(T1)x
∆(T1)

∫ t

T1

1

r(s)
∆s → −∞(3.8)

which is a contradiction. Hence x∆(t) is not negative for all large t and since we are

assuming x∆(t) is not positive for all large t, it follows that x∆(t) must change sign

infinitely often.

Make the “Riccati–like” substitution

w(t) := −r(t)x∆(t)

f(x(t))
, t ≥ T0.(3.9)

We may suppose that T1 > T0 is sufficiently large so that

lim inf
t→∞

∫ t

T1

p1(s)∆s ≥ 0

holds and is such that w(T1) > 0 (i.e., x∆(T1) < 0).

Differentiating w and using the chain rule (2.1) gives

w∆(t) = p1(t) + w2(t)
f(x(t))

r(t)f(xσ(t))

{
∫ 1

0

f ′(x(t) + hµ(t)x∆(t))dh

}

≥ p1(t), t ≥ T1,

and this yields

w(t) ≥ w(T1) +

∫ t

T1

p1(s)∆s, t ≥ T1.(3.10)

Now taking the lim inf of both sides of (3.10) we have since p1(t) satisfies condition

(A), that

lim inf
t→∞

w(t) ≥ w(T1) > 0,

which implies that x∆(t) < 0 for all large t, which is a contradiction to the assumption

that x∆(t) changes sign infinitely often. �
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We may now prove our first oscillation result for (1.1).

Theorem 3.2. Assume that p1(t) satisfies condition (A) , (1.2) holds, q ∈ R+,

and
∫

∞

T

1

r(t)
∆t =

∫

∞

T

p1(s)∆s = ∞.

Then all solutions of (1.1) are oscillatory.

Proof. Let us suppose that x is a solution of (1.1) and to be specific, suppose that

x(t) > 0 for large t, since the other case is similar. In view of the Lemma 2.3, we may

then suppose also that x∆(t) > 0, for t ≥ T ≥ T0. Multiplying (3.1) by

1

f(x(σ(t)))

and integrating by parts (Lemma 2.2) for t ≥ T gives

r(t)x∆(t)

f(x(t))
−

∫ t

T

r(s)x∆(s)

(

1

f ◦ x

)∆

(s)∆s(3.11)

+

∫ t

T

p1(s)∆s =
r(T )x∆(T )

f(x(T ))

for t ≥ T . We note from the chain rule (Lemma 2.1) and quotient rule that

∫ t

T

r(s)x∆(s)

(

1

f ◦ x

)∆

(s)∆s = −
∫ t

T

r(s)x∆(s)
(f ◦ x)∆(s)

f(x(s))f(x(σ(s)))
∆s(3.12)

= −
∫ t

T

r(s)x∆(s)

{
∫ 1

0

f ′(x(s) + hµ(s)x∆(s))dh

}

x∆(s)

f(x(s))f(x(σ(s)))
∆s

≤ 0

since f ′(x) > 0, x 6= 0. Consequently, from (3.11) and (3.12) we have

r(t)x∆(t)

(f ◦ x)(t)
+

∫ t

T

p1(s)∆s ≤ r(T )x∆(T )

(f ◦ x)(T )
(3.13)

But now the left side of (3.13) is unbounded and the right side is bounded. This

contradiction proves the theorem. �

Theorem 3.2 extends an old result of Fite [14] for the linear second order differ-

ential equation x′′ + p(t)x = 0 which says that all solutions oscillate if
∫

∞

p(t)dt = ∞.

This result was subsequently extended by a number of authors to the nonlinear ordi-

nary differential equation and to certain nonlinear dynamic equations on time scales.

In the case T = R, Waltman [18] obtained the Fite result and in the time scales case,

this result (the Leighton–Wintner result [16], [19]) may be found in [2] (for the case

p(t) > 0) and in [10] and [11] with no explicit sign assumption on p(t).
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Our next oscillation result extends a result of Atkinson [1] for the nonlinear second

order differential equation.

Theorem 3.3. Assume that p1(t) satisfies condition (A), (1.2) holds, q(t) ≥ 0 (so

that q ∈ R+) and that
∫

∞

T

1

r(t)
∆t = ∞.

Suppose also that

lim sup
t→∞

1

r(t)

∫ t

T

σ(s)p1(s)∆s = +∞,

and that the following nonlinearity condition holds:
∫

±∞

±1

du

f(u)
< ∞.(3.14)

Then all solutions of (1.1) are oscillatory.

Proof. We may assume, without loss of generality, (as in the proof of Theorem 3.2),

that x(t) is a solution of (1.1) with x(t) > 0, and x∆(t) > 0 for all t ≥ T > 0. We

define

H(t) :=
t

f(x(t))
,

then multiplying the first term of (3.1) by H(σ(t)) and integrating gives
∫ t

T

H(σ(s))(rx∆)∆(s)∆s

= H(t)r(t)x∆(t) − H(T )r(T )x∆(T ) −
∫ t

T

r(s)x∆(s)H∆(s)∆s

= H(t)r(t)x∆(t) − H(T )r(T )x∆(T )

−
∫ t

T

r(s)x∆(s)

(

f(x(s)) − s(f ◦ x)∆(s)

f(x(s))f(x(σ(s)))

)

∆s

= H(t)r(t)x∆(t) − H(T )r(T )x∆(T )

−
∫ t

T

r(s)x∆(s)

f(x(σ(s)))
∆s +

∫ t

T

H(s)r(s)x∆(s)(f ◦ x)∆(s)

f(x(σ(s)))
∆s.

Now
∫ t

T

H(s)r(s)x∆(s)(f ◦ x)∆(s)

f(x(σ(s)))
∆s

=

∫ t

T

H(s)r(s)x∆(s)

f(x(σ(s)))

(
∫ 1

0

f ′(xh(s))dh

)

x∆(s)∆s

> 0,

since f ′(x) > 0, where

xh(s) := x(s) + hµ(s)x∆(s) > 0.
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Therefore, we get
∫ t

T

H(σ(s))(rx∆)∆(s)∆s

≥ H(t)r(t)x∆(t) − H(T )r(T )x∆(T ) −
∫ t

T

r(s)x∆(s)

f(x(σ(s)))
∆s.(3.15)

From equation (3.1) we have after a multiplication by H(σ(t)) and an integration
∫ t

T

H(σ(s))(rx∆)∆(s)∆s +

∫ t

T

σ(s)p1(s)∆s = 0(3.16)

and so by (3.15) we have after rearranging

H(t)r(t)x∆(t) +

∫ t

T

σ(s)p1(s)∆s

≤ H(T )r(T )x∆(T ) +

∫ t

T

r(s)x∆(s)

f(x(σ(s)))
∆s.(3.17)

Now since r∆(t) = q(t)eq(t, t0) ≥ 0, and x∆(t) > 0, it follows that

∫ t

T

r(s)x∆(s)

f(x(σ(s)))
∆s ≤ r(t)

∫ t

T

x∆(s)

f(x(σ(s)))
∆s.(3.18)

We now define the function

G(u) :=

∫ u

u0

1

f(s)
ds, (u0 := x(T ) > 0),(3.19)

so that G′(u) = 1
f(u)

. Then by the chain rule (2.1)

(G(x(t)))∆ =

(
∫ 1

0

1

f(xh(t))
dh

)

x∆(t) ≥
(

∫ 1

0

1

f(x(σ(t)))
dh

)

x∆(t)(3.20)

since xh(t) ≤ x(σ(t)), and therefore

1

f(xh(t))
≥ 1

f(x(σ(t)))
.

Consequently, we have

(G(x(t)))∆ ≥ x∆(t)

f(x(σ(t)))
.(3.21)

Now since x∆(t) > 0, we have

lim
t→∞

x(t) := L ≤ ∞.

Therefore,

lim
t→∞

G(x(t)) = lim
t→∞

∫ x(t)

u0

du

f(u)
=

∫ L

u0

du

f(u)
:= L1 < ∞.(3.22)
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On the other hand, we also have
∫ t

T

(G(x(s)))∆ ∆s = G(x(t)) − G(x(T ))

and so from (3.18), (3.21), and (3.22) we have
∫ t

T

r(s)x∆(s)

f(x(σ(s)))
∆s ≤ r(t)L2,

where L2 := −G(x(T )) + L1. Now using this in (3.17) we get

H(t)x∆(t) +
1

r(t)

∫ t

T

σ(s)p1(s)∆s ≤ H(T )r(T )x∆(T )

r(t)
+ L2.

Hence

tx∆(t)

f(x(t))
+

1

r(t)

∫ t

T

σ(s)p1(s)∆s − L2

≤ Tr(T )x∆(T )

r(t)f(x(T ))
≤ Tx∆(T )

f(x(T ))
,(3.23)

(since r(t) ≥ r(T )).

But now if we take the lim sup on both sides of (3.23), we see that the left side is not

bounded above and this is a contradiction. This proves the Theorem. �

If q(t) ≡ 0, then equation (1.1) becomes

(3.24) x∆∆ + p(t)(f ◦ xσ) = 0,

In this case we have the following

Corollary 3.4. Suppose that (1.2) and (3.14) hold,

lim sup
t→∞

∫ t

T

σ(s)p(s)∆s = +∞

and that p satisfies condition (A). Then all solutions of (3.24) are oscillatory.

This Corollary extends the differential equations result of Atkinson [1] which says

that

∫

∞

tp(t)dt = ∞
implies that all solutions of the equation

x′′ + p(t)x2n+1 = 0

are oscillatory, where p(t) > 0 and is continuous on [a, +∞). Notice that no explicit

sign assumptions on p(t) are necessary in Corollary 3.4. The extension of the Atkinson

result to time scales was also obtained in [10], [11], and, for the case p(t) > 0, in [2].

If we do not assume the nonlinearity condition (3.14) in the previous theorem,

then we can conclude that all bounded solutions are oscillatory. That is, we have
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Corollary 3.5. Assume that p1(t) satisfies condition (A), (1.2) holds, q(t) ≥ 0 and

that
∫

∞

T

1

r(t)
∆t = ∞.

Suppose also that

lim sup
t→∞

1

r(t)

∫ t

T

σ(s)p1(s)∆s = +∞.

Then all bounded solutions of (1.1) are oscillatory.

We next want to show how a generalized Riccati transformation may be used to

establish some additional new oscillation criteria. This idea was also used in [5] and

[2]. We shall first introduce the following condition:

We say that a function g : T → R satisfies condition (B) if for each k > 0 there

exists m > 0 such that g(x) ≥ m provided x ≥ k. This condition says that g(x) is

bounded away from 0 if x is.

The following Lemma may be found in [2].

Lemma 3.6. If z and x are differentiable on T and x(t) 6= 0 on T, then

x∆

(

z2

x

)∆

=
(

z∆
)2 − xxσ

[

(z

x

)∆
]2

.

We shall also need the following result.

Lemma 3.7. Suppose that x is a solution of (1.1) and x(t)x∆(t) > 0 for all t ≥ T0,

and assume z and f ◦ x are differentiable functions on T with xf(x) 6= 0, x 6= 0. If

we define

w :=
z2rx∆

f ◦ x
,

then w satisfies

−w∆ = p1(z
σ)2 − rx∆(z∆)2

(f ◦ x)∆
+

rx∆(f ◦ x)(f ◦ xσ)

(f ◦ x)∆

[

(

z

f ◦ x

)∆
]2

.

Proof. Let x, z, and w be as in the statement of this theorem. Then we have

−w∆ = −
(

z2rx∆

f ◦ x

)∆

= −
(

z2

f ◦ x

)σ

(rx∆)∆ −
(

z2

f ◦ x

)∆

rx∆

= p1(z
2)σ −

(

z2

f ◦ x

)∆

rx∆

= p1(z
2)σ − rx∆

(f ◦ x)∆

[

(f ◦ x)∆

(

z2

f ◦ x

)∆
]

.
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Now using Lemma 3.6 with x replaced by f ◦ x, we get

(f ◦ x)∆

(

z2

f ◦ x

)∆

= (z∆)2 − (f ◦ x)(f ◦ x)σ

[

(

z

f ◦ x

)∆
]2

.

Therefore, using this we have

−w∆ = p1(z
2)σ − rx∆

(f ◦ x)∆
(z∆)2 +

rx∆(f ◦ x)(f ◦ x)σ

(f ◦ x)∆

[

(

z

f ◦ x

)∆
]2

which proves the lemma. �

We can now state and prove the following result which replaces the nonlinear

assumption (3.14) by the assumption that f ′ satisfies condition (B).

Theorem 3.8. Assume that (1.2) holds, f ′ satisfies condition (B), and p1 satisfies

condition (A). Assume further that
∫

∞

T

1

r(t)
∆t = ∞

and that there exists a differentiable function z such that for all K > 0

lim sup
t→∞

∫ t

a

[p1(z
σ)2 − Kr(z∆)2]∆s = +∞.(3.25)

Then all solutions of (1.1) oscillate.

Proof. If not, then there is a solution x such that x(t) > 0 for t ≥ T0 for some

sufficiently large T0. Then by Lemma 3.1 there is a T1 ≥ T0 such that x∆(t) > 0 for

t ≥ T1. As in Lemma 3.7, let

w :=
z2rx∆

f ◦ x

and note that w(t) > 0 for t ≥ T1 and from Lemma 3.7

−w∆ = p1(z
σ)2 − rx∆(z∆)2

(f ◦ x)∆
+

rx∆(f ◦ x)(f ◦ x)σ

(f ◦ x)∆

[

(

z

f ◦ x

)∆
]2

≥ p1(z
σ)2 − rx∆(z∆)2

(f ◦ x)∆
, (since x∆ > 0),

Therefore,

−
∫ t

T1

w∆(s)∆s = −w(t) + w(T1)

≥
∫ t

T1

p1(s)(z
σ(s))2∆s −

∫ t

T1

rx∆(z∆(s))2

(f ◦ x)∆(s)
∆s.(3.26)

Now from the Keller chain rule (Theorem 2.1)

(f ◦ x)∆ =

(
∫ 1

0

f ′(xh(t)dh

)

x∆(t),
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where

xh(t) = x(t) + hµ(t)x∆(t) ≥ x(t) ≥ x(T1)

since x∆(t) > 0. Since f ′ satisfies condition (B) corresponding to k := x(T1) > 0,

there is an m > 0 such that

f ′(xh(t)) ≥ m, for all t ≥ T1.

Therefore
(f ◦ x)∆

x∆
=

∫ 1

0

f ′(xh(t))dh ≥ m

∫ 1

0

dh = m.

Hence

0 <
x∆

(f ◦ x)∆
≤ 1

m
, t ≥ T1.

It follows that

−
∫ t

T1

r(s)x∆(s)(z∆(s))2

(f ◦ x)∆(s)
∆s ≥ − 1

m

∫ t

T1

r(s)(z∆(s))2∆s,

and so we have from (3.26) that

w(T1) ≥ −w(t) + w(T1) = −
∫ t

T1

w∆(s)∆s

≥
∫ t

T1

p1(s)(z
σ(s))2∆s − 1

m

∫ t

T1

r(s((z∆(s))2∆s

=

∫ t

T1

[

p1(s)(z
σ(s))2 − Kr(s)(z∆(s))2

]

∆s (K :=
1

m
)

which leads (using (3.25)) to a contradiction and the proof is complete. �

Note that if f(x) = x, then f ′ satisfies the condition (B) so Theorem 3.8 applies

to the linear case as well, in contrast to Theorem 3.3.

4. Examples and Remarks

Remark 4.1. In the paper [10] the nonlinearity was assumed to satisfy (1.4) (in [11],

(1.4) was assumed to hold for all large x.). In the paper [2] the case f(x) = xγ, γ > 1,

was considered which also satisfies (1.4) for all x 6= 0. It is not difficult to give an

example of a function which satisfies the nonlinearity condition (3.14) with xf(x) > 0

and f ′(x) > 0 for x 6= 0, but which does not satisfy (1.4). To see this, define f for

x ≥ 0 by f(0) = 0 and for x > 0, and n = 0, 1, 2, · · · ,

f(x) =

{

x2 + f(2n), 2n ≤ x ≤ 2n + 1

f(2n + 1) + 1
2n+2

(x − (2n + 1)), 2n + 1 ≤ x ≤ 2n + 2.

We then define f(−x) = −f(x) for x > 0. Then it is easy to show that

f(x) ≥ x2

2
, for x ≥ 3,
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and we have

f ′(x) =
1

2n + 2
for 2n + 1 < x < 2n + 2.

Hence, lim infx→∞ f ′(x) = 0 so condition (B) does not hold, but (3.14) does. Hence,
∫

±∞

±1
du

f(u)
< ∞, i.e., (3.14) holds, but (1.4) does not hold.

Example 4.2. We let q(t) ≡ 0 and

p(t) :=
λ

tασ(t)
+

β(−1)t

tα
, t ∈ T = N,

where β, λ > 0, 0 < α < 1. We note that
∫

∞

t

∆s

sασ(s)
=

∞
∑

k=n

1

kα(k + 1)
∼ 1

αnα
, large n

in the sense that for any 0 < ε < 1 there exists N ≥ 1 such that

1 − ε

α
≤ nα

∞
∑

k=n

1

kα(k + 1)
≤ 1 + ε

α

for all n ≥ N. Also, we have
∣

∣

∣

∣

∫

∞

t

(−1)s

sα
∆s

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

k=n

(−1)k

kα

∣

∣

∣

∣

∣

≤ 1

nα
.

Therefore, if λ
α

> β, then p(t) satisfies condition (A). Also, as above, one can show

that

(4.1) −∞ = lim inf
t→∞

∫ t

a

σ(s)p(s)∆s < lim sup
t→∞

∫ t

a

σ(s)p(s)∆s = ∞

provided λ < β(1 − α). Hence, if

βα < λ < β(1 − α),

and if (1.2) and (3.14) hold, then all solutions of

x∆∆ + p(t)(f ◦ xσ) = 0

are oscillatory on N by Corollary 3.4. Note that this includes the superlinear case,

but does not treat the linear and sublinear case. It turns out that one can also apply

Theorem 3.8 to this example as well if f ′ satisfies condition (B), say instead of (3.14).

However none of the references can be applied since in all of these p(t) is assumed to

be positive.

Example 4.3. Let T = qN0, q > 1 and consider the q-difference equation

(4.2) x∆∆ + p(t)(f ◦ xσ) = 0,

where f satisfies the nonlinearity condition (3.14). Assume that 1 < α < 2, let

m := qα−1
−1

qα+1+1
, and assume further that β > 0 and 0 < mα < λ. Define

p(t) :=
1

tα
(λ + β(−1)n) , t = qn ∈ T.
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Then we have
∫

∞

tn

p(s)∆s =

∞
∑

k=n

∫ σ(tk)

tk

p(s)∆s

=

∞
∑

k=n

p(tk)µ(tk) =

∞
∑

k=n

(λ + β(−1)k)

qαk
(q − 1)qk

= (q − 1)
∞

∑

k=n

(λ + β(−1)k)(q1−α)k

=
(q − 1)qα−1

qn(α−1)

(

λ

qα−1 − 1
+

β(−1)n

qα+1 − 1

)

.

Notice that this last expression is nonnegative since

λ

β
≥ qα−1 − 1

qα+1 + 1
= m.

Hence, p(t) satisfies condition (A). Consider next
∫ tn

1

σ(s)p(s)∆s =

n
∑

k=1

qk+1(λ + β(−1)k)

qαk
(q − 1)qk

= q(q − 1)
n

∑

k=1

q(2−α)k(λ + β(−1)k).

It follows that lim supn→∞

∫ tn

1
σ(s)p(s)∆s = +∞, and so all solutions are oscillatory

on T = qN0 by Corollary 3.4. Note also that if 0 < λ < β, we have

−∞ = lim inf
n→∞

∫ tn

1

σ(s)p(s)∆s < lim sup
n→∞

∫ tn

1

σ(s)p(s)∆s = ∞.

Again we notice that p(t) is not eventually of one sign in this example so the criteria

in the references do not apply.

Example 4.4. As a final example for the case when T is the real interval [1,∞),

suppose f satisfies (1.2), and the nonlinearity condition (3.14). Let

p(t) :=
λ

t1+α
+

β sin t

tα
,

where λ, α, β are all positive numbers and satisfy

(4.3) βα < λ, 0 < α < 1.

Then one can show that
∫

∞

t
p(s)ds ≥ 0 for all large t. Moreover, we also have

lim sup
t→∞

∫ t

a

sp(s)ds = +∞,

since λ > 0. (If, in addition, λ < β(1 − α), then we also have

lim inf
t→∞

∫ t

a

sp(s)ds = −∞.)
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Therefore if (4.3) holds, then all solutions of the nonlinear differential equation x′′ +

p(t)f(x) = 0 are oscillatory on [1,∞) by Corollary 3.4. This may also be deduced

from Theorem 3.8 by choosing z(t) =
√

t.

If

p(t) :=
λ

tα1
+

β sin t

tα2
,

then as above p(t) satisfies condition (A) if λ, β, α1, α2 are positive numbers satisfying

0 < α1 ≤ α2 < 1 with λ
α1

> β if α1 = α2. Moreover, lim supt→∞

∫ t

1
sp(s)ds = +∞,

since α1 ≤ α2 < 1 and so oscillation of x′′ + p(t)f(x) is a consequence of Corollary

3.4 (or Theorem 3.8), where we again assume f satisfies (1.2), (3.14).
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