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Abstract

We perform numerical calculations for some Schrödinger difference equations.
The first results are based on the oscillatory behavior of a symmetrically perturbed
x2 potential. Then we deal with quartic potentials, making use of ladder opera-
tors. In both cases the theory is well-established. The main interest lies in the
numerical visualization of the oscillations and the eigenvalues. For the treatment
of more sophisticated potentials, we introduce an adaptive basic linear grid. We de-
termine and illustrate the eigenvalues of the Schrödinger operators by considering
this adaptive grid. In most cases of our obtained results, we apply Kato’s theory of
regular perturbations for self-adjoint linear operators.

AMS Subject Classifications:39A10.
Keywords: Schr̈odinger operator, difference equation, ladder operator.

1 Introduction

Numerical treatments of Schrödinger’s equation turn out to be quite a challenging topic
all over the sciences. In particular it is not clear of how to discretize the configuration
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space in advance for a given potential. In this article, we refer to several types of dis-
cretizations including so-called basic linear grids. The numerical calculations happen
on two different stages: namely first a numerical maximum minimum principle and
second a diagonalization of the related matrices.

2 A Short Review of Schr̈odinger’s Equation

The Schr̈odinger equation with the so-called potentialU(x, y, z) is the basic equation
of motion in nonrelativistic quantum mechanics:(

− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
+ U(x, y, z)

)
ψ(x, y, z, t) = i (

∂ψ

∂t
)(x, y, z, t). (2.1)

Using theSchrödinger operator, or Hamilton operatorH, given by

H := − ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
+ U(x, y, z), (2.2)

equation (2.1) may be rewritten as

(Hψ)(x, y, z, t) = i (
∂ψ

∂t
)(x, y, z, t). (2.3)

The following lemma deals with the separation of variables in the Schrödinger equa-
tion:

Lemma 2.1. Letψ ∈ C2(R3). A functionϕ ∈ C2(R4)

(x, y, z, t) 7→ ϕ(x, y, z, t) := ψ(x, y, z) e−iλt (2.4)

is a solution of the Schrödinger equation, iffλ is an eigenvalue of

(Hψ)(x, y, z) = λ ψ(x, y, z) (2.5)

for all (x, y, z) ∈ R3. This equation is called theStationary Schrödinger Equation.

Proof. Let f : R 7→ C be given by

t 7→ f(t) := e−iλt (2.6)

and insertϕ into equation (2.1). Then we get(
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
+ U(x, y, z)

)
ψ(x, y, z, t) = i (

∂ψ

∂t
)(x, y, z, t) ⇔ (2.7)

fHψ = iψ
d

dt
f ⇔ fHψ = λfψ ⇔ Hψ = λψ. (2.8)

The proof is complete.
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In this way, we obtain the separation of the time variablet and reduce a solution
of the Schr̈odinger equation to a solution of an eigenvalue/eigenvector problem. Now
we decompose this three dimensional equation into three one dimensional eigenvalue
equations as follows: Let us set

U(x, y, z) = U1(x) + U2(y) + U3(z) (2.9)

ψ(x, y, z) = ψ1(x) ψ2(y) ψ3(z) (2.10)

λ = λ1 + λ2 + λ3. (2.11)

Substituting these expressions into (2.5) leads to the three one dimensional eigenvalue
equations: (

− d2

dx2
+ U1(x)

)
ψ1(x) = λ1 ψ1(x) (2.12)(

− d2

dy2
+ U2(y)

)
ψ2(y) = λ2 ψ2(y) (2.13)(

− d2

dz2
+ U3(z)

)
ψ3(z) = λ3 ψ3(z). (2.14)

Hence we are lead to the problem of solving one dimensional eigenvalue problems (for
physical reasons we are only interested inL2(R)-solutions).

In the sequel, we will use results from regular perturbation theory, which will help us
to understand the oscillation phenomena occurring in several of our numerical studies.
For this purpose we briefly recall some essential facts from [1].

Definition 2.2. A (possibly unbounded) operator-valued functionT (β) from a complex
domainK ⊂ C into a Hilbert spaceS is called ananalytic family , or an analytic family
in the sense of Kato, if and only if

1. For everyβ ∈ K, T (β) is closed and has a non-empty resolvent set.

2. For everyβ0 ∈ K, there is aλ0 ∈ ρ(T (β0)) so thatλ0 ∈ ρ(T (β)) for β nearβ0

and(T (β)− λ0)
−1 is an analytic operator-valued function ofβ nearβ0.

Lemma 2.3. LetH : D(H) ⊆ S → S be a closed operator with nonempty resolvent
set. DefineH + βV onD(H) ∩D(V ). ThenH + βV is an analytic family nearβ = 0
if and only if:

1. D(H) ⊂ D(V )

2. For somex ∈ R+ andy ∈ R+
0 and for allψ ∈ D(H), the following holds:

‖V ψ‖ ≤ x ‖Hψ‖+ y ‖ψ‖.

We have the following existence result for perturbed spectral points:
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Theorem 2.4. LetT (β) be an analytic family in the sense of Kato. LetE0 be a nonde-
generate discrete eigenvalue ofT (β0). Then, forβ nearβ0, there is exactly one point
E(β) of the spectrumσ(T (β)) nearE0 and this point is isolated and nondegenerate.
E(β) is an analytic function ofβ for β nearβ0, and there is an analytic eigenvector
v(β) for β nearβ0. If T (β) is self-adjoint forβ − β0 real, thenv(β) can be chosen to
be normalized forβ − β0 real.

The following theorem concerns the radius of convergence for regular perturbation
series.

Theorem 2.5. Suppose that under the conditions of Theorem 2.4 and Lemma 2.3, we
have

‖V ψ‖ ≤ x ‖Hψ‖+ y ‖ψ‖ ψ ∈ D(H) ⊆ D(V ).

LetH be self-adjoint with an unperturbed, isolated, nondegenerate eigenvalueE0. And

let ∆ =
1

2
dist(E0, σ(H) \ {E0}). Define the functionR(x, y) by

R : R2 → R, (x, y) 7→ R(x, y) :=

(
x+

y + x|E0|+ x∆

∆

)−1

.

Then the eigenvalueE(β) ofH + βV nearE0 is analytic in the circle of radiusR(x, y)
around 0.

3 Oscillation Phenomena for Perturbedx2-Potentials

The Hermite functionsϕn wheren ∈ N0 are the only solutions of the Schrödinger
equation inL2(R) for thex2-potential as can be verified by using Lebesgue’s dominated
convergence principle. These functions are eigenfunctions of the Schrödinger operator
with x2-potential, the corresponding eigenvalues being forn ∈ N0

λn = 2n+ 1. (3.1)

In the following we consider functionsψλ ∈ L2(R) with

ψλ :=
∞∑

j=0

cj(λ)ej (3.2)

Hen = −e′′n + Uen = −e′′n +X2en = λnen, (3.3)

where forn ∈ N0, the eigenfunctionsen are the normalized Hermite functions andλn

are the corresponding eigenvalues.
To thex2-potential, we add a symmetric bounded linear perturbationV with the

following properties (forn ∈ N0):

V en = αn en+1 + βn en−1, β0 = 0 (3.4)
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αn = βn+1 =
1

(n+ 1)2
. (3.5)

With the perturbed Schrödinger operatorH + V and the normalized Hermite functions
en we get

(H + V ) en = (2n+ 1) en + βn+1 en+1 + βn en−1. (3.6)

We insertψλ as defined in equation (3.2) into the stationary Schrödinger equation with
the perturbed Schrödinger operatorH + V :

(H + V )
∞∑

j=0

cj(λ) ej = λ
∞∑

j=0

cj(λ) ej.

Comparison of the coefficients gives a three term recurrence relation forcn:

cn+1 = (n+ 1)2 + (λ− 2n− 1) cn +

(
1 +

2

n
+

1

n2

)
cn−1, (3.7)

wheren ∈ N and the initial values are chosen as

c0 = 0, c1 = 1, c2 = 4λ− 12. (3.8)

Thus, we obtain

ψ(λ) =
∞∑

j=0

cj(λ) ej (3.9)

cn+1 = (n+ 1)2 + (λ− 2n− 1) cn +

(
1 +

2

n
+

1

n2

)
cn−1, n ∈ N (3.10)

c0 = 0, c1 = 1, c2 = 4λ− 12. (3.11)

Evaluating the three term recurrence relation for the(cn)n∈N0 numerically, we may
graph the function

fλ = log

(
n∑

j=0

|ck(λ)|2
)

(3.12)

as a function of the parameterλ (see Figure 3.1). Note in this diagram the striking de-
pendence on the chosen parameterλ. This is due to the fact thatV can be considered as
a perturbation ofH in the sense of the stated results from Kato’s perturbation theory, see
Definition 2.2, Lemma 2.3 and Theorem 2.4 (resp., Theorem 2.5). As a consequence,
the eigenvalues ofH are analytic continuations of the eigenvalues ofH + V .
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Figure 3.1:fλ = log

(
n∑

j=0

|ck(λ)|2
)

, λ ∈ [5; 15]

4 Classical Oscillations of Power Series Solutions

Reviewing basic facts on the quadratic potential, let us consider in the sequel the power
series ansatz

ψλ(x) =
∞∑

k=0

ck(λ)xk (4.1)

with c2k+1 = 0 for all k ∈ N0. Insertingψλ into the stationary Schrödinger equation

Hψλ(x) = λψλ(x), (4.2)

a comparison of the coefficients gives a three term recurrence relation wherek ∈ 2N0:

ck+2(λ) =
ck−2(λ)− λck(λ)

(k + 2)(k + 1)
. (4.3)

As initial values we choose

c−2(λ) = 0 c0(λ) = 1 c2(λ) = −λ
2
. (4.4)

Numerically evaluating the recurrence relation for the coefficients, we first plot

log |ψλ(x) + 1| (4.5)

for a constant value ofλ (see Figure 4.1). In this way, we obtain the same zeros as the
functionψλ. In a second plot (Figure 4.2) we usex as a constant andλ as variable. We
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Figure 4.1: U(x) = x2, λ ∈ {2.9, 3, 3.01, 3.001}, fλ(x) =
log |ψλ(x) + 1|

plot
log |ψλ(x) + 1| . (4.6)

We then usex andλ as variables and plot again (see Figures 4.3 and 4.4):
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Figure 4.2:U(x) = x2, x ∈ {8, 10}, fλ(x) = log |ψλ(x) + 1|

log |ψλ(x) + 1| . (4.7)

From standard results in quantum mechanics it is known that the energy eigenvalues
of the quadratic potential are given as the odd natural numbers (for the Schrödinger
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operator being given by(Hψ)(x) = −ψ′′(x) + x2 ψ(x)). Our numerical investigations
are in agreement with this fact. We will refer to the ladder operator formalism in the
next section in more detail.
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Figure 4.3:U(x) = x2, fλ(x) = log |ψλ(x) + 1|, x ∈ [0; 8], λ ∈
[0; 10]

5 Oscillation Behavior of Potentials of4th Degree

For thex2-potential (as well as at least partially for a few other simple potentials, e.g.,
x6) there exists a ladder operator formalism which allows one to obtain solutions for the
Schr̈odinger equation.

Ladder Operators. For our following purposes we use the well-known conven-
tional ladder operators, acting on suitable common domains inL2(R):

A =
1√
2
(D +X) (5.1)

A+ =
1√
2
(−D +X) (5.2)

with the operatorX

(Xf)(x) = xf(x) (5.3)

and the differential operatorD

(Df)(x) = f ′(x). (5.4)
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Figure 4.4:U(x) = x2, fλ(x) = log |ψλ(x) + 1|, x ∈ [0; 8], λ ∈
[0; 10]

The ladder operators have the followingproperties:

A+ A+ =
√

2X (5.5)

A− A+ =
√

2D (5.6)

I = AA+ − A+A, (5.7)

whereI is the identity operator. Forn ∈ N0 andx ∈ R we define

Hn(x) := (−1)nex2

Dne−x2

(5.8)

as well as the Hermite functionsen (non normalized) as follows

en(x) = Hn(x)e−
1
2
x2

. (5.9)

For the ladder operators and the Hermite functions the following equations hold:

A+A =
1

2
(−D2 +X2)− 1

2
I (5.10)

A+Aen = nen, n ∈ N0 (5.11)

AA+ =
1

2
(−D2 +X2) +

1

2
I (5.12)

AA+en = (n+ 1)en, n ∈ N0. (5.13)

The eigenvalues of the Hermite functions for the operator(−D2 +X2) are given by the
sequence(2n+ 1)n∈N0. Using the properties of the ladder operators (5.5)–(5.7) and the
results (5.10)–(5.13) we obtain for the operatorX, as defined above:
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X2 =
1

2
(A+ A+)(A+ A+)

2X2 = A2 + A+2

+ A+A+ AA+

2X2en = αnen−2 + βnen+2 + γnen for n ∈ N0, (5.14)

where we abbreviate forn ∈ N0

αn :=
√
n
√
n− 1, βn :=

√
n+ 1

√
n+ 2, γn := 2n+ 1.

We apply2X2 again in equation (5.14) to obtain a potential of degree4:

4X4en = αn(2X2)en−2 + βn(2X2)en+2 + γn(2X2)en

= αn [αn−2en−4 + βn−2en + γn+2en+2] (5.15)

+ βn [αn+2en + βn+2en+4 + γn+2en+2]

+ γn [αnen−2 + βnen+2 + γnen] , n ∈ N0

X4en = αnαn−2en−4 + (αnγn−2 + γnαn)en−2 + (αnβn−2 + βnαn+2 + γ2
n)en

+ (βnγn+2 + γnβn)en+2 + βnβn+2en+4, n ∈ N0. (5.16)

Then we define the operator

H :=
1

2
(−D2 +X2 +X4). (5.17)

This means we have a Schrödinger operator with the potentialU(x) = x2 + x4. Using
the results (5.14) and (5.16) we get forn ∈ N0:

He2n = Ane2n−4 +Bne2n−2 + Cne2n +Dne2n+2 + Ene2n+4 (5.18)

with

An :=
α2n−2α2n

8
, Bn :=

α2nγ2n−2 + α2nγ2n

8
, (5.19)

Cn :=
α2nβ2n−2 + β2nα2n+2 + 8(2n+ 1)3

8
, Dn :=

β2nγ2n+2 + γ2nβ2n

8
, (5.20)

En :=
β2nβ2n+2

8
. (5.21)

Upon substitution of
vn := e2n (5.22)

equation (5.18) becomes

Hvn = Anvn−2 +Bnvn−1 + Cnvn +Dnvn+1 + Envn+2, n ∈ N0. (5.23)
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Now we consider functions of the form

∞∑
j=0

cnvn (5.24)

and insert them into the stationary Schrödinger equation with the operatorH from equa-
tion (5.17)

H

∞∑
j=0

cnvn = λ

∞∑
j=0

cnvn (5.25)

to get a five term recurrence relation of type

cn+2An+2+cn+1Bn+1+cn(Cn−λ)+cn−1Dn−1+cn−2En−2 = 0, n ∈ N0. (5.26)

There are two paths for the initial values, which differ in the choice ofc0:

First path:
c−2 = c−1 = 0

c0 = a, a ∈ R
c1 = 1

Second path:
c−2 = c−1 = 0

c0 = 1
c1 = a, a ∈ R.

We evaluate the recurrence relation numerically, only considering the second path for
the initial values, and plot (see Figure 5.1):

log

(
n∑

k=0

c2k(a)

)
, ck(a) ≡ ck(a, λ). (5.27)

The variablea results from the initial value forc1. λ is considered to be a constant. In
a second plot we choose the initial valuea as a constant (see Figure 5.2) andλ from
equation (5.25), (5.26) as variable. That means we plot

log

(
n∑

k=0

c2k(λ)

)
, ck(λ) ≡ ck(a, λ) (5.28)

for different values ofa. Finally we consider botha andλ as variables and plot the three
dimensional graph (see Figure 5.3) of:

log

(
n∑

k=0

c2k(a, λ)

)
. (5.29)
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Figure 5.1:n = 100, λ ∈ {0, 1, 2, 3}, fλ(a) = log

(
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c2k(a)

)
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Figure 5.2:n = 100, a ∈ {0, 1, 2, 3}, fa(λ) = log
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)
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We observe that for certain values ofa andλ there arise minima in the function land-
scape, see Figures 5.1, 5.2, and 5.3. However this already reveals that generalizing our
method used so far to potentials of higher degree will cause difficulties in getting reason-
able quantitative results. This is due to the fact that additional initial parameters, like
a, will arise: We have to develop an alternative approach to higher degree potentials,
and this will happen throughout the next section – using basic versions of Schrödinger
difference equations.
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Figure 5.3:n = 100, λ ∈ [−5; 10], a ∈ [−4; 8], fa(λ) = log

(
n∑

k=0

c2k(a, λ)

)

6 Oscillation Behavior onq-Linear Grids

As we saw in Section 2, there exists a solution for the Schrödinger Equation with Her-
mite functions for thex2-potential. For some potentials, for example thex6 or x2-
potential, there are ladder operator formalisms to get the solution. If we want to handle
any arbitrary potential, we need a relaxation of the Schrödinger operator. Therefore, we
first introduce aq-linear grid , as an adaptive discretization, on which we search for our
solutions:

Rq = {±cqn|n ∈ Z} . (6.1)

For our purposes we only consider0 < q < 1 and laterc = 1. In this way, we get a grid
with a very high density around zero, which allows us to scan as much information as



260 L. Erbe, A. Peterson, A. Ruffing, and A. Suhrer

possible close to the point zero region. On

l2(Rq) =

{
f : Rq 7→ Rq|

∞∑
−∞

qn(1− q)f 2(qn) <∞

}

we introduce the scalar product

(f, g) :=
∞∑

n=−∞

qn [f(qn)g(qn) + f(−qn)g(−qn)] (1− q) (6.2)

and choose asymmetric difference operatorDq:

(Dqf)(x) =
f(qx)− f(q−1x)

qx− q−1x
. (6.3)

With this definition we are able to provide a reasonable choice for thediscrete Schr̈o-
dinger operator on the chosenq-linear grid:

Hq = −D2
q + α(R2 + q−2L2) + V (x) (6.4)

with an arbitrary potentialV and the left-shift and right-shift operatorsL,R.

(Lf)(x) = f(q−1x) (6.5)

(Rf)(x) = f(qx). (6.6)

Up to this point, we can say that the expression (6.4) provides a relaxation of the
Schr̈odinger operator and hence ensures a numerically stable treatment. To guaran-
tee a most efficient and at the same time simple numerical procedure, we chooseα such
that we are in the weightedl2(N)-situation:

For the difference operatorDq the following equation for the “second derivative”
holds:

(D2
qf)(x) = −

f(q2x)−f(x)
q2x−x

− f(x)−f(q−2x)
x−q−2x

qx− q−1x
. (6.7)

The left shift part of (6.7) is

−
f(q2x)−f(x)

q2x−x

qx− q−1x
= − f(q2x)

(q2 − 1)(q − q−1)x2
. (6.8)

Considering the left shift part of the whole discrete Schrödinger operator we get

− f(q2x)

(q2 − 1)(q − q−1)x2
+ αf(q2x). (6.9)
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Equation (6.9) has to be zero forx = c = 1 to guarantee a monolateral scenario for the
related infinite Jacobi matrix, thus yielding

α =
1

(q2 − 1)(q − q−1)
. (6.10)

With (6.10) we finally obtain for thediscrete Schr̈odinger operator:

Hq = −D2
q +

1

(q2 − 1)(q − q−1)
(R2 + q−2L2) + V (x). (6.11)

In the stationary Schrödinger equation we applyHq on a functionf ∈ l2(Rq). Our
intention is to obtain qualitative and quantitative statements about the eigenvalues of
(6.11). To this end, we insert into the eigenequation

(Hqf)(x) = λf(x) (6.12)

the concrete form of the discrete Schrödinger operator:

(Hqf)(x) =
f(q2x)

(1− q2)(q − q−1)x2
+

f(x)

(q − q−1)x

[
1

(q2 − 1)x
+

1

(1− q−2)x

]
− f(q−2x)

(1− q−2)(q − q−1)x2
+ α(f(q2x) + q−2f(q−2x)) + V (x)f(x) (6.13)

= λf(x).

Note that in all these calculations, the variablex runs inRq. From equation (6.13) we
obtain a recurrence relation forf(q2x):

f(q2x)

(
1

(1− q2)(q − q−1)x2
+ α

)
− f(q−2x)

(
1

(1− q−2)(q − q−1)x2
− αq−2

)
+ f(x)

(
q + q−1

(q2 − 1)(1− q−2)x2
+ V (x)− λ

)
= 0. (6.14)

Defining forx ∈ Rq

D̃(x) :=

(
q + q−1

(q2 − 1)(1− q−2)x2
+ V (x)− λ

)
(6.15)

D(x) :=

(
q + q−1

(q2 − 1)(1− q−2)x2
+ V (x)

)
(6.16)

L(x) :=

(
1

(1− q2)(q − q−1)x2
+ α

)
(6.17)

U(x) :=

(
1

(1− q−2)(q − q−1)x2
− αq−2

)
(6.18)
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and solving equation (6.14) forf(q−2x) we get

f(q−2x) =
f(q2x)L(x) + f(x)D̃(x)

U(x)
. (6.19)

In this way we obtain a three term recurrence relation forf(q−2x) for any arbitrary
potentialV (x). In matrix-vector notation the stationary Schrödinger equation for this
problem is

A~f(x) = λ~f(x) x ∈ Rq (6.20)

with the matrixA:
... ... ... 0
0 L(q2) D(q2) −U(q2) 0

0 L(1) D(1) −U(1) 0
0 L(q−2) D(q−2) −U(q−2) 0

0
... ... ...


and the vector~f(x) 

...
f(q2)
f(1)
f(q−2)

...

 .

The upper-, sub- and diagonal entries of the matrixA satisfy (see also Figure 6.1):

lim
x→∞

(−U(x)) = αq−2 (6.21)

lim
x→∞

(L(x)) = α (6.22)

lim
x→∞

(D(x)) = V (x). (6.23)

For anumerical visualization we considerx ∈ Rq x ≥ 1 and choose as initial values

f(q2) = 0 (6.24)

f(1) = 1. (6.25)

This means, the matrixA and the vector~f in (6.20) reduce to
D(1) −U(1) 0
L(q−2) D(q−2) −U(q−2) 0

0 L(q−4) D(q−4) −U(q−4) 0

0
... ... . ..


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Figure 6.1: Behavior of the matrix entries,q = 0.9, V (x) = x2, x ∈ Rq

 f(1)
f(q−2)

...

 .

We solve the recurrence relation forf(q−2x) in (6.19) and plot

h(λ) = log

(
n∑

k=0

q−2kf(cq−2k, λ)2

)
(6.26)

for different potentialsV (x), see Figures 6.2, 6.3, 6.4, and 6.5. A numerical evaluation
of the matrixA and of the eigenvalues ofA with theQR-algorithm gives forq = 0.9
andV (x) = x8:



46.125 10.585 0 0 0 0 0 · · ·
8.5737 35.003 17.529 0 0 0 0 · · ·

0 14.199 48.548 22.086 0 0 0 · · ·
0 0 17.89 169.91 25.075 0 0 · · ·
0 0 0 20.311 856.52 27.037 0 · · ·
0 0 0 0 21.9 4582.7 28.324 · · ·
... ... . .. ... ... .. . ... .. .


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Figure 6.2:V (x) = x6, x ∈ Rq, q = 0.9, h(λ) = log
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)
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Figure 6.3:V (x) = x8, x ∈ Rq, q = 0.9, h(λ) = log
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n∑

k=0

q−2kf(cq−2k, λ)2

)
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Figure 6.5:V (x) = x8, x ∈ Rq, q = 0.9, h(λ) = log
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with the vector of the eigenvalues:

21.249
45.913
59.279
172.4
857.11
4582.8

...


.

A comparison of the numerically evaluated eigenvalues and of the minima in Figure
6.5 shows quite a good similarity, even for the first eigenvalues. We also observe, that
the eigenvaluesλn get closer to the diagonal entries of the matrixA for largern. Note
finally that the relaxation we have chosen fits well into the framework of analytic per-
turbation theory. See the general facts from Section 2 along with the detailed analytic
investigation of the Schrödinger difference operator we used above.
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