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Abstract

We perform numerical calculations for some Sidinger difference equations.
The first results are based on the oscillatory behavior of a symmetrically perturbed
z? potential. Then we deal with quartic potentials, making use of ladder opera-
tors. In both cases the theory is well-established. The main interest lies in the
numerical visualization of the oscillations and the eigenvalues. For the treatment
of more sophisticated potentials, we introduce an adaptive basic linear grid. We de-
termine and illustrate the eigenvalues of the 8dinmger operators by considering
this adaptive grid. In most cases of our obtained results, we apply Kato’s theory of
regular perturbations for self-adjoint linear operators.

AMS Subject Classifications:39A10.
Keywords: Schibdinger operator, difference equation, ladder operator.

1 Introduction

Numerical treatments of Sabdinger’s equation turn out to be quite a challenging topic
all over the sciences. In particular it is not clear of how to discretize the configuration
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space in advance for a given potential. In this article, we refer to several types of dis-
cretizations including so-called basic linear grids. The numerical calculations happen
on two different stages: namely first a numerical maximum minimum principle and
second a diagonalization of the related matrices.

2 A Short Review of Schibdinger’s Equation

The Schédinger equation with the so-called potenti&lz, y, 2) is the basic equation
of motion in nonrelativistic quantum mechanics:

0? 0? 0? . OY
(—@ o 02 + U(l“,y,z)) bz, y, 2 t) =i (5)(@,y,2,1). (2.1)
Using theSchrodinger operator, or Hamilton operatof, given by
0? o? 0?
H-_°- _ Y Y 2.2

equation (2.1) may be rewritten as

() y. 26 =i (559, 2.0). 23)

The following lemma deals with the separation of variables in the®@thger equa-
tion:

Lemma 2.1. Lety € C*(R?). A functiony € C*(R*)

(‘T7y7 Z? t) = SO('I?y? ZJt) = w(‘r7y7 Z) e_iAt (2'4)
is a solution of the Sckidinger equation, iff\ is an eigenvalue of
(HY)(z,y,2) = Av(2,y,2) (2.5)

for all (z,y,2) € R®. This equation is called thStationary Schrodinger Equation.

Proof. Let f : R — C be given by

ts f(t) :=e ™ (2.6)
and insertp into equation (2.1). Then we get
0? 0? 0? 0
(_@ - 8_y2 - @ + U(l‘,y,Z)) ¢(3773/a th) =1 (a_zf)(xvya th) A (27)
d
FHY =iy f < fHY = Af & Hip = M. (2.8)

The proof is complete. O
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In this way, we obtain the separation of the time variabénd reduce a solution
of the Schédinger equation to a solution of an eigenvalue/eigenvector problem. Now
we decompose this three dimensional equation into three one dimensional eigenvalue
equations as follows: Let us set

U(z,y,2) = Ui(z) + Us(y) + Us(2) (2.9)
V(z,y,2) = 1(z) o(y) ¥3(2) (2.10)
A=A+ Ao+ A 2.11)

Substituting these expressions into (2.5) leads to the three one dimensional eigenvalue
equations:

d2
(= + ) ) a(a) = 2y 10 (2.12)
(= + Ua)) ) = ha vl .13
(—j—; n U3<z>) V() = As s (2). (2.14)

Hence we are lead to the problem of solving one dimensional eigenvalue problems (for
physical reasons we are only interested’#iR )-solutions).

In the sequel, we will use results from regular perturbation theory, which will help us
to understand the oscillation phenomena occurring in several of our numerical studies.
For this purpose we briefly recall some essential facts from [1].

Definition 2.2. A (possibly unbounded) operator-valued functibf) from a complex
domaink c C into a Hilbert spacé is called aranalytic family, or an analytic family
in the sense of Kato, if and only if

1. Foreveryd € K, T(() is closed and has a non-empty resolvent set.

2. For everyj, € K, thereis a\, € p(T'(5,)) so that\, € p(T'(3)) for 5 nearg,
and(T'(3) — \o) ! is an analytic operator-valued function @hears,.

Lemma2.3.LetH : D(H) C S — S be a closed operator with nonempty resolvent
set. Defineld + 5V on D(H) N D(V). ThenH + 5V is an analytic family neaf = 0
if and only if:

1. D(H) Cc D(V)
2. Forsomer € Rt andy € R and for ally) € D(H), the following holds:

VoIl < [[HYl +y ¢l

We have the following existence result for perturbed spectral points:
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Theorem 2.4.LetT'(3) be an analytic family in the sense of Kato. I&tbe a nonde-
generate discrete eigenvalue B{3,). Then, fors near 3, there is exactly one point
E(B) of the spectruna (7'(3)) near E, and this point is isolated and nondegenerate.
E(B) is an analytic function of? for 5 near 3y, and there is an analytic eigenvector
v(B) for 5 near §,. If T'(3) is self-adjoint fors — [, real, thenv(/3) can be chosen to
be normalized fop3 — 3, real.

The following theorem concerns the radius of convergence for regular perturbation
series.

Theorem 2.5. Suppose that under the conditions of Theorem 2.4 and Lemma 2.3, we
have
Vol <z [HP| +y [[¥]] e D(H) < D(V).
Let H be self-adjoint with an unperturbed, isolated, nondegenerate eigen¥gluénd
let A = % dist(Ey,o(H) \ {Eo}). Define the functio®(z, y) by

Bo| + A\ ™!
R:R* =R, (z,y)— R(z,y):= (m+y+x’£‘+x ) .

Then the eigenvalug () of H + SV near Ej is analytic in the circle of radiug:(z, y)
around O.

3 Oscillation Phenomena for Perturbedz?-Potentials

The Hermite functionsp,, wheren € N, are the only solutions of the Sddinger
equation in?(R) for thez*-potential as can be verified by using Lebesgue’s dominated
convergence principle. These functions are eigenfunctions of thé&&oker operator
with z2-potential, the corresponding eigenvalues being:fer N,

A =2n+ 1. (3.1)
In the following we consider functions, € £*(R) with
770)\ = Z Cj()\)ej (32)
=0
He, = —¢! + Ue, = —€! + X%, = \yen, (3.3)

where forn € Ny, the eigenfunctions,, are the normalized Hermite functions aikg
are the corresponding eigenvalues.

To the z*-potential, we add a symmetric bounded linear perturbatiowith the
following properties (fom € Ny):

Ve, =a, e i1+ Bn €n_1, 6o =0 (3.4)
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1

m. (3-5)

Qp = 5n+1 -

With the perturbed Scbdinger operatof! + V' and the normalized Hermite functions
e, We get

(H+V)e,=2n+1) e, + Bur1 €ns1 + Bn €n_1- (3.6)

We inserty, as defined in equation (3.2) into the stationary 8dimger equation with
the perturbed Scbdinger operatof + V':

(H+V) ch()\) ej = Ach()\) ej.

Jj=0 Jj=0

Comparison of the coefficients gives a three term recurrence relatiop:for
) 2 1
Chir=Mm+1)"+A=2n—-1) ¢, + 1—1—%—1—@ Cn—1, (3.7)

wheren € N and the initial values are chosen as

Co = 07 C1 = 1, Cy = 4\ —12. (38)
Thus, we obtain
v =D (Ve (3.9)
7=0
9 2 1
Chpr=M+1)"+A=2n—-1) ¢, + 1+E+ﬁ Cn—1, neN (3.10)
Co — 0, C1 — 1, Cy — 4\ —12. (311)

Evaluating the three term recurrence relation for theg),cn, numerically, we may
graph the function

fr = log (Z |ck<A>|2> (3.12)

as a function of the paramet&r(see Figure 3.1). Note in this diagram the striking de-
pendence on the chosen parameterhis is due to the fact that can be considered as

a perturbation of{ in the sense of the stated results from Kato’s perturbation theory, see
Definition 2.2, Lemma 2.3 and Theorem 2.4 (resp., Theorem 2.5). As a consequence,
the eigenvalues aff are analytic continuations of the eigenvaluegiof- V.
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Figure 3.1:f) = log <i ]ck()\)\2> , A € [5;15]

J=0

4 Classical Oscillations of Power Series Solutions

Reviewing basic facts on the quadratic potential, let us consider in the sequel the power
series ansatz

o0

Pa(z) =) ep(M)ak (4.1)

k=0
with cor 1 = 0 for all & € Ny. Insertingy,, into the stationary Scbdinger equation

Hy(x) = My (), (4.2)
a comparison of the coefficients gives a three term recurrence relation iwke2&:

Ck_2<)\) — )\Ck()\>
(k+2)(k+1)

Ck+2(>‘) = (4.3)

As initial values we choose
C_2(>\) =0 C()()\) =1 CQ()\) = ——. (44)
Numerically evaluating the recurrence relation for the coefficients, we first plot

log | (z) + 1] (4.5)

for a constant value of (see Figure 4.1). In this way, we obtain the same zeros as the
function,. In a second plot (Figure 4.2) we usas a constant antlas variable. We
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Figure 4.1: U(x) = 2%, X € {29,3,3.01,3.001}, fi(z) =
log [x(x) + 1]

plot
log |[¥a(x) + 1. (4.6)
We then user and\ as variables and plot again (see Figures 4.3 and 4.4):

x=10

o
~
w
N

> ol

Figure 4.2:U(x) = 2%, x € {8,10}, fr(z) = log [vx(z) + 1|

log [1a(z) + 1] (4.7)

From standard results in quantum mechanics it is known that the energy eigenvalues
of the quadratic potential are given as the odd natural numbers (for thédbadper
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operator being given by ) () = —"(x) + z* ¥ (x)). Our numerical investigations
are in agreement with this fact. We will refer to the ladder operator formalism in the
next section in more detail.

Wit
70
U110 Y 7
1113y 1100
1ty AU )
/;;//,,’,’,’,’;l,;lo //////”ll"

Uiy
o
A

Figure 4.3:U(z) = 22, fa(z) = log|vn(z) + 1|, z € [0;8], A €
[0;10]

5 Oscillation Behavior of Potentials of4th Degree

For thexz?-potential (as well as at least partially for a few other simple potentials, e.g.,
z%) there exists a ladder operator formalism which allows one to obtain solutions for the
Schibdinger equation.

Ladder Operators. For our following purposes we use the well-known conven-
tional ladder operators, acting on suitable common domaiis (R ):

1
A:E(DJFX) (5.1)
1
AT = E(—D + X) (5.2)
with the operatorX
(Xf)(z) = zf(x) (5.3)

and the differential operatdp

(Df)(x) = f'(z). (5.4)
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Figure 4.4:U(z) = 22, fa(z) = log|va(z) + 1], z € [0;8], A €
[0;10]

The ladder operators have the followipgpperties:

A+ AT =V2X (5.5)
A— At =V2D (5.6)
[ = AAT — AT A, (5.7)

wherel is the identity operator. Fot € Ny andx € R we define
H,(z):= (=1)"" D" (5.8)

as well as the Hermite functiorg (non normalized) as follows

1.2

en(r) = Hy(z)e 27, (5.9)

For the ladder operators and the Hermite functions the following equations hold:

ATA = %(—D2 + X% — %1 (5.10)
AT Ae,, = ne,, n € Ny (5.11)
AAT = %(—02 + X?) + %I (5.12)
AATe, = (n+ 1)e,, n € Ny. (5.13)

The eigenvalues of the Hermite functions for the operétad® + X?) are given by the
sequencé2n + 1),en,. Using the properties of the ladder operators (5.5)—(5.7) and the
results (5.10)—(5.13) we obtain for the operakgras defined above:
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X2 = %(A b AN (A £ A7)
2X2= A2+ AT + ATA+ AAT
2X%e, = apen_s + Bnnis + Yntn for n € Ny, (5.14)

where we abbreviate for € N
Q= v/nvn — 1, Bn = vVn+ 1vVn + 2, Y i=2n + 1.
We apply2.X? again in equation (5.14) to obtain a potential of degree

4X%, = 0 (2X?)en—a + Bu(2X%)ensa + 10 (2X7)ey,
=y [ —2€n—4 + Bn26n + Yni2nio] (5.15)
+ B [Qnt2en + Bry2€nia + Yni2€nio]
+ Yo [nen_o + Bnenia + Mmeénl, n € Ny

X46n = 0p0p_2€n_4 + (an/}/n—2 + /Ynan)en—Q + (anﬁn—Q + ﬁnan+2 + ’7721)6n
+ (6n7n+2 + ’Vnﬁn)en—m + 6n6n+26n+47 nc I\IO' (516)

Then we define the operator
1
H = 5(—D? + X2+ XY, (5.17)

This means we have a Séilinger operator with the potenti&ll(z) = 2% + 2*. Using
the results (5.14) and (5.16) we get foE Ng:

HeQn = Ane2n74 + Bn€2nf2 + Cn€2n + Dn62n+2 + Ene2n+4 (518)
with
A, = Oé2n—2062n’ B, — Q2nVon—2 1 0527172717 (5.19)
8 8
C = QonBan—2 + Panonia + 8(2n + 1)3’ D, i— BonYont2 + 727152717 (5.20)
8 8

E, = % (5.21)

Upon substitution of
Up 1= €2 (5.22)

equation (5.18) becomes

Huv, = Ayv,_9+ B, 1+ Crvy + Dyvyyr + Eqvg o, n € Ng. (5.23)
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Now we consider functions of the form
> nvn (5.24)
=0

and insert them into the stationary Sgtiinger equation with the operatérfrom equa-
tion (5.17)

H i CnUp = A i CrUn, (5.25)
§=0 §=0

to get a five term recurrence relation of type
Cn+2An+2+Cn+1Bn+1+Cn(Cn_/\)+cn—1Dn—1+0n—2En—2 = 0, n e No. (526)
There are two paths for the initial values, which differ in the choice,of

First path:
C_9g=C_1= 0
o= a, aceR
C1 = 1
Second path:
c_9g=c_1=0
co=1
c1 = a, a € R.

We evaluate the recurrence relation numerically, only considering the second path for
the initial values, and plot (see Figure 5.1):

log (Z ci(a)) : ck(a) = cr(a, N). (5.27)

k=0

The variables results from the initial value fot;. A is considered to be a constant. In
a second plot we choose the initial valu@s a constant (see Figure 5.2) anérom
equation (5.25), (5.26) as variable. That means we plot

log (Z cz(A)> : (N = e(a, N) (5.28)

k=0

for different values ofi. Finally we consider both and\ as variables and plot the three
dimensional graph (see Figure 5.3) of:

log (Z c;(a, )\)> : (5.29)

k=0
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618 — T

Figure 5.1:n = 100, A € {0,1,2,3}, fi(a) = log (Z ci(a))

k=0

618 — -

616 — -

614 | |
-10 -5 0 5

Figure 5.2:n = 100, a € {0,1,2,3}, f.(\) = log ( CZO\))
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We observe that for certain values©find A there arise minima in the function land-
scape, see Figures 5.1, 5.2, and 5.3. However this already reveals that generalizing our
method used so far to potentials of higher degree will cause difficulties in getting reason-
able quantitative results. This is due to the fact that additional initial parameters, like
a, will arise: We have to develop an alternative approach to higher degree potentials,
and this will happen throughout the next section — using basic versions didscher
difference equations.

QR wmno,v..nmvo~o~owom,ooo..o,~u.~,u
S

A A
LR AR 0000
SRR '?'h"""”"t’x‘ﬂ

il tetontnontantiat nnos
O Q'.O ’0“
Leuui i it

mulo”!l"y"

I ’"‘""W"‘

6 Oscillation Behavior ong-Linear Grids

As we saw in Section 2, there exists a solution for the &timger Equation with Her-

mite functions for thex>-potential. For some potentials, for example tifeor z%-
potential, there are ladder operator formalisms to get the solution. If we want to handle
any arbitrary potential, we need a relaxation of the 8dhrger operator. Therefore, we
firstintroduce a-linear grid, as an adaptive discretization, on which we search for our
solutions:

R, ={xc¢"|n € Z} . (6.1)

For our purposes we only considek ¢ < 1 and laterc = 1. In this way, we get a grid
with a very high density around zero, which allows us to scan as much information as
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possible close to the point zero region. On

P(Ry) = {f Ry Ry " (1 — ) f*(q") < OO}

we introduce the scalar product

Z ¢ ") + F(=q")g(—qM)] (1 = g) 6.2)

n=—oo

and choose aymmetric difference operator D,

flgz) — f(qflx).

qr —q

(Dqf)(x) = (6.3)

With this definition we are able to provide a reasonable choice fodidwete Schio-
dinger operator on the chosep-linear grid:

Hy=—-D+ a(R*+q *L*) + V(z) (6.4)

with an arbitrary potential” and the left-shift and right-shift operatofs R.
(Lf) (@) = fla"'x) (6.5)
(Rf)(x) = f(qz). (6.6)

Up to this point, we can say that the expression (6.4) provides a relaxation of the
Schibdinger operator and hence ensures a numerically stable treatment. To guaran-
tee a most efficient and at the same time simple numerical procedure, we chaude
that we are in the weighted(N)-situation:

For the difference operatdp, the following equation for the “second derivative”

holds:
@0 =f) _ f@)-f(g~z)
DiNw) = ——= (6.7)

The left shift part of (6.7) is

f(@?x)—f (=)
. q?z—x _ f( ) (68)

qr —q 1w (*—1)(q—q")a?

Considering the left shift part of the whole discrete Schinger operator we get

B f(g°x)
(¢? = 1)(g —g7)a?

+ af(q’x). (6.9)
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Equation (6.9) has to be zero for= ¢ = 1 to guarantee a monolateral scenario for the
related infinite Jacobi matrix, thus yielding
a = ! (6.10)
(> =1(g—q") '

With (6.10) we finally obtain for theliscrete Schibdinger operator:

H,=—-D;+ (R* +q L) + V(z). (6.11)

(> =1Dlg—q")
In the stationary Sclkdinger equation we applyZ, on a functionf € I*(R,). Our

intention is to obtain qualitative and quantitative statements about the eigenvalues of
(6.11). To this end, we insert into the eigenequation

(Hof)(x) = Af(x) (6.12)
the concrete form of the discrete Seétimger operator:
_ f(q*x) f(x) 1 1
(Hof)z) = A-@)g—a  (G-qz|[[@-De  (1-ge
- T el )+ V@) ) (643
= \f(x).

Note that in all these calculations, the variableuns inR,. From equation (6.13) we
obtain a recurrence relation fgf¢*x):

f(x) <(1 — q2)(q1— e + a) — f(q %) ((1 — qQ)(lq e aq‘z)

+ f(z) <<q2 - ‘11)4{1‘1__1(12)%2 +V(x) - )\) =0. (6.14)
Defining forz € R,
D(x) = ( e f)zq__lq%Q + V() — )\) (6.15)
D(x) = ( e 3)?1(]_161—2):52 + V(x)) (6.16)
He) = ((1 - qQ)(Q1 —g a) (617
00 = (== gm0 ) (618)
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and solving equation (6.14) fgi{q—*z) we get

[(@2)L(x) + [(2)D(x)

e (6.19)

fla™z) =

In this way we obtain a three term recurrence relation ffoy 2z) for any arbitrary
potential V' (x). In matrix-vector notation the stationary Sodimger equation for this
problem is

Af(z) = Af(2) reR, (6.20)
with the matrixA:
. 0
0 L(¢*) D(¢*) -U(¢®) 0
0 L(1) D(1) -U(1) 0
0 L(g? D(? -U@g? 0
0 .
and the vector(z)
(@)
f(1)
fla?)

The upper-, sub- and diagonal entries of the matrisatisfy (see also Figure 6.1):

lim (~U(2)) = ag~> (6.21)
xh_}rgo(L(:z:)) =« (6.22)
lim (D(x)) = V(). (6.23)

r—00

For anumerical visualization we considerr € R, x > 1 and choose as initial values
fl@®) =0 (6.24)
f(1) =1. (6.25)

This means, the matriX and the vectofin (6.20) reduce to
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300~

200~

D(x)
100

-100[~ |/
|

_200 | ! | | | | ! J
0

We solve the recurrence relation ffg2z) in (6.19) and plot

h()) = log (Z a* fleg ™, A)?) (6.26)
k=0

for different potentiald/(x), see Figures 6.2, 6.3, 6.4, and 6.5. A numerical evaluation
of the matrixA and of the eigenvalues of with the () R-algorithm gives forg = 0.9
andV (z) = z*:

46.125 10.585 0 0 0 0 0
8.5737 35.003 17.529 0 0 0 0
0 14.199 48.548 22.086 0 0 0

0 17.89  169.91 25.075 0 0

0
0 0 0 20.311 856.52 27.037 0
0 0 0 0 21.9 4582.7 28.324
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Figure 6.2:V (z) = 2%, 2 € R,, ¢ = 0.9, h()\) = log <Z q 2 feq ™, )\)2>

k=0

Figure 6.3:V (z) = 2%, 2 € R, ¢ = 0.9, h(\) = log (Z q 2 feqg?, )\)2)

k=0
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Figure 6.4: V(z)

log (i q 2 fleg™, A)z)
k=0

2% and V()

50

1 1
120 140

Figure 6.5:V () = 2%, 2 € R,, ¢ = 0.9, h(\) = log (

1 1
160 180 200

n

Zq_2kf(cq_2k, )\)2)

k=0

265
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with the vector of the eigenvalues:

21.249
45.913
59.279
172.4
857.11
4582.8

A comparison of the numerically evaluated eigenvalues and of the minima in Figure
6.5 shows quite a good similarity, even for the first eigenvalues. We also observe, that
the eigenvalues,, get closer to the diagonal entries of the matfifor largern. Note

finally that the relaxation we have chosen fits well into the framework of analytic per-
turbation theory. See the general facts from Section 2 along with the detailed analytic
investigation of the Sckidinger difference operator we used above.
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