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Abstract

We are concerned with the self-adjoint equation Lx(t) = [r(t)x∆(t)]∆ + q(t)x(σ(t)) =
0. We will study certain Green’s functions associated with this equation. Comparison
theorems for initial value problems and boundary value problems will be given.
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1 Introduction

We are concerned with the self-adjoint equation

Lx(t) = [r(t)x∆(t)]∆ + q(t)x(σ(t)) = 0.

To understand this so-called differential equation on a measure chain(time scale) we need some
preliminary definitions.
Definition Let T be a closed subset of the real numbers R. We assume throughout that T has
the topology that it inherits from the standard topology on the real numbers R. For t < supT,
define the forward jump operator by

σ(t) := inf{τ > t : τ ∈ T} ∈ T

and for t > inf T define the backwardjump operator by

ρ(t) := sup{τ < t : τ ∈ T} ∈ T

for all t ∈ T. If σ(t) > t, we say t is right scattered, while if ρ(t) < t we say t is left scattered.
If σ(t) = t we say t is right dense, while if ρ(t) = t we say t is left dense.

Throughout this paper we make the blanket assumption that a ≤ b are points in T.
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Definition Define the interval in T

[a, b] := {t ∈ T such that a ≤ t ≤ b}.

Other types of intervals are defined similarly.

We are concerned with the calculus on measure chains which is a unified approach to continuous
and discrete calculus. An excellent introduction to this subject is given by S. Hilger [7]. See
also the monograph by Kaymakcalan, Laksmikantham, and Sivasudaram [8]. Agarwal and
Bohner [1] refer to it as calculus on time scales. Other papers in this area include Agarwal and
Bohner [3], Agarwal, Bohner, and Wong [4], and Hilger and Erbe [6]. In a forthcoming paper
the authors will apply the techniques of this paper to prove the existence of positive solutions
to general two-point boundary value problems. To do this we will use fixed point theorems for
operators defined on appropriate cones in a Banach space.
Definition Assume x : T → R and fix t ∈ T (if t=supT assume t is not left-scattered), then
we define x∆(t) to be the number (provided it exists) with the property that given any ε > 0,
there is a neighborhood U of t such that

|[x(σ(t))− x(s)]− x∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|,

for all s ∈ U. We call x∆(t) the delta derivative of x(t).
It can be shown that if x : T → R is continuous at t ∈ T and t is right scattered, then

x∆(t) =
x(σ(t))− x(t)

σ(t)− t
.

If t is right dense, then

x∆(t) = lim
s→t

x(σ(t))− x(s)

σ(t)− s
.

Definition We say x : T → R is right dense continuous on T provided it is continuous at all
right dense points and at points that are left dense and right scattered we just assume the left
hand limit exists (and is finite). We denote this by x ∈ Crd(T ).

Definition Define the set D to be the set of all functions x : T → R, such that x∆(t) is
continuous on T and [r(t)x∆(t)]∆ is right dense continuous on T.

We say that a function x is a solution of Lx=0 on T provided x ∈ D and Lx(t)=0 for all t ∈ T.

Example 1 If T = Z, the set of integers, then

x∆(t) = ∆x(t) := x(t + 1)− x(t).

Furthermore the equation Lx=0 reduces to the self-adjoint difference equation

∆[r(t)∆x(t)] + q(t)x(σ(t) = 0.

See the books [2] and [9] and the references there for results concerning this self-adjoint difference
equation.
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Example 2 If T = R, then the equation Lx=0 reduces to the self-adjoint differential equation

Lx(t) = [r(t)x′(t)]′ + q(t)x(t) = 0,

which has been studied extensively over the years.

Example 3 Consider the differential equation

x∆∆(t) + π2x(σ(t)) = 0,

on the measure chain
T = [0, 1] ∪ ∪∞n=2{n}.

Let x(t) be the solution of the above equation satisfying the initial conditions x(0) = 0, x∆(0) = 1.
One can show that

x(t) =


1
π
sinπt, 0 ≤ t ≤ 1

-1, t=2
(2− π2)x(t-1)-x(t-2), t=3,4,...

Note that our solution ”pieces” together a solution of a differential equation and a solution of
a difference equation.

Example 4 Consider the differential equation

x∆∆(t) + π2x(σ(t)) = 0,

on the measure chain
T = ∪∞n=0[2n, 2n + 1].

Let x(t) be the solution of the above equation satisfying the initial conditions x(0) = 0, x∆(0) = 1.
One can show that this solution on [0,1]∪[2,3] is given by

x(t) =

{
1
π
sinπt, 0 ≤ t ≤ 1

-cosπt+π2−1
π

sinπt, 2 ≤ t ≤ 3.

In the next example our differential equation on a measure chain leads to a discrete problem
with variable step size.

Example 5 Solve the IVP
x∆∆(t) + x(σ(t)) = 0,

x(0) = a, x∆(0) = b,

on the measure chain
T = ∪∞k=0Tk

where

Tk = ∪∞n=1{k +
n− 1

n
}.
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For t ∈ T0, this solution is determined by the IVP

x(
n + 1

n + 2
) +

1− 2n(n + 1)3

n(n + 1)2(n + 2)
x(

n

n + 1
) +

n

n + 2
x(

n− 1

n
) = 0.

x(0) = a, x∆(0) = b.

For t ∈ T1, using Maple we get that this solution is determined by the IVP

x(1 +
n + 1

n + 2
) +

1− 2n(n + 1)3

n(n + 1)2(n + 2)
x(1 +

n

n + 1
) +

n

n + 2
x(1 +

n− 1

n
) = 0.

x(1) = limn→∞x(
n− 1

n
) ≈ −.897a + 1.584b

x∆(1) = limn→∞x∆(
n− 1

n
) ≈ −1.637a + .801b.

In particular, note that on each set Tk the solution x(t) of the given IVP solves the same
difference equation, where for k ≥ 1 the initial conditions on Tk are determined by the values
of the solution on Tk−1.

Definition If F∆(t) = f(t), then we define an integral by∫ t

a

f(τ) ∆τ = F (t)− F (a).

In this paper we will use elementary properties of this integral that either are in the references
[1,3-8] or are easy to verify.
Definition We say x(t,s) is the Cauchy function for Lx=0 provided for each fixed s ∈ T, x(t,s)
is the solution of the IVP Lx(t,s)=0,

x(σ(s), s) = 0,

x∆(σ(s), s) =
1

r(σ(s))
.

It is easy to verify the following example.

Example 6 The Cauchy function for Lx = [r(t)x∆(t)]∆ = 0 is given by

x(t, s) =

∫ t

σ(s)

1

r(τ)
∆τ.

We will use the following result in the next section, whose proof is a straight forward consequence
of the definition of the delta derivative.

Lemma 7 Let a, b ∈ T and assume f∆(t, s) is continuous on [a, σ(b)] × [a,b], then

{
∫ t

a

f(t, τ)∆τ}∆ =

∫ t

a

f∆(t, τ)∆τ + f(σ(t), t),

{
∫ b

t

f(t, τ)∆τ}∆ =

∫ b

t

f∆(t, τ)∆τ − f(σ(t), t).
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2 Main Results

We will use the first formula in Lemma 7 to prove the following variation of constants formula.

Theorem 8 (Variation of constants formula) Assume h(t) is continuous on [a,b] and x(t,s) is
the Cauchy function for Lx(t)=0, then it follows that

x(t) :=

∫ t

a

x(t, s)h(s)∆s

is the solution of the IVP
Lx(t) = h(t),

x(a) = 0, x∆(a) = 0.

Proof: Let x(t,s) be the Cauchy function for Lx=0 and set

x(t) =

∫ t

a

x(t, s)h(s)∆s.

Note that x(a)=0. Using the first formula in Lemma 7, we get that

x∆(t) =

∫ t

a

x∆(t, s)h(s)∆s + x(σ(t), t)h(t)

=

∫ t

a

x∆(t, s)h(s)∆s,

since x(σ(t), t)=0. Hence, x∆(a)=0. Also

r(t)x∆(t) =

∫ t

a

r(t)x∆(t, s)h(s)∆s.

Again using the first formula in Lemma 7, we get that

[r(t)x∆(t, s)]∆ =

∫ t

a

[r(t)x∆(t, s)]∆h(s)∆s + r(σ(t))x∆(σ(t), t)h(t)

=

∫ t

a

[r(t)x∆(t, s)]∆h(s)∆s + h(t).

It follows that

Lx(t) =

∫ t

a

Lx(t, s)h(s)∆s + h(t)

= h(t).

Definition Let a, b ∈ T. We want to consider Lx(t)=0 on the interval [a, σ2(b)]. We say a
nontrivial solution of Lx=0 has a generalized zero at a iff x(a)=0. We say a nontrivial solution
x(t) has a generalized zero at t0 ∈ (a, σ2(b)], provided either x(t0)=0 or x(ρ(t0))x(t0) < 0.
Finally we say Lx=0 is disconjugate on [a, σ2(b)] provided there is no nontrivial solution of
Lx=0 with two(or more) generalized zeros in [a, σ2(b)].
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Theorem 9 (Comparison theorem for IVP’s) Assume Lx = 0 is disconjugate on [a, σ2(b)]. If
u, v ∈ D are functions satisfying

Lu(t) ≥ Lv(t), t ∈ [a, b],

u(a) = v(a), u∆(a) = v∆(a),

it follows that
u(t) ≥ v(t), t ∈ [a, σ2(b)].

Proof: Let u(t), v(t) be as in the statement of this theorem and set

w(t) := u(t)− v(t),

for t ∈ [a, σ2(b)]. Then
h(t) := Lw(t) = Lu(t)− Lv(t) ≥ 0,

for t ∈ [a, b]. It follows that w(t) solves the IVP

Lw(t) = h(t),

w(a) = w∆(a) = 0.

Hence by the variation of constants formula

w(t) =

∫ t

a

x(t, s)h(s)∆s.

Since Lx=0 is disconjugate on [a,σ2(b)], x(t,s) ≥ 0 for t≥ σ(s). Note that

w(t) =

∫ ρ(t)

a

x(t, s)h(s)∆s +

∫ t

ρ(t)

x(t, s)h(s)∆s.

If t is left scattered, then

w(t) =

∫ ρ(t)

a

x(t, s)h(s)∆s + x(t, ρ(t))h(ρ(t))

=

∫ ρ(t)

a

x(t, s)h(s)∆s.

Since x(t,s) ≥ 0 for t ≥ σ(s) we get that

w(t) ≥ 0

which implies the desired result. If t is left dense it is easy to see that w(t) ≥ 0.

Now consider the general two-point BVP

Lx = 0,
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αx(a)− βx∆(a) = 0,

γx(σ(b)) + δx∆(σ(b)) = 0,

where we assume throughout that α, β, γ, and δ are contants such that

α2 + β2 > 0,

γ2 + δ2 > 0.

Theorem 10 Assume that the BVP
Lx = 0,

αx(a)− βx∆(a) = 0,

γx(σ(b)) + δx∆(σ(b)) = 0,

has only the trivial solution. For each fixed s ∈ [a,b], let u(t,s) be the unique solution of the BVP
Lu(t,s)=0, αu(a, s)− βu∆(a, s) = 0, γu(σ(b), s) + δu∆(σ(b), s) = −γx(σ(b), s)− δx∆(σ(b), s)),
where x(t,s) is the Cauchy function for Lx=0. Then

G(t, s) =

{
u(t,s), t ≤ s
u(t,s)+x(t,s), σ(s) ≤ t

is the Green’s function for the BVP
Lx = 0,

αx(a)− βx∆(a) = 0,

γx(σ(b)) + δx∆(σ(b)) = 0.

Proof: It is easy to see, for each fixed s ∈ [a,b], that u(t,s) is uniquely determined by the BVP
given in the statement of the theorem. Let u(t,s), x(t,s), and G(t,s) be as in the statement of
this theorem and assume h(t) is a given continuous function on [a,b]. Then define

x(t) :=

∫ σ(b)

a

G(t, s)h(s)∆s.

for t ∈ [a, σ2(b)]. First note that

x(t) =

∫ σ(b)

a

G(t, s)h(s)∆s.

=

∫ t

a

G(t, s)h(s)∆s +

∫ σ(b)

t

G(t, s)h(s)∆s.

Using the definition of G(t,s) we get that

x(t) =

∫ t

a

[u(t, s) + x(t, s)]h(s)∆s +

∫ σ(b)

t

u(t, s)h(s)∆s.
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Hence,

x∆(t) =

∫ t

a

[u∆(t, s)+x∆(t, s)]h(s)∆s+[u(σ(t), t)+x(σ(t), t)]h(t)+

∫ σ(b)

t

u∆(t, s)h(s)∆s−u(σ(t), t)h(t)

Simplifying we get that

x∆(t) =

∫ t

a

[u∆(t, s) + x∆(t, s)]h(s)∆s +

∫ σ(b)

t

u∆(t, s)h(s)∆s.

It follows that

x∆(a) =

∫ σ(b)

a

G∆(a, s)h(s)∆s

and

x∆(σ(b)) =

∫ σ(b)

a

G∆(σ(b), s)h(s)∆s.

Therefore

αx(a)− βx∆(a) =

∫ σ(b)

a

[αG(a, s)− βG∆(a, s)]h(s)∆s,

=

∫ σ(b)

a

[αu(a, s)− βu∆(a, s)]h(s)∆s,

= 0.

γx(σ(b)) + δx∆(σ(b)) =

∫ σ(b)

a

[γG(σ(b), s) + δG∆(σ(b), s)]h(s)∆s,

=

∫ σ(b)

a

{γ[x(σ(b), s) + u(σ(b), s)] + δ [x∆(σ(b), s) + u∆(σ(b), s)}h(s)∆s,

= 0.

Hence we have shown that x(t) satisfies the boundary conditions.
From above we get that

r(t)x∆(t) =

∫ t

a

[r(t)u∆(t, s) + r(t)x∆(t, s)]h(s)∆s +

∫ σ(b)

t

r(t)u(t, s)h(s)∆s.

Therefore,

[r(t)x∆(t)]∆ =

∫ t

a

{[r(t)u∆(t, s)]∆ + [r(t)x∆(t, s)]∆}h(s)∆s

+ r(σ(t))u∆(σ(t), t)h(t) + r(σ(t))x∆(σ(t), t)h(t)

+

∫ σ(b)

t

[r(t)u∆(t, s)]∆h(s)∆s− r(σ(t))u∆(σ(t), t)h(t)

=

∫ σ(b)

a

[r(t)u∆(t, s)]∆h(s)∆s +

∫ t

a

[r(t)x∆(t, s)]∆h(s)∆s + h(t).
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From earlier in the proof we get that

x(t) =

∫ σ(b)

a

u(t, s)h(s)∆s +

∫ t

a

x(t, s)h(s)∆s.

It follows that

q(t)x(σ(t)) =

∫ σ(b)

a

q(t)u(σ(t), s)h(s)∆s +

∫ σ(t)

a

q(t)x(σ(t), s)h(s)∆s.

If t is right dense, then we get that

q(t)x(σ(t)) =

∫ σ(b)

a

q(t)u(σ(t), s)h(s)∆s +

∫ t

a

q(t)x(σ(t), s)h(s)∆s.

If t is right scattered, then∫ σ(t)

a

q(t)x(σ(t), s)h(s)∆s =

∫ t

a

q(t)x(σ(t), s)h(s)∆ +

∫ σ(t)

t

q(t)x(σ(t), s)h(s)∆

Using the fact that x(σ(t), t) = 0, we also get that the second term is zero. Hence in either
case we get that

q(t)x(σ(t)) =

∫ σ(b)

a

q(t)u(σ(t), s)h(s)∆s +

∫ t

a

q(t)x(σ(t), s)h(s)∆s.

Finally, we obtain
Lx(t) = [r(t)x∆(t)]∆ + q(t)x(σ(t))

=

∫ σ(b)

a

Lu(t, s)h(s)∆s +

∫ t

a

Lx(t, s)h(s)∆s + h(t) = h(t),

for t ∈ [a, b].

Corollary 11 (Green’s function for the conjugate problem) Assume Lx = 0 is disconjugate on
[a, σ2(b)]. Let x(t,s) be the Cauchy function for Lx = 0 and for each fixed s ∈ T let u(t,s) be
the unique solution of the BVP Lx = 0, u(a, s) = 0, u(σ2(b), s) = −x(σ2(b), s). Then

G(t, s) :=

{
u(t,s), t ≤ s
u(t,s)+x(t,s), σ(s) ≤ t

is the Green’s function for the BVP
Lx(t) = 0,

x(a) = 0, x(σ2(b)) = 0.
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Proof: Note that, since Lx=0 is discojugate on [a,σ2(b)], it follows that the BVP Lx=0, x(a)=0,
x(σ2(b))=0 has only the trivial solution. If σ(b) is right scattered then this Corollary follows
from Theorem 9 with

α 6= 0, β = 0, δ = [σ2(b)− σ(b)]γ, γ 6= 0.

On the other hand if σ(b) is right dense then this result follows from Theorem 9 with

α 6= 0, β = 0, γ 6= 0, δ = 0.

Corollary 12 The Green’s function for the BVP

Lx = [r(t)x∆(t)]∆ = 0,

x(a) = 0,

x(σ2(b)) = 0,

is given by

G(t, s) =


−

R t
a

1
r(τ)

∆τ
R σ2(b)

σ(s)
1

r(τ)
∆τR σ2(b)

a
1

r(τ)
∆τ

, t ≤ s

−
R σ(s)

a
1

r(τ)
∆τ

R σ2(b)
t

1
r(τ)

∆τR σ2(b)
a

1
r(τ)

∆τ
, σ(s) ≤ t

Proof: It is easy to see that
Lx = [r(t)x∆(t)]∆ = 0

is disconjugate on [a, σ2(b)]. By Corollary 11, the u(t,s) in the statement of Corollary 11 for
each fixed s ∈ [a,b] solves the BVP Lx = 0,

u(a, s) = 0,

u(σ2(b), s) = 0.

Since

x1(t) = 1 and x2(t) =

∫ t

a

1

r(τ)
∆τ

are solutions of Lx=0,

u(t, s) = α(s) ∗ 1 + β(s)

∫ t

a

1

r(τ)
∆τ.

Using the boundary conditions u(a, s) = 0 and u(σ2(b)) = 0 it can be shown that

u(t, s) = −

∫ t

a
1

r(τ)
∆τ

∫ σ2(b)

σ(s)
1

r(τ)
∆τ∫ σ2(b)

a
1

r(τ)
∆τ

.
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Hence G(t,s) has the desired form for t≤ s. By Corollary 11 for t ≥ σ(s),

G(t, s) = x(t, s) + u(t, s),

where x(t, s) is the Cauchy function for Lx = [r(t)x∆(t)]∆. From Example 6

x(t, s) =

∫ t

σ(s)

1

r(τ)
∆τ.

Therefore

G(t, s) =

∫ t

σ(s)

1

r(τ)
∆τ −

∫ t

a
1

r(τ)
∆τ

∫ σ2(b)

σ(s)
1

r(τ)
∆τ∫ σ2(b)

a
1

r(τ)
∆τ

.

Getting a common denominator,

G(t, s) =

∫ t

σ(s)
1

r(τ)
∆τ

∫ σ2(b)

a
1

r(τ)
∆τ −

∫ t

a
1

r(τ)
∆τ

∫ σ2(b)

σ(s)
1

r(τ)
∆τ∫ σ2(b)

a
1

r(τ)
∆τ

.

=

∫ t

σ(s)
1

r(τ)
∆τ [

∫ t

a
1

r(τ)
∆τ +

∫ σ2(b)

t
1

r(τ)
∆τ ]−

∫ t

a
1

r(τ)
∆τ

∫ σ2(b)

σ(s)
1

r(τ)
∆τ∫ σ2(b)

a
1

r(τ)
∆τ

.

=

∫ t

a
1

r(τ)
∆τ [−

∫ σ2(b)

t
1

r(τ)
∆τ ] +

∫ t

σ(s)
1

r(τ)
∆τ

∫ σ2(b)

t
1

r(τ)
∆τ∫ σ2(b)

a
1

r(τ)
∆τ

.

= −

∫ σ2(b)

t
1

r(τ)
∆τ [

∫ t

a
1

r(τ)
∆τ −

∫ t

σ(s)
1

r(τ)
∆τ ]∫ σ2(b)

a
1

r(τ)
∆τ

.

Hence for t ≥ σ(s),

G(t, s) = −
∫ σ(s)

a
1

r(τ)
∆τ

∫ σ2(b)

t
1

r(τ)
∆τ∫ σ2(b)

a
1

r(τ)
∆τ

,

which is the desired result.

For the special case of Corollary 12 where T=Z, the Green’s function is given in Example
1.26 in [2]. See Section 7.5 in [2] for the vector case.

Theorem 13 (Comparison theorem for conjugate BVP’s) Assume Lx = 0 is disconjugate on
[a, σ2(b)]. If u(t), v(t) are functions in D satisfying

Lu(t) ≤ Lv(t), t ∈ [a, b],

u(a) ≥ v(a), u(σ2(b)) ≥ v(σ2(b)),

it follows that
u(t) ≥ v(t), t ∈ [a, σ2(b)].
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Proof: Let u(t) and v(t) be as in the statement of the theorem and set

w(t) = u(t)− v(t),

for t ∈ [a, σ2(b)]. Set
h(t) = Lw(t), t ∈ [a, b],

then
h(t) = Lu(t)− Lv(t) ≤ 0, t ∈ [a, b].

It follows that w(t) solves the BVP

Lw(t) = h(t), t ∈ [a, σ2(b)],

w(a) = A, w(σ2(b)) = B,

where
A := u(a)− v(a) ≥ 0, B := u(σ2(b))− v(σ2(b)) ≥ 0.

It follows that

w(t) = φ(t) +

∫ σ(b)

a

G(t, s)h(s)∆s,

where φ(t) solves the BVP
Lφ(t) = 0

φ(a) = A, φ(σ2(b)) = B.

From the disconjugacy
φ(t) ≥ 0, t ∈ [a, σ2(b)],

and
G(t, s) ≤ 0,

t ∈ [a, σ2(b)], s ∈ [a, b].

It follows that
w(t) ≥ 0,

which gives the desired result.

The following result shows that a nontrivial solution of Lx=0 can not have a ”double zero”.

Theorem 14 If x(t) is a nontrivial solution of Lx=0 such that x(t) ≥ 0 on [a,σ2(b)], then
x(t)) > 0 on (a,σ(b)).

Proof: Assume that x(t) is a nontrivial solution of Lx=0 such that x(t) ≥ 0 on [a,σ2(b)]. We will
assume there is a τ in (a,σ2(b)) such that x(τ)=0 and show that this leads to a contradiction.
First we show that

x∆(τ) > 0.
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If τ is right scattered, then

x∆(τ) =
x(σ(τ))− x(τ)

σ(τ)− τ

=
x(σ(τ))

σ(τ)− τ
> 0,

since x(t) is a nontrivial solution. On the other hand if τ is right dense, then

x∆(τ) = lim
s→τ

x(σ(τ))− x(s)

σ(τ)− s

= lim
s→τ

−x(s)

τ − s

= lim
s→τ+

−x(s)

τ − s

≥ 0.

Since x(τ) =0 and x(t) is a nontrivial solution we have that

x∆(τ) > 0.

Hence in all cases we have that this last inequality holds. To get a contradiction we consider
the two possibilities that τ is left scattered or τ is left dense. First assume τ is left scattered.
Using x(t) is a solution we get after an integration that

{r(t)x∆(t)}τ
ρ(τ) = −

∫ τ

ρ(τ)

q(t)x(σ(t))∆t.

= −q(ρ(τ))x(σ(ρ(τ)))

= −q(ρ(τ))x(τ) = 0.

Hence
r(τ)x∆(τ) = r(ρ(τ))x∆(ρ(τ)).

This implies that
x∆(ρ(τ)) > 0.

But

x∆(ρ(τ)) =
x(τ)− x(ρ(τ))

τ − ρ(τ)

=
−x(ρ(τ))

τ − ρ(τ)
≤ 0,

which is a contradiction.
Finally consider the case where we assume τ is left dense. In this case using the fact that x∆(t)
is left continuous at τ we get that there is a δ > 0 such that

x∆(t) >
x∆(τ)

2

13



when t ∈ [τ − δ, τ ]. Let τ0 ∈ (τ − δ, τ) and integrate from τ0 to τ to get that

x(τ)− x(τ0) =
x∆(τ)

2

∫ τ

τ0

∆s ≥ 0.

Since x(τ)=0 we get that
x(τ0) ≤ 0,

which is a contradiction.

Corollary 15 If, in Theorem 8, we either assume in addition that Lu(t) < Lv(t) on a subset
of [a,b] of positive measure or if we assume in addition that one of the inequalities u(a) ≥ v(a),
u(σ2(b)) ≥ v(σ2(b)) is strict, then we get that

u(t) > v(t)

for t ∈ (a, σ2(b)).

Proof:

Next we consider the focal BVP
Lx = 0,

x(a) = 0, x∆(σ(b)) = 0.

The following result follows from Theorem 10 with

β = γ = 0.

Corollary 16 (Green’s function for focal BVP) Assume the BVP Lx = 0, x(a) = 0, x∆(σ(b)) =
0 has only the trivial solution. For each fixed s ∈ [a,b] let u(t,s) be the solution of the BVP
Lu(t, s) = 0, u(a, s) = 0, u∆(σ(b), s) = −x∆(σ(b), s), where x(t,s) is the Cauchy function of
Lx=0. Then

G(t, s) :=

{
u(t,s), t ≤ s
u(t,s)+x(t,s), σ(s) ≤ t

is the Green’s function for the focal BVP

Lx(t) = 0,

x(a) = 0, x∆(σ(b)) = 0.

Corollary 17 The Green’s function for the focal BVP

Lx = [r(t)x∆(t)]∆ = 0,

x(a) = 0,

14



x∆(σ(b)) = 0,

is given by

G(t, s) =

{
−

∫ t

a
1

r(τ)
∆τ , t ≤ s

−
∫ σ(s)

a
1

r(τ)
∆τ , σ(s) ≤ t

Proof: It is easy to see that the focal BVP given in the statement of this theorem has only the
trivial solution. Hence we can apply Corollary 11 to find the focal Green’s function G(t,s). For
t ≤ s, G(t,s)=u(t,s), where for each fixed s, u(t,s) solves the BVP

[r(t)x∆(t)]∆ = 0,

u(a, s) = 0,

u(σ(b)) = −x(σ(b), s).

Solving this BVP we get that

u(t, s) = −
∫ t

a

1

r(τ)
∆τ,

which is the desired expression for G(t,s) for t ≤ s. For t ≥ σ(s),

G(t, s) = u(t, s) + x(t, s),

= −
∫ t

a

1

r(τ)
∆τ +

∫ t

σ(s)

1

r(τ)
∆τ.

Simplifying we get the desired conclusion

G(t, s) = −
∫ σ(s)

a

1

r(τ)
∆τ,

for t ≥ σ(s).

Definition We say Lx=0 is disfocal on [a,σ2(b)] provided there is no nontrivial solution x(t)
such that x(t) has a generalized zero in [a,σ2(b)] followed by a generalized zero of x∆(t) in
[a,σ2(b)].

The proof of the following result is similar to the proof of some earlier results in this paper
and will be omitted.

Corollary 18 (Comparison theorem for focal BVP’s) Assume u,v ∈ D, Lx=0 is disfocal on
[a, σ2(b)],

Lu(t) ≤ Lv(t), t ∈ [a, b],

and
u(a) ≥ v(a), u∆(σ(b)) ≥ v∆(σ(b))

then u(t) ≥ v(t) for t ∈ [a, σ2(b)].

15



References

[1] R. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications,
preprint.

[2] C. Ahlbrandt and A. Peterson, Discrete Hamiltonian Systems: Difference Equations, Con-
tinued Fractions, and Riccati Equations, Kluwer Academic Publishers, Boston, 1996.

[3] R. Agarwal and M. Bohner, Quadratic functionals for second order matrix equations on
time scales, preprint.

[4] R. Agarwal, M. Bohner, and P. Wong, Sturm-Liouville eigenvalue problems on time scales,
preprint.

[5] B. Aulbach and S. Hilger, Linear dynamic processes with inhomogeneous time scale, Non-
linear Dynamics and Quantum Dynamical Systems, Akademie Verlag, Berlin, 1990.

[6] L. Erbe and S. Hilger, Sturmian Theory on Measure Chains, Differential Equations and
Dynamical Systems, 1 (1993), 223-246.

[7] S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus,
Results in Mathematics, 18 (1990), 18-56.

[8] B. Kaymakcalan, V. Laksmikantham, and S. Sivasundaram, Dynamical Systems on Measure
Chains, Kluwer Academic Publishers, Boston, 1996.

[9] W. Kelley and A. Peterson, Difference Equations: An Introduction with Applications, Aca-
demic Press, 1991.

16


