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1. INTRODUCTION AND PRELIMINARY RESULTS

In this paper we will study certain linear and nonlinear dynamic equa-
tions. In sections 2 and 3 we study the second order nonlinear dynamic
equation

(1.1) (p(t)z)% +q(t)(f 0 27) = 0,

where p and ¢ are real-valued, right—dense continuous functions on a time
scale T C R, with sup T = oo. In sections 2 and 3 we also assume f: R — R
is continuously differentiable and satisfies

(1.2) f(z) > @ >0 for z#0.

Although in section 2 we shall assume p is a positive function we do not
make any explicit sign assumptions on ¢ in contrast to most know results on
nonlinear oscillations. In sections 4 and 5 we consider (1.1) under slightly
different hypotheses. In section 6 we consider an example with damping and
in section 7 we study comparison theorems for linear dynamic equations.

For completeness, we recall the following concepts related to the notion
of time scales. A time scale T is an arbitrary nonempty closed subset of
the real numbers R and, since boundedness and oscillation of solutions is
our primary concern, we make the blanket assumption that supT = oo.
We assume throughout that T has the topology that it inherits from the
standard topology on the real numbers R. The forward and backward jump
operators are defined by:

o(t):=inf{s € T: s>t}, p(t) =sup{seT,s<t},
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where inf( := supT and sup() = inf T, where () denotes the empty set.
A point t € T, t > inf T, is said to be left-dense if p(t) = t, right-dense
if t < supT and o(t) = t, left-scattered if p(t) < t and right-scattered
if o(t) > t. A function g : T — R is said to be right-dense continuous
(rd—continuous) provided ¢ is continuous at right—dense points and at left—
dense points in T, left hand limits exist and are finite. The set of all such
rd—continuous functions is denoted by C,.4(T). The graininess function p for
a time scale T is defined by u(t) := o(t) —t, and for any function f: T — R
the notation f7(t) denotes f(o(t)).
The assumption (1.2) allows f to be of superlinear growth, say

(1.3) f(z)=a*"t n>1.
In sections 4 and 5 we assume the nonlinearity has the property
(1.4) zf(x) > 0and |f(x)| > K|z| for x # 0, for some K > 0.

This essentially says that the equation is, in some sense, not too far from
being linear.

We shall see that one may relate oscillation and boundedness of solutions
of the nonlinear equation (1.1) to the linear equation

(1.5) (p(t)2*)™ + Aq(t)2” =0,

where A > 0, for which many oscillation criteria are known (see e.g. [1],[3],
4], 6], [8], [11], [16], and [21]). In particular, we will obtain the time scale
analogues of the results due to Erbe [10] for the continuous case T = R. We
shall restrict attention to solutions of (1.1) which exist on some interval of
the form [T, 00). where T, € T may depend on the particular solution.
On an arbitrary time scale T, the usual chain rule from calculus is no
longer valid (see Bohner and Peterson [4], pp 31). One form of the extended
chain rule, due to S. Keller [26] and generalized to measure chains by C.
Potzsche [31], is as follows. (See also Bohner and Peterson [4], pp 32.)

Lemma 1.1. Assume g : T — R is delta differentiable on T. Assume
further that f : R — R is continuously differentiable. Then fog:T — R
is delta differentiable and satisfies

L6)  (Fog)(t) = { | 10+ hu<t>gﬁ<t>>dh} ).

We shall also need the following integration by parts formula (cf. [4]),
which is a simple consequence of the product rule and which we formulate
as follows:



Lemma 1.2. Let a,b € T and assume f2, 9> € C,q. Then
b b
wn [ e oan= gl - [ g

2. A NONLINEAR DYNAMIC EQUATION

Before stating our next results, we recall that a solution of equation (1.1)
is said to be oscillatory on [a,00) in case it is neither eventually positive
nor eventually negative. Otherwise, the solution is said to be nonoscilla-
tory. Equation (1.1) is said to be oscillatory in case all of its solutions are
oscillatory. Since p(t) > 0 we shall consider both cases

2.1) /aoo LAt =

p(t)
and
<1
(2.2) / —At < 0.
o D)
We also introduce the following condition:
t
(2.3) litm inf/ q(s)As >0 and #0
— 00 T

for all large T Tt can be shown that (2.3) implies either [ ¢(s)As = 400
or that

00 t

/ q(s)As = lim [ q(s)As
T t=oo Jr

exists and satisfies [ ¢(s)As > 0 for all large T'.

We have the following lemma which describes the behavior of a nonoscil-
latory solution of (1.1) for the case when (2.1) and (2.3) hold.

Lemma 2.1. Let = be a nonoscillatory solution of (1.1) and assume con-
ditions (2.1) and (2.3) hold. Then there exists Ty > T such that

z(t)z®(t) >0 for t>T.
The first result is a boundedness result for (1.1).

Theorem 2.1. Let A > 0 and assume that Equation (1.5) is oscillatory.
Assume that (1.2) holds and let x be a nonoscillatory solution of (1.1) with
z(t)z2(t) > 0 for all t > Ty. Then

(2.4) tim L&)

s a(h)
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Corollary 2.1. Let A\ > 0 and assume that Equation (1.5) is oscillatory
and (2.1) and (2.3) hold. Suppose that x is a nonoscillatory solution of the
generalized Emden—Fowler equation

(2.5) (p(H)x™)" + q(t) (@) = 0.
Then

lim |2(t)] = 7 < (\) .

t—o00

Theorem 2.2. Assume that Equation (1.5) is oscillatory for all A > 0
and suppose that (1.2), (2.1), and (2.3) hold. Then all solutions of (1.1)
oscillate.

The next theorem deals with the case when (2.2) holds.

Theorem 2.3. Assume that Equation (1.5) is oscillatory for all A > 0 and
suppose that (1.2), (2.2), and (2.3) hold. In addition, assume that

(2.6) | [ atmanss = .

r p(s) Jr

Then every solution of (1.1) is either oscillatory or converges to zero on
la, 00).

3. EXAMPLES

Clearly, equation (1.5) is oscillatory iff equation

(3.1) Gp(tw)A + )z =0

is oscillatory. It was shown in Erbe [11, Corollary 7] (see also Bohner and
Peterson [4]) that

(3.2) (p(t)a®)2 +q(t)2" =0

is oscillatory if there exists a sequence {t;} C T with limy_ ., tx = oo and
w(ty) > 0 such that

(3.3) lim sup (Q(tk) - Z((Z;) = 00,

where Q(t) = f:q(s)As. We can therefore conclude that all solutions of
(1.1) oscillate in case (1.4), (2.1), and (2.3) hold along with

(3.4) hfi Sup (Q(tk) - Ap;(t;;i)) = 00,

for all A > 0. We note that there is no assumption on the boundedness of p
and p. If (1.2), (2.2), and (2.3) hold along with (3.4), then every solution
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on (1.1) oscillates or converges to zero. One may also apply averaging tech-
niques or the telescoping principle to give some more sophistcated results
(see Erbe, Kong, and Kong [13] and Erbe [10]).

As a second example, suppose that T is such that there exists a sequence of
points ¢, € T with ¢, — oo and positive numbers M, K such that p(t;) < M
and p(t;) > K. Then if (1.2) and (2.3) hold and > % pu(tg)q(ty) = oo it
follows from results of Erbe, Kong, and Kong [13, Corollary 4.1] that all
solutions of (1.5) are oscillatory for A > 0. Consequently, all solutions of
(1.1) are oscillatory.

As a third example, we consider a particular example for the case when

T = Z. If f has the form of (1.3) (i.e., f(x) = ™), p(t) = 1, and

q(t) = %, then it is known that equation (3.2) is oscillatory if 5 > i,
1

and is nonoscillatory if § < 7. Since in this case (2.3) holds trivially, it

follows from Theorem 2.1 that all nonoscillatory solutions of (1.1) satisfy
limy oo [2(8)] < (1)30.

Remark 3.1. From Theorem 4.64 in [4] (Leighton—Wintner Theorem) it fol-
lows that equation (1.5) is oscillatory for all A > 0 if

o 1 o

(3.5) / LAt :/ ¢(t)At = +o0.
o P(t) @

Since the second condition in (3.5) implies that (2.3) holds, Theorem 2.2

implies that all solutions of the Emden—Fowler equation (2.5) are oscilla-

tory. That is, the Leighton-Wintner Theorem is valid for (2.5) and more

generally for (1.1) if (1.2) holds. We note again that there are no explicit
sign conditions on ¢(t). For the special case when T = Z and (1.1) is

(3.6) A%z, + gu(2,1)*" T =0,
where m € N, it follows that (3.6) is oscillatory if

(3.7) an = +o00.
n=1

That is (3.7) implies that the linear equation
(3.8) A%2, 4+ Agnns1 =0

is oscillatory for all A > 0 and so oscillation of (3.6) is a consequence of
Theorem 2.2. If we consider equation (3.8) with A = 1, then Theorem 4.51
of [4] (see also [17]) implies that (3.6) is oscillatory if for any k& > 1 there
exists k; > k such that

j=k1
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Consequently, by Corollary 2.1, all nonoscillatory solutions of (3.6) satisfy

lim |z,| < 1.
n—oo

4. NONLINEAR DYNAMIC EQUATION WITH POSITIVE ¢(t)

In this section we shall consider the nonlinear dynamic equation (1.1)
under some different hypotheses. We assume that both p, ¢ are positive,
real-valued right—dense continuous functions, and f : R — R is continuous
and satisfies (1.4), and we shall again consider the two cases (2.1) and (2.2).

In Dosly and Hilger [8], the authors consider the second order linear
dynamic equation (1.5) A = 1 and give necessary and sufficient conditions
for oscillation of all solutions on unbounded time scales. Often, however, the
oscillation criteria require additional assumptions on the unknown solutions,
which may not be easy to check.

In Erbe and Peterson [16], the authors consider the same equation and
suppose that there exists to € T, such that p(t) is bounded above on [tg, 00),
ho = inf{u(t) : t € [to,00)} > 0, and showed via Riccati techniques that

/ooq(t)At — .

to

implies that every solution is oscillatory on [tg, 00). It is clear that the
results given in [16] cannot be applied when p is unbounded, p(t) = 0 and
q(t) = t=* when « > 1. The papers [16] and [9] also give additional linear
oscillation criteria, and also treat more general situations.

Recently Bohner and Saker [6] considered (1.1) and used Riccati tech-
niques to give some sufficient conditions for oscillation when (2.1) or (2.2)
hold. They obtain some sufficient conditions which guarantee that every
solution oscillates or converges to zero.

We use a generalized Riccati transformation technique to obtain several
oscillation criteria for (1.1) when (2.1) or (2.2) holds. Our results in this
section improve the results given in Dosly and Hilger [8] and Erbe and
Peterson [16] and complement the results in Bohner and Saker [6]. Appli-
cations to equations to which previously known criteria for oscillation are
not applicable are given. In section 6, we will apply our results to linear or
nonlinear dynamic equations of the form

(4.1) 222 () + a(t)z® () + B(H)(f o a”) =0

to give some sufficient conditions for oscillation of all their solutions.
We shall first need to briefly discuss the exponential function e,(-, o),
which is defined to be the unique solution of the IVP

™ =p(t)z, xz(ty) =1,



where it is assumed that

p€ R :={f:T — Ris rd-continuous and regressive}.
We define
R ={feR:1+ult)f(t)>0,teT}

For properties of this exponential function, see Bohner and Peterson [4].
One such property that we will use is the formula

ep(o(t), to) = [1 4+ p(t)p(t)]ep(t, to).
Also if p € R, then e,(t,s) is real-valued and nonzero on T. If p € R™,
then e,(t, ) is always positive.

Lemma 4.1. Assume that (2.1) holds, and x solves (1.1) with x(t) > 0 for
all t > ty. Define y = px®. Then we have

t
(4.2) vAt) <0 and 0<y(t) < :f(A) t >t
Jio 505
and
At 1
(4.3) o<W o ——, >t
z(t) T p(t) fy 25

Next suppose r € R, assume that p - r is a differentiable function, and
define the auxiliary functions

_ _ p(t) _ _ L p(t)r@®)
Ct) = C(tto) ’_Hp(t)fj“%’ Qult) = Qult,to) i= 5

Vi) = U(tt) = e (o(0). 1) [ Kalt) + o) + 2]

AC(1)
r(t) (14 p()r())
ct)

Q) = Q(tto) = — +r(t),

for t > t;. We also introduce the following condition
(A) There exists M > 0 such that r(t)e,(¢,to)p(t) < M for all large t.

Our first oscillation result in this section is

Theorem 4.1. Assume that (1.4), (2.1), and (A) hold. Furthermore, as-
sume that there exists r € RT such that p - r is differentiable and such that
for any ty > a there exists a ty > ty so that

t—oo

t
(4.4) lim sup/ H(s)As = o0,
t1



where

H(O) = Hito) = 0t0) - GO,

fort > ty. Then equation (1.1) is oscillatory on |a, 00).

From Theorem 4.1, we can obtain different sufficient conditions for oscil-
lation of all solutions of (1.1) by different choices of r(t). For instance, let
r(t) = 0, then Q(t) = 0, e.(t,tp) = 1, and ¥ (t) = Kq(t) and we get the
following well-known result.

Corollary 4.1 (Leighton-Wintner Theorem). Assume that (1.4) and (2.1)
hold. If

(4.5) / 4(s)As = oo,
then equation (1.1) is oscillatory on [a, c0).

If r(t) = 1, then e, (¢, 1) = % and it follows that condition (A) holds,

provided p is bounded above, and so Theorem 4.1 yields the following result:

Corollary 4.2. Assume p is bounded above, that (1.4) and (2.1) hold, and
for any ty > a there is a t; > ty such that

(4.6)

. ' p(s)\> | p(s) A2(s)O(s) | «
i | [M [Kq“”(?s) Yo | T B | T
where

Als) = 35(13) (1 + %u(@ - C(s)) . B(s):= Ssjp’é?.

Then (1.1) is oscillatory on [a,0).

If p(t¢) = 1 and f(x) = =z, then equation (1.1) reduces to the linear
dynamic equation

(4.7) 222 (t) 4 q(t)x® =0,

for t € [a, 00). From Theorem 4.1 we have the following oscillation criterion
for equation (4.7) which improves some of the results in Bohner and Saker
[6] and Erbe and Peterson [14].

Corollary 4.3. Assume that (1.4) and (2.1) hold and for any tq > a there
18 a ty > to such that
(4.8)

e o0 [0 (5755) ] ~ i) 2=




where
—1 1
Al(S) = <O (8) (1 + g,U(S) — 01(8))
Bi(s) = 3+S’; ) ois) =1+ (5“5520).

Then equation (4.7) is oscillatory on [a, c0).
Example 4.1. Consider the Euler-Cauchy dynamic equation

4.9 axy T e — g
(4.9) Tt em® 0

for t € [a,00). Here ¢(t) = (- Lhen (4.8) in Corollary 4.3 reads

[ 58]0

If T = R, then the dynamic equation (4.9) is the second order Euler—Cauchy
differential equation

" Y
(4.11) x +t—2x:0,t21

t—oo

and in this case pu(s) = 0, o(s) = s, Ci(s) = 1 and A;(s) = 0. Therefore
(4.10) can be rewritten as

t 1 t 1
limsup/ 1——+i As:limsup/ T As = o0.
tooo Jy LS 25 4s? t—oo  Ji s
provided that v > i. Hence every solution of (4.11) oscillates if v > i, which
agrees with the well-known oscillatory behavior of (4.11), (see Li [29]).

If T =Z, then (4.11) is the second order discrete Euler—Cauchy difference
equation

4.12 A+ — g =0, t=1,2,..

( ) Ty + t(t+1)xt+l ) ) <y

and we have pu(s) =1, o(s) = s+ 1, C1(s) = S;E)t?,
Af(s) 3

Bi(s)  s2(s+1)(s—to+1)%

Therefore (4.10) can be rewritten as
¢ 2 2
. ¥ 1 s —1 t5
1 - —— — A
l?iillp /tl Hs 2s + 43 } 4s2(s+1)(s —tg)(s —to + 1) °

¢ 1 1
zlimsup/ {l——jt—]As:oo.
t—o0 t1 LS 2s 4s
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provided that v > . Hence every solution of (4.12) oscillates if v > %,
which agrees with the well-known oscillatory behavior of (4.12). It is known
in Zhang and Cheng [32] that when p < 1/4, (4.12) has a nonoscillatory
solution. Hence, Theorem 4.1 and Corollary 4.3 are sharp. Note that the
results in Dosly and Hilger [8] and Erbe and Peterson [16] cannot be applied

to (4.12).

Theorem 4.2. Assume that (1.4) and (2.1) hold. Furthermore, assume
that there exists a function r € R* such that p-r is differentiable and given
any to > a there is a ty > ty such that

. L Q*(s)C(s)
4.13 lim su —/ t—sm[ §) — —————2| As = o0,
(4.13) msup o tl( )™ | ¥(s) 10:(5)
where m is a positive integer. Assume further that
1 t m—1
(4.14) <t_m) / eZ(s,to)p’ (s)ro(s) Z (0(s) —t)" (s —t)™ " As
t v=0

is bounded above. Then every solution of equation (1.1) is oscillatory on
[a, 00).

Note that if r € R™ and r(t) < 0, then (4.14) holds. When r(t) = 0, then
(4.13) reduces to

1 t
(4.15) lim sup t_m/ (t—s)"q(s)As = o0,
t—o0 t1
which can be considered as an extension of Kamenev type oscillation criteria
for second order differential equations, (see Kamenev [24]).
When T = R, then (4.15) becomes

1 t
(4.16) lim sup t_m/ (t —s)™q(s)ds = o0,

t—o0 t1

and when T = 7Z, then (4.15) becomes

t—1

(4.17) lim sup tim Z(t —35)"q(s) = o0,

t—o0 s=t;

We next give some sufficient conditions for the case when (2.2) holds,
which guarantee that every solution of the dynamic equation (1.1) oscillates
or converges to zero on [a,00). The next result removes a monotonicity
assumption on f in Bohner and Saker [6].
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Theorem 4.3. Assume that (1.4) and (2.2) hold and assume there exists
r € RY such that p - r is differentiable and such that (4.4) holds. Further-
more, assume

(4.18) / N ]% / ' 4(5)AsAL = oo,

and let (A) hold. Then every solution of equation (1.1) is either oscillatory
or converges to zero on [a,0).

In a similar manner, one may establish the following theorem.

Theorem 4.4. Let all of the conditions of Theorem 4.3 hold with condition
(4.13) replacing (4.4). Then every solution of equation (1.1) is oscillatory
or converges to zero on [a, o).

5. APPLICATION TO EQUATIONS WITH DAMPING

Our aim is to apply the results in section 4, to give some sufficient con-
ditions for oscillation of all solutions of the dynamic equation (4.1) with
damping terms. We note that all of the results in section 4, are true in the
linear case. Before stating our main results in this section we will need the
following Lemmas, (see Bohner and Peterson [4]).

Lemma 5.1. If o, € C.q and
(5.1) L= p(t)a(t) +p*()B(t) #0, teT,

then the second order dynamic equation (4.1) with f(x) = x can be written
in the self-adjoint form (1.5), where

(52)  pt) = et to), alt) = [1+atEOBE)
_a(t) - u(0)8()
= alt)alt) + 2O

Lemma 5.2. If a is a regressive function, then the second order dynamic
equation (4.1) with f(x) = x) can be written in the self-adjoint form

(5.3) (1)

(5.4) (p()z® (1) + q(t) fo 2" =0,
where
(5.5) p(t) = ealt,to) and q(t) = B(t)p(?)

Now, by using the results in section 3 and Lemma 5.1 we have the following
results immediately.
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Theorem 5.1. Let p,q be defined as in (5.5) and ssume that (2.1) holds.
Furthermore, assume that there exists a r € R with r differentiable such
that (4.4) holds with

r*(t)p(t)
1C(0)

(5.6) V(t) = er(a(t), to) |a(t) + 5 (p(t)r(t)> +

Then equation (4.1) with f(x) = x is oscillatory on |a, o).

Corollary 5.1. Assume that (2.1) and (3.5) hold, where p and q are as
defined in (5.5). Then equation (4.1) with f(z) = x is oscillatory on [a, 00).

Corollary 5.2. Assume that (2.1) and (4.6) hold except that the term Kq(t)
is replaced by q(t), where p and q are as defined in (5.5). Then equation
(4.1) with f(x) =z is oscillatory on [a, c0).

Theorem 5.2. Assume that (2.1) holds. Furthermore, assume that there
exists r € R with r differentiable such that (4.10) holds, where p, q and ¥
are as defined by (5.5) and (5.6) respectively, and m is odd integer. Then
(4.1) with f(x) =z is oscillatory on [a, c0).

Theorem 5.3. Assume that all the assumption of Theorem 5.1 hold except
that the condition (2.1) is replaced by (2.2). If (4.18) holds, then every
solution of equation (4.1) with f(x) = x is oscillatory or converges to zero
on la, 00).

Theorem 5.4. Assume that all the assumption of Theorem 5.2 hold except
that the condition (1.3) is replaced by (2.2). If (4.18) holds, then every
solution of equation (4.1) with f(x) = x is oscillatory or converges to zero
on [a,00).

Oscillation criteria for equation (4.1) are now elementary consequences
of the oscillation results in Theorems 5.1-5.4. The details are left to the
reader.

6. LINEAR SECOND ORDER DYNAMIC EQUATIONS

In this section we shall be interested in obtaining comparison theorems
for the second order linear equations

(6.1) [p(t)a® (] +q()27(t) = 0,
(6.2) POy (D1 +a”(Da(t)y’(t) = 0,
(6.3) [p(t)=2 ()] +a(t)a(t)27(t) = 0,

where p(t) > 0 and p, ¢, a are right-dense continuous on T.
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Definition 6.1. We say that a solution x of (6.1) has a generalized zero
at t in case x(t) = 0. We say x has a generalized zero in (t,o(t)) in case
z(t)z(o(t)) < 0 and u(t) > 0. We say that (6.1) is disconjugate on the
interval [c, d], if there is no nontrivial solution of (6.1) with two (or more)
generalized zeros in [c, d].

Definition 6.2. Equation (6.1) is said to be nonoscillatory on [r,00) if
there exists ¢ € [r,00) such that this equation is disconjugate on [c, d] for
every d > c. In the opposite case (6.1) is said to be oscillatory on [T, 00).
Oscillation of (6.1) may equivalently be defined as follows. A nontrivial
solution y of (6.1) is called oscillatory if it has infinitely many (isolated)
generalized zeros in [7,00). By the Sturm type separation theorem, one solu-
tion of (6.1) is (non)oscillatory iff every solution of (6.1) is (non)oscillatory.
Hence we can speak about oscillation or nonoscillation of equation (6.1).

Basic oscillatory properties of (6.1) are described by the so-called Reid
Roundabout Theorem which is proved e.g. in [4, Theorem 4.53, Theo-
rem 4.57].

Theorem 6.1 (Reid Roundabout Theorem). The following statements are
equivalent:

(i) Equation (6.1) is disconjugate on [c,d].

(ii) Equation (6.1) has a solution without generalized zeros on |c, d].

(iii) The Riccati dynamic equation

u?(t)
(6.4) u(t) + q(t) + =0
p(t) + p(t)u(t)

has a solution w with p(t) + p(t)u(t) > 0 fort € [c,d]” (except for
the case when d is left-dense and right-scattered at which p+ pu may
be nonpositive).

(iv) The quadratic functional

F(& e d) = / {p(t) (€2(1)° - q(t>(ga<t))2} At
is positive definite for & € U(c,d), where

Ule,d) ={¢ € Cyle,d] « &(c) = &(d) =0}

This result makes it therefore clear that there are at least two methods
of investigation of (non)oscillation of (6.1). The first one — the variational
method — is based on the equivalence of (i) and (iv) and its basic statement
can be reformulated as follows:
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Lemma 6.1 (Variational method). If for any T € |1, 00) there exists 0 %
¢ e U(T), where

U(T) ={¢ € ClT,00) : &(t) =0 fort € [7,T] and 3T, T > o(T),

such that £(t) =0 fort € [o(T), 00)},
such that F(&;T,00) = F(&,T,0(T)) <0, then (6.1) is oscillatory.

Another method of investigation for the oscillation theory of (6.1) is based
on the equivalence of (i) and (iii) in Proposition 6.1. This is usually referred
to as the Riccati technique and by virtue of the Sturm Comparison Theorem
implies that for nonoscillation of (6.1), it is sufficient to find a solution of

the Riccati-type inequality as given in the next lemma. A proof may be
found in [12] or [4].

Lemma 6.2 (Riccati technique). Fquation (6.1) is nonoscillatory if and
only if there exists T € [1,00) and a function u satisfying the Riccati dy-
namic inequality

w8 +at) + o

with p(t) + u(t)u(t) >0 fort € [T, 00).
For completeness, we recall the following

Lemma 6.3 (Sturm-Picone Comparison Theorem). Consider the equation
(6.5) [6(H)2>(#)]* + q(t)2”(t) = 0,
where p and q satisfy the same assumptions as p and q. Suppose that p(t) <

p(t) and q(t) < §(t) on [T,00) for all large T'. Then (6.5) is nonoscillatory
on [1,00) implies (6.1) is nonoscillatory on [1,00).

We mention first a few background details which serve to motivate the
results in this section. Suppose that T is the real interval [0, +00) so that
(6.1) becomes

(6.6) [p(t)z' (1) + q(t)x(t) =0,

where p(t) is continuous and positive and ¢(t) is continuous on [0, +00). It
was shown in [9] that if (6.6) is oscillatory, then multiplying the coefficient
q(t) by a function a(t) where a(t) > 1 and p(t)a’(t) is nonincreasing preserves
oscillation; i.e.,

(6.7) [p()2' (1)) + a(t)q(t)=(t) = 0,
is also oscillatory. Of course, if ¢(t) is nonnegative, these results follow

immediately from the usual Sturm-Picone Comparison Theorem, but when
q(t) changes sign on each half line, oscillation of (6.7) is not obvious if (6.6)
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is oscillatory. One may also notice that if (6.6) is oscillatory and if a(t)
= const = A > 1 then oscillation of (6.7) follows immediately from the
Sturm-Picone Theorem by dividing the equation by A (for the case when
q(t) may change sign). This result, i.e., the statement that says that if (6.6)
is oscillatory, then so is

(p®)y') + Aq(t)y =0

for any constant A > 1, was also observed by Fink and St.Mary [22]. Kwong
in [26] then showed that the result of [9] may be strengthened to a larger
class of functions a(t) by relaxing somewhat the monotonicity assumption
on p(t)a’(t) as given in [9]. We present below three different comparison
theorems along with their corresponding corollaries, and show by examples,
that they are all independent. In addition to extending the results of [26]
and [9] in the case of equations (6.6) and (6.7) in the continuous case, the
results we obtain are new in the discrete case and the more general time
scales case. It should also be noted that because of the techniques of proof
used, both (6.2) and (6.3) may be viewed as the time-scales extensions of
(6.1), obtained when multiplying ¢(¢) by a(t) (which is the same as a%(t)
when T = R.)

Our first result shows that if, “on average”, ¢(t) is more positive than
negative, then the assumptions on a(t) are quite mild. To be precise, we
have

Theorem 6.2. Assume a € C; and

(i) liminf, oo [7q(s)As > 0 but £ 0 for all large T,
.o o0 1 _

(11) fT ZEAS = 0Q,

(iii) 0 < a(t) <1, a®(t) <0.

Then (6.1) is nonoscillatory implies (6.3) is nonoscillatory.
The corresponding “oscillation” result is

Corollary 6.1. Assume a € C}; and

(i) liminf, oo [y a(s)g(s)As >0 but # 0 for all large T,
(i) [ IﬁAs = 00,
(iii) a(t) > 1, a®(t) > 0.

Then (6.1) is oscillatory implies (6.3) is oscillatory.

If we strengthen the assumptions on a(t) somewhat, then we may relax
the assumptions on ¢(t) and in this case, we consider the relation between
(6.1) and (6.2). For convenience, we state first the “oscillation” result.

Theorem 6.3. Assume pa® € CY; and
(i) aft) > 1,
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(ii) p(t)a(t) >0,
(iii) (p(t)a (1)) < 0.
Then (6.1) is oscillatory implies (6.2) is oscillatory.
In this case, the analogous “nonoscillation” result becomes
Corollary 6.2. If p(£)* € C},
(i) 0 <a(t) <1,
(i) u(t)a®(t) < 0,

A A
(ii) (p(t) (ﬁ) ) <0.
Then (6.1) is nonoscillatory on implies (6.2) is nonoscillatory.

In the following theorem we let x denote the characteristic function of the
set of right-scattered points T defined by

T:={teT:pul) >0}

1, teT
t) = ’ ~
x(®) {o, t¢T.

That is,

Theorem 6.4. Assume pa® € CY,;, and that the following conditions hold:

(1) a(t) > 0 and 2a(t) + p(t)a®(t) <2
(ii) p(t) > eru(t) for some e >0 and for allt € T,
(iii) there is an €y > 0 such that the function

Gey() =2 (a*(t)p(t)) " — a(tf?p(i?]i(if?a@ =0

for all large t, where p(t) — u(t)ep > 0,

(iv) limsup,_, ., x(t) f: q(s)As > —o0,
(v) there exists a constant M > 0 such that x(t)p(t) < Mu(t), fort € T,

Then (6.1) is nonoscillatory implies (6.2) is nonoscillatory.

2

Again, we have a corresponding “oscillation” result:

Corollary 6.3. Assume p(%)A € Cl, and that the following conditions
hold:
(i) a(t) + “(;j;j?tgt) > 1 for all large t,
(i) there is an €, > 0 such that p(t) > p(t)e; fort € T,
(iii) there exists g > 0 such that the function

a(t)6?(t)
p(t) — plt)eo

He(t) :=2(5(1)" + <0,
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for all large t, where p(t) — u(t)eg > 0, and where

p(t)at () 1\*
“”'MM%)'“”Q@)’

(iv) limsup,_ x(t) [ a’(s)q(s)As > —oo,

(v) there is an M > 0 such that x(t)p(t) < Mu(t) for all large t.
Then (6.1) is oscillatory, implies that (6.2) is oscillatory.

We notice in the last two results how the graininess function is involved
in the criteria for oscillation/nonoscillation. In particular, for the case when
T = [0, +00), then pu(t) = 0, so conditions (ii), (iv), and (v) of Corollary 6.3
hold trivially, and it may be shown that (iii) reduces to the condition of

Kwong in [26]. The nonoscillation result Theorem 6.4 is new in all cases. It
turns out that Lemma 2.1 is useful in proving the above results.

7. EXAMPLES AND REMARKS

We begin this section with several examples showing the independence of
the above criteria.

Example 7.1. Let r > 1. Consider the time scale
T = Mo .= {rk : k‘GNO}.
In this case, o(t) = rt, u(t) = (r — 1)t for all ¢ € T, and any dynamic
equation on the time scale ™0 is called an r-difference equation. Let
vinr A(—=1)N®
(r — D)tlntIn(rt) tlnt
where v, A are real constants and N(¢) :=Int/Inr € Ny. Observe that q(t)

lnr

is not eventually of one sign for A # 0. Since (Int)* = ooty it follows that

we have . '
/ LA / Lygo =Dt
1 p(s) 1S Inr

as t — oo and so (2.1) holds. Further,

(p(t) (ﬁ)AY =(r+1)%>0

for ¢t € T, so condition (iii) of Corollary 6.2 fails to hold. Note that this
condition is not even satisfied for any a(t) = ¢™*, w > 0. On the other hand,
we have

2a(t) (a®(t))

a(t) = tlz p(t) =t and q(t) =

(t) — () — (@ @) = T 2 - e 2 0

A
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for 0 < €y < 1/[2(r—1)], and condition (iii) of Theorem 6.4 is satisfied, and
r+1
r2¢3
so (iii) of Theorem 6.2 holds. If 0 < ¢ < 1/(r — 1) < M, then € u(t) <
p(t) < Mp(t) for all t € T, so conditions (ii) and (v) of Theorem 6.4 hold.
Breaking up the integral and using the identity ftg(t) f(s)As = u(t)f(t) we
get

[ atas = 24 - a0 |

Int

a?(t) = —

<0,

1 1 n 1
Int In(rt) In(r?t)

Hence
y—(r—1A< lnt/ q(s)As < v+ (r—1)A
t

In [30] it was proved that equation (6.1) is nonoscillatory provided

fu(t) ==
(7.1) lim # —0
—00 fT EAS
and
3 . ) 1
—— < liminf A(t) < limsup A(t) < -,
4 t—o00 t—00 4
where
t 1 e
At) = /—As)(/ SAS).
0= (f ) (o
We have

M(t)ﬁ _Inr

Tt 1 AL Int
fl ﬁAS Int
and so condition (7.1) is satisfied. Further,

—1 —1
0= (r= DA < Al < [+ (r— AL
Set
B y(r—1) B Ar — 1)2
o= wd f=——

If o> (3 >0and o+ < 1/4, then (6.1) is nonoscillatory and Theorem 6.2
or Theorem 6.4 can be applied to show that (6.3) and (6.2), respectively,
are nonoscillatory. If 0 < 8 < —a and a — 3 > —3/4, then (2.3) fails to
hold, equation (6.1) is nonoscillatory and in this case, only Theorem 6.4 can
be applied.



19

Ezample 7.2. (i) Let T = Z, a(t) = 1/+/t and p(t) = v/t++/t + 1. Then con-
dition (v) of Theorem 6.4 fails to hold since p(t) is unbounded. Theorem 6.2
(for q(t) satisfying (2.3)) or Corollary 6.3 can be applied since

[e.e] [e.e]

| 1
;m:;\/ﬂ\/tjul:oo’
Aafty = VIZVIFT

t(t+1)
and

1
A (p(t)A <@)> = [(ViFT+ Vi) (ViFT=vi)| =0,
(ii) Let T = Z, a(t) = t72 and p(t) = (2t + 1)~'. Then condition (ii) of
Theorem 6.4 fails to hold since p(t) — 0 as t — oco. Theorem 6.2 (for ¢(t)
satisfying (2.3)) or Corollary 6.3 can be applied since

o [e.e]

1
;m:;(%—i—l):oo,
Aa(t):%«)

and

1

A (p(t)A (@)) =A((2t+1)7"(2t+1)) = 0.
(iii) Let T = Z, a(t) = v v > 1 and p(t) = X', A € (0,1). Then

condition (ii) of Theorem 6.4 and condition (ii) of Theorem 6.2 fail to hold

since p(t) — 0 as t — oo and

f: L f: A= o0,

t=1 p(t) t=1

respectively. On the other hand, the assumptions of Corollary 6.3 are sat-

isfied provided yA € (0, 1] since we have

Aa(t) = (1 =)y <0
and

A (p0a () = 0= DGA= 16N <o

Notice that only Corollary 6.3 can be applied in this case.

Following the idea of the above examples, it is not difficult to find exam-
ples showing the independence of Theorem 6.3 and Corollary 6.3.
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Ezample 7.3. Let T =Z, p(t) = 1,

g A(=1)’
t) = —— d q(t) =
o) =gy 2 =t
It is easy to see that ¢(t) changes sign for A # 0 and
—24+2(—-1)¢
Aa(t) = +2-1) <0.

(2t+2— (=12t + (—=1)Y) —

It can also be shown that conditions (iii) from Corollary 6.3 and (iii) from
Theorem 6.4 fail to hold since

s () o

and 2a(t)(1 — €)A%a(t) — (Aa(t))? is equal to a fraction with a positive
denominator and a numerator such that the coefficient in the numerator of
the highest power 2 changes sign. Further we have

7—)\<th(5) <7+ A
s=t

Hence, if ¥ > A > 0 and v + A < 1/4, then equation (6.1) is nonoscilla-
tory and (2.3) holds, so only Theorem 6.2 can be applied. We may obtain
the same conclusion for the corresponding oscillatory counterparts provided
a(t) =2t + (—1)" and v — X\ > 1/4 with A > 0.

Remark 7.1. (Case T = R) (i) In this case, with the assumption that the
expression p(t)a’(t) is differentiable, condition (iii) of Theorem 6.4 is equiv-
alent to

2a(t)(p(t)d (1)) — p(t)(d(t))* = 0,
while condition (iii) of Corollary 6.3 takes the form

a(t)(p(t)a (1)) — 2p(t)(a'(t))* = 0.

This shows that Corollary 6.3 is a consequence of Theorem 6.4 in this case.
This remark holds also for the oscillatory counterparts if T = R, see [26].
(ii)) Theorem 6.3 (and Corollary 6.3) do not require a(t) to be nonde-
creasing (resp. nonincreasing) on T = R. Indeed, with a(t) =1 — 1/t and
p(t) = (t—1)* we have an example of an increasing a(t), where Corollary 6.3
can be applied. This, however, has no “discrete” counterpart since condi-
tions (ii) from Corollary 6.3 and (v) from Theorem 6.4 fail to hold when
T = Z. Note that in Theorem 6.2 (and Corollary 6.1) the function a(t) is
required to be nonincreasing (resp. nondecreasing) on any time scale.
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Remark 7.2. (Repeated application)

(i) A repeated application of Theorem 6.3 (resp. Corollary 6.3) gives
the following more general result: Let equation (6.1) be oscillatory (resp.
nonoscillatory), and let the functions ai(t), as(t),...,a,(t) satisfy the as-
sumptions of Theorem 6.3 (resp. of Corollary 6.3) and let a(t) = []}_, a;(t).
Then equation (6.2) is oscillatory (resp. nonscillatory). It is easy to see
that this result is indeed more general; e.g., let T = Z, a,(t) = as(t) =t}
and p(t) = 1. The functions a;(t), ax(t) satisfy all the assumptions of Corol-
lary 6.3, but condition (iii) fails to hold for a(t) = ¢t~2. Therefore, an iter-
ation (repeated application) gives a better result. Note that the (weaker)
assumption (iii) of Theorem 6.4 is satisfied directly for a(t) = t~2, however,
but to apply this theorem directly, one needs an additional restriction on
q(t).

(ii) Theorem 6.4 can also be applied repeatedly for monotonic functions
a(t) but we must show that

t t
limsupx(t)/ q(s)As > —oo implies limsupx(t)/ a’(t)q(s)As > —o0.

t—o0 t—oo
By the time scale version of the second mean value theorem of integral
calculus, see [30], there exists 7' = T'(t) € T such that

lim sup x(¢) /t a’(t)q(s)As

t—o0

00 (1)

T(t) t
> lim sup x(t) [CL(T)/ q(s)As + a(t)/ q(s)As

The expression on the right-hand side is greater than —oo since a(t) is
bounded and both integrals are of the same type as that in the assumptions.

Additional comments may be made to extend the results to dynamic
equations of the form

(7.2) [a(t)p(H)22 ()]~ + alt)g(t)="(t) = 0,
(7.3) [a(®)p()y> ()] + a”(Dat)y(t) = 0,
(7.4) [ty (O] +a”(Da(t)y(t) = o.

We leave this to the interested reader.

8. EULER—CAUCHY DYNAMIC EQUATION

In this section we are concerned with the so-called Euler-Cauchy dynamic
equation

(8.1) o(t)tz™? + atz® + br = 0,
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on a time scale T (closed subset of the reals R), where we assume t, =
inf T > 0. We will assume throughout the regressivity condition

(8.2) o(t)t — atp(t) + bu(t) #0
for t € T*. The equation
(8.3) Mrad+b=0

is called the characteristic equation of the Euler-Cauchy dynamic equation
(8.1) and the roots of (8.3) are called the characteristic roots of (8.1).
We have then

Theorem 8.1. Assume A\, Ay are solutions of the chacteristic equation
(83) If )\1 7’é )\2, then

z(t) = crexn
t

(t> tO) + C2e (t> tO)

t

is a general solution of (8.1). If Ay = \g, then

t
1

x(t) = crexa (t,tg) + coex, (T, t /7As

(*) 1ATl( 0) QA—Q( 0) 1o S+ Ap(s)

is a general solution of (8.1).

Next we would like to show that if our characteristic roots are complex,
then there is a nice form for all real-valued solutions of the Euler—Cauchy
dynamic equation in terms of the generalized exponential and trigonometric
functions. Even in the difference equations case the complex roots are not
considered (see Kelley and Peterson [27]).

Theorem 8.2. Assume that the characteristic roots of (8.1) are complex,
that is A1 o = a £ 13, where 3 > 0, and ¢ —B_ e R. Then

t 7 t+au(t)

x(t) = crea(t, to) cos__s_(t,t0) + caea(t,to)sin_s (t,to)

t4+op(t) t4+op(t)

is a general solution of the Euler—Cauchy dynamic equation (8.1).

In the remainder of this section we will be concerned with the oscillation
of the Euler-Cauchy dynamic equation (8.1). We assume throughout this
section that T is now unbounded above. We now show if the characteristic
roots of (8.1) are complex how a general solution can be written in terms
of the classical exponential function and classical trigonometric functions.

Lemma 8.1. If the characteristic roots are complex, that is \1 2 = o £ i3,
where B > 0, then

z(t) = A(t) (c1 cos B(t) + cosin B(t)) ,



23

where
Alt) = elnREn(*59))ar

50 = [ 5 (S0 ar

is a general solution of the Euler—Cauchy dynamic equation (8.1). If, in
addition, every point in T is isolated, then fort € T,

H \/ (7 + p(7))? + B212(1)),

Tto

ZArctcm (T+ ) )

= ()

Definition 8.1. If the characteristic roots of (8.1) are complex, then we
say the Euler—Cauchy dynamic equation (8.1) is oscillatory iff B(¢) is un-
bounded.

As a well-known example note that if T is the real interval [1, 00) and the
Euler—Cauchy equation has complex roots, then the Euler—Cauchy equation
is oscillatory. This follows from what we said here because in this case by

(1.1)
t1
:6/1 ;drzﬁlogt

which is unbounded. If T = ¢"°, where ¢ > 1, then one can again show
that B(t) is unbounded and hence the Euler-Cauchy dynamic equation on
T = ¢"° is oscillatory when the characteristuc roots are complex. If T = N,

then
t—1 3
B(t) = Z Arctan (k: n a) :

which can be shown to be unbounded and hence the Euler—-Cauchy dynamic
equation on T = N is oscillatory when the characteristuc roots are complex.
These last two examples were shown in Bohner and Saker [6], Erbe, Peter-
son, and Saker [20], and Erbe and Peterson [14], but here we established
these results directly.

Theorem 8.3 (Comparison Theorem). Let Ty := {to,t1,---} and Ty :=
{s0, 51, -+ }, where {t,} and {s,} are strictly increasing sequences of pos-
itive numbers with limit co. If the Euler-Cauchy equation (8.1) on Ty is
oscillatory and —a < ﬁ < u , for n > 0, then the Fuler—Cauchy
equation (8.1) on Ty is osczllatory
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Theorem 8.4. Assume every point in the time scale T is isolated and

limy_.o —= ezists as a finite number, then the Euler—Cauchy equation in
u(t)

the complex characteristic roots case is oscillatory on T.

Theorem 8.4 does not cover the case when T is a time scale where lim;_, o, ﬁ
oo. The next theorem considers a time scale where lim;_, o, ﬁ = 00.

Theorem 8.5. Letp > 0 and let Ty := {t,, : to = 1, tpy1 = tn—i-tip,n € No}.
In the complex characteristic roots case, the Fuler—Cauchy dynamic equation
(8.1) is oscillatory on T,,.

One might think that one could use the argument in the proof of Theorem

8.5 to show that if there is an increasing unbounded sequence of points {¢;}

in T with u(t;) = ti,_;, then the FEuler—Cauchy equation (8.1) is oscillatory
J

on T in the complex characteristic roots case. The following example shows
that the same type of argument does not work.

Ezample 8.1. Assume that the Euler—-Cauchy dynamic equation (8.1) has
complex characteristic roots a + i3, 3 > 0 and T := U, [(n — 1) + 1,n?],
then (8.1) is oscillatory.
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