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Abstract 3

This paper focuses on the qualitative and quantitative properties of solutions to certain nonlinear dynamic equations on time 4

scales. We present some new sufficient conditions under which these general equations admit a unique, positive solution. These 5

positive (and hence non-oscillatory) solutions: extend across unbounded intervals; and tend to a finite limit as the independent 6

variable becomes large and positive. Our methods include: Banach’s fixed-point theorem, including the method of Picard iterations; 7

and weighted norms and metrics in the time scale setting. Due to the wide-ranging nature of dynamic equations on time scales our 8

results are novel: for ordinary differential equations; for difference equations; for combinations of the two areas; and for general 9

time scales — this is demonstrated via some examples. Furthermore, we state an open problem of interest. 10

c© 2007 Published by Elsevier Ltd 11
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12

1. Introduction 13

“Oscillation theory” forms an important area in the qualitative analysis of differential equations. This includes the 14

existence of oscillatory or non-oscillatory solutions to second-order, ordinary differential equations. A solution to a 15

(real) second-order ordinary differential equation is termed to be “oscillatory on [a, ∞)” provided that it exists on 16

[a, ∞) and has an arbitrarily large number of zeros on [a, ∞). A nontrivial solution that has a finite number of zeros 17

is called non-oscillatory. 18

The theory of oscillations has a long and rich history dating back to the work of Sturm in the 1830s [21,15] and 19

has since enjoyed numerous applications to a wide range of areas in science, engineering and technology [19, pp. 20

xiii–xiv]. Moreover, interest in the area continues to grow as oscillation theory naturally stimulates the emergence of 21

new mathematical theories and methods [19, p. xiv], [1], including the improvement of modern numerical methods 22

and their application to computing. 23
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One exciting aspect of these new movements includes linking the field of oscillation theory with solutions to1

“dynamic equations on time scales”. The area of dynamic equations on time scales is a new, modern and progressive2

component of applied analysis that acts as the framework to effectively describe processes that feature both continuous3

and discrete elements. Created by Hilger in 1990 [14] and developed by others (see [3,6,7,17,22] and references4

therein), this novel and fascinating type of mathematics is more general and versatile than the traditional theories5

of differential and difference equations as it can, under one framework, mathematically describe continuous–discrete6

hybrid processes and hence is the optimal way forward for accurate and malleable mathematical modelling. In fact, the7

field of dynamic equations on time scales contains, links and extends the classical theory of differential and difference8

equations.9

In this paper, we are concerned with proving the existence of positive (and so non-oscillatory) solutions to the10

nonlinear dynamic equation11

[r(t)x1(t)]1 + F(t, xσ (t), x1σ (t)) = 0, t ∈ [a, ∞)T := [a, ∞) ∩ T; (1.1)12

where F : [a, ∞)T×R2
→ R may be a nonlinear function; t is from a so-called “time scale” T (which is a nonempty13

closed subset of R); x1 is the generalised “delta” derivative of x ; a ∈ T; r : [a, ∞)T → (0, ∞); and xσ
:= x ◦ σ14

with σ a function to be defined a little later.15

We will also consider the following special case of (1.1)16

[r(t)x1(t)]1 + F(t, xσ (t)) = 0, t ∈ [a, ∞)T. (1.2)17

If T = R then x1
= x ′ with σ(t) = t and (1.1) becomes the familiar ordinary differential equation18

[r(t)x ′(t)]′ + F(t, x(t), x ′(t)) = 0, t ∈ [a, ∞);19

while if T = Z then x1
= x(t + 1) − x(t) := 1x(t) with σ(t) = t + 1 and (1.1) becomes the well-known difference20

equation21

1[r(t)1x(t)] + F(t, x(t + 1), 1x(t + 1)) = 0, t ∈ {a, a + 1, . . .}.22

There are many more time scales than just T = R and T = Z and hence there are many more dynamic equations.23

We shall be primarily concerned with proving the existence of positive solutions which are asymptotic to a positive24

limit at ∞.25

In the field of differential equations, some of the earliest work concerned with proving the existence of positive26

solutions which are asymptotic to a positive limit at ∞ dates back to the result of Atkinson [2] who showed that if27 ∫
∞

0 t f (t)dt < ∞, then the superlinear equation28

x ′′
+ f (t)g(x) = 0; (1.3)29

has a bounded, non-oscillatory solution. This idea was extended in various ways by many authors over the last30

50 years. Recently, Dubé and Mingarelli [10] presented a general non-oscillation result, which unifies a number31

of cases for the equation32

x ′′
+ f (t, x) = 0;33

where34

f (t, x) ≥ 0, ∀ (t, x) ∈ [0, ∞) × [0, ∞).35

This result was further extended by Wahlén in [23] and by Ehrnström in [13], using a renormalisation technique.36

Here we present three sorts of results. In the first instance we show existence of a positive solution on a given fixed37

interval and with a given asymptote at ∞. In the second case, the limit is prescribed and the solution is shown to be38

eventually positive, and in the special case of Eq. (1.2), we fix an interval of positivity but not the limit.39

Our methods include: the Banach fixed-point theorem, including the method of Picard iterations; and weighted40

norms and metrics in the time scale setting. Due to the wide-ranging nature of dynamic equations on time scales our41

results are novel: for ordinary differential equations when r 6≡ 1; for difference equations; for combinations of the two42

areas; and for general time scales. We present some examples to illustrate how our results advance existing knowledge43

and state an open problem of interest.44

Please cite this article in press as: L. Erbe, et al., Basic existence, uniqueness and approximation results for positive solutions to nonlinear
dynamic equations on time scales, Nonlinear Analysis (2007), doi:10.1016/j.na.2007.08.010
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For more recent results on oscillation and non-oscillation for solutions to dynamic equations on time scales we 1

refer the reader to [8,12] and the references therein. 2

For results on oscillation and non-oscillation to linear ordinary differential equations and difference equations via 3

Volterra–Stieltjes integral equations, we refer the reader to the monograph of Mingarelli [18]. 4

Finally, we mention the blanket assumption, initial value problems for (1.1) and (1.2) have unique solutions and 5

our time scale T is unbounded above. 6

2. The time scales 7

To understand the notation used above, some preliminary definitions are needed, which are now presented. For 8

more detail see [6, Chapter 1]. 9

Definition 2.1. A time scale T is a nonempty closed subset of the real numbers R. 10

Since a time scale may or may not be connected, the concept of the jump operator is useful to define the generalised 11

derivative x1 of a function x . 12

Definition 2.2. The forward (backward) jump operator σ(t) at t for t < sup T (respectively ρ(t) at t for t > inf T) 13

is given by 14

σ(t) := inf{τ > t : τ ∈ T}, (ρ(t) := sup{τ < t : τ ∈ T}), for all t ∈ T. 15

Define the graininess function µ : T → [0, ∞) as µ(t) := σ(t) − t . 16

Throughout this work the assumption is made that T has the topology that it inherits from the standard topology 17

on the real numbers R. 18

Definition 2.3. The jump operators σ and ρ allow the classification of points in a time scale in the following way: If 19

σ(t) > t , then the point t is called right-scattered; while if ρ(t) < t , then t is termed left-scattered. If t < sup T and 20

σ(t) = t , then the point t is called right-dense; while if t > inf T and ρ(t) = t , then we say t is left-dense. 21

If T has a left-scattered maximum value m, then we define Tκ
:= T − {m}. Otherwise Tκ

:= T. 22

The following gives a formal ε − δ definition of the generalised delta derivative. 23

Definition 2.4. Fix t ∈ Tκ and let x : T → R. Define x1(t) to be the number (if it exists) with the property that given 24

ε > 0 there is a neighbourhood U of t with 25

|[x(σ (t)) − x(s)] − x1(t)[σ(t) − s]| ≤ ε|σ(t) − s|, for all s ∈ U. 26

We call x1(t) the delta derivative of x(t) and say that x is delta-differentiable. 27

Converse to the delta derivative, we now state the definition of the delta integral. 28

Definition 2.5. If K 1(t) = k(t) then define the (Cauchy) delta integral by 29∫ t

a
k(s) 1s = K (t) − K (a). 30

If T = R then
∫ t

a k(s) 1s =
∫ t

a k(s) ds, while if T = Z then
∫ t

a k(s) 1s =
∑t−1

a k(s). Once again, there are many 31

more time scales than just R and Z and hence there are many more delta integrals. For a more general definition of 32

the delta integral see [6]. 33

The following theorem will be fundamental. 34

Theorem 2.6 ([14]). Assume that k : T → R and let t ∈ Tκ . 35

(i) If k is delta-differentiable at t then k is continuous at t . 36

(ii) If k is continuous at t and t is right-scattered then k is delta-differentiable at t with 37

k1(t) =
k(σ (t)) − k(t)

σ (t) − t
. 38

Please cite this article in press as: L. Erbe, et al., Basic existence, uniqueness and approximation results for positive solutions to nonlinear
dynamic equations on time scales, Nonlinear Analysis (2007), doi:10.1016/j.na.2007.08.010
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(iii) If k is delta-differentiable and t is right-dense then1

k1(t) = lim
s→t

k(t) − k(s)
t − s

.2

(iv) If k is delta-differentiable at t then k(σ (t)) = k(t) + µ(t)k1(t).3

The following gives a generalised idea of continuity on time scales.4

Definition 2.7. Assume that k : T → R. Define and denote k ∈ Crd(T) as right-dense continuous (rd-continuous) if:5

k is continuous at every right-dense point t ∈ T; and lims→t− k(s) exists and is finite at every left-dense point t ∈ T.6

For functions F of two variables, t ∈ T and u ∈ R, we say F is rd-continuous if it is rd-continuous in t and continuous7

in u.8

Of particular importance is the fact that every Crd function is delta-integrable [6, Theorem 1.73].9

3. Banach space construction10

In this section we construct a suitable Banach space to accommodate solutions to (1.1) by introducing a novel11

weighted norm in the time scale environment.12

Since we will assume that r and F are rd-continuous functions in Eqs. (1.1) and (1.2), we are searching for13

the existence and uniqueness of solutions x : [a, ∞)T → R such that x1
: [a, ∞)T → R is continuous and14

x11
: [a, ∞)T → R is rd-continuous.15

We denote, by CT([a, ∞)T), the space of continuous functions x : [a, ∞)T → R that satisfy16

sup
t∈[a,∞)T

|x(t)| < ∞;17

and couple this linear space with the norm18

‖x‖
T
0 := sup

t∈[a,∞)T

|x(t)|;19

so that (CT([a, ∞)T), ‖ · ‖0) forms a Banach space. In particular, the following closed subspace of CT([a, ∞)T)20

H := {x ∈ CT([a, ∞)T) : x(t) ≥ 0, t ∈ [a, ∞)T};21

coupled with the above sup-norm furnishes a Banach space.22

Similarly, we denote, by C1
T([a, ∞)T), the space of continuously delta-differentiable functions x : [a, ∞)T → R23

that satisfy24

max

{
sup

t∈[a,∞)T

|x(t)|, sup
t∈[a,∞)T

|x1(t)|

}
< ∞;25

and couple this linear space with the norm26

‖x‖
T
1 := max

{
sup

t∈[a,∞)T

|x(t)|, sup
t∈[a,∞)T

|x1(t)|

}
; (3.1)27

to obtain a Banach space. For a non-negative constant M , we define the closed subspace of C1
T([a, ∞)T) by28

XM := {x ∈ C1
T([a, ∞)T) : 0 ≤ x(t) ≤ M; x1(t) ≥ 0; t ∈ [a, ∞)T}; (3.2)29

and form a Banach space when coupling this with the norm in (3.1).30

Finally, for any bounded function w : [a, ∞)T → [c, d] with 0 < c ≤ d < ∞, we introduce the weighted norm31

‖ · ‖w on C1
T([a, ∞)T) by32

‖x‖w := max

{
sup

t∈[a,∞)T

|x(t)|
w(t)

, sup
t∈[a,∞)T

|x1(t)|
w(t)

}
.33

Please cite this article in press as: L. Erbe, et al., Basic existence, uniqueness and approximation results for positive solutions to nonlinear
dynamic equations on time scales, Nonlinear Analysis (2007), doi:10.1016/j.na.2007.08.010
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We note that the existence of positive numbers c and d above ensure that ‖ · ‖w and ‖ · ‖
T
1 are equivalent norms, as 1

‖x‖
T
1

d
≤ ‖x‖w ≤

‖x‖
T
1

c
, ∀x ∈ C1

T([a, ∞)T). 2

Thus we observe that (C1
T([a, ∞)T), ‖ · ‖w) is also a Banach space. 3

Weighted norms date back to the pioneering arguments of Bielecki [9, pp. 25–26], [11, pp. 153–155], [20, p. 44] 4

and have been recently introduced into the time scale setting by Tisdell and Zaidi [22]. 5

Our particular weighted norm of interest will involve the exponential function on a time scale and we now provide 6

a short discussion of this special function. 7

Define the so-called set of regressive functions,R, by 8

R := {p ∈ Crd(T) and 1 + p(t)µ(t) 6= 0, ∀t ∈ T} 9

and the set of positively regressive functions,R+, by 10

R+
:= {p ∈ Crd(T) and 1 + p(t)µ(t) > 0, ∀t ∈ T}. 11

For p ∈ R we define [6, Theorem 2.35] the exponential function ep(·, a) on the time scale T as the unique solution 12

to the scalar initial value problem 13

x1
= p(t)x, x(a) = 1. 14

If p ∈ R+ then ep(t, a) > 0 for all t ∈ T [6, Theorem 2.48]. Finally, for p ∈ R we define 	p by 15

(	p)(t) := −
p(t)

1 + µ(t)p(t)
, t ∈ [a, ∞)T. 16

We now provide our first Banach space related result. 17

Lemma 3.1. Let p : [a, ∞)T → (0, ∞) be a rd-continuous function such that 18∫
∞

a
p(t)1t < ∞. (3.3) 19

Then for w(t) := e	p(t, a) the pair (C1
T([a, ∞)T), ‖ · ‖w) forms a Banach space. 20

Proof. Let 21

w(t) := e	p(t, a), t ∈ [a, ∞)T . 22

Since p ∈ R, w is well defined and since p > 0 on [a, ∞)T we have p ∈ R+. Thus, by [6, Theorem 2.44] w > 0 on 23

[a, ∞)T. By [6, Theorem 2.71], w is the unique solution of the initial value problem 24

w1(t) = −p(t)wσ (t), w(a) = 1. (3.4) 25

We show that 0 < L ≤ w(t) ≤ 1 for t ∈ [a, ∞)T where L := limt→∞ w(t). Thus, the equivalence of the norms ‖ ·‖w 26

and ‖ · ‖
T
1 will be established and by the earlier discussion in this section the pair (C1

T([a, ∞)T), ‖ · ‖w) will form a 27

Banach space. 28

From (3.4) we see w1(t) < 0 for t ∈ [a, ∞)T and so w is decreasing on [a, ∞)T. Thus w ≤ 1 on [a, ∞)T. 29

We claim that (3.3) implies 30

L := lim
t→∞

w(t) > 0. 31

To see this note that 32

w(t) := e	p(t, a) = exp
(∫ t

a
ξµ(s)((	p)(s))1s

)
, t ∈ [a, ∞)T, 33

where ξh is the cylinder transformation [6, Definition 2.21] defined by 34

ξh(x) :=

{ 1
h

Log[1 + hx], h > 0;

x, h = 0;

35

Please cite this article in press as: L. Erbe, et al., Basic existence, uniqueness and approximation results for positive solutions to nonlinear
dynamic equations on time scales, Nonlinear Analysis (2007), doi:10.1016/j.na.2007.08.010
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and Log is the principal logarithmic function.1

There are two cases to discuss: µ(s) = 0; and µ(s) > 0.2

If µ(s) = 0, then ξ((	p)(s)) = −p(s); while if µ(s) > 0 then we have3

ξµ(s)((	p)(s)) =
1

µ(s)
Log[1 + µ(s)(	p)(s)]4

=
1

µ(s)
Log[1 + µ(s)(	p)(s)]5

=
1

µ(s)
log

[
1

1 + µ(s)p(s)

]
6

= −
1

µ(s)
log[1 + µ(s)p(s)]7

≥ −p(s),8

where we have used the inequality9

log(1 + y) ≤ y, for all y ≥ 0.10

Therefore, in either case we have11

ξµ(s)((	p)(s)) ≥ −p(s) for all s ∈ [a, ∞)T.12

It follows from (3.3) that13

L := lim
t→∞

w(t) > 0.14

In particular, we have15

0 < L ≤ w(t) ≤ 1, t ∈ [a, ∞)T;16

so that ‖ · ‖w and ‖ · ‖
T
1 are equivalent norms. �17

In the following definition, we introduce a particular form of the function p that will be of use in our investigation.18

Definition 3.2. Let k, r : [a, ∞)T → (0, ∞) be rd-continuous. For t ∈ [a, ∞)T we define19

P(t, s) :=

∫ σ(t)

s

1
r(u)

1u, a ≤ s ≤ σ(t); (3.5)20

and for any constant K > 1, define21

p(t) := K [P(t, a) + 1]k(t), t ∈ [a, ∞)T. (3.6)22

As a special case, consider r ≡ 1 in (3.5). Then (3.5) becomes23

P(t, s) = σ(t) − s, a ≤ s ≤ σ(t);24

and (3.6) becomes25

p(t) = K [σ(t) − s + 1]k(t), t ∈ [a, ∞)T.26

For our investigation of (1.1) and (1.2) the function r in the preceding context, of course, is determined from (1.1)27

or (1.2), while k will appear from the following generalised Lipschitz condition on F28

|F(t, u, z) − F(t, v, w)| ≤ k(t)[|u − v| + |z − w|], t ∈ [a, ∞)T, (u, v, w, z) ∈ R4
;29

or the special case30

|F(t, u) − F(t, v)| ≤ k(t)|u − v|, t ∈ [a, ∞)T, (u, v) ∈ R2.31

Our analysis of (1.1) (and (1.2)) will involve the existence and uniqueness of fixed points to certain delta integral32

operators. We now state an equivalence result between solutions to the dynamic equation (1.1) and solutions to a33

particular delta integral equation.34

Please cite this article in press as: L. Erbe, et al., Basic existence, uniqueness and approximation results for positive solutions to nonlinear
dynamic equations on time scales, Nonlinear Analysis (2007), doi:10.1016/j.na.2007.08.010
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Lemma 3.3. Consider (1.1). Let r : [a, ∞)T → (0, ∞) be rd-continuous and let F : [a, ∞)T × R2
→ R be 1

rd-continuous. Let P be defined in (3.5). If there is a constant M > 0 such that for all x ∈ XM 2∫
∞

a
P(t, a)F(t, xσ (t), x1σ (s))1t ≤ M, t ∈ [a, ∞)T; 3

then the dynamic equation (1.1) has a solution with limt→∞ x(t) = M and limt→∞ r(t)x1(t) = 0 if and only if the 4

delta integral equation 5

x(t) = M −

∫
∞

t
P(s, t)F(s, xσ (s), x1σ (s))1s, t ∈ [a, ∞)T; (3.7) 6

has a solution on [a, ∞)T. 7

Proof. Assume that the dynamic equation (1.1) has a solution x with limt→∞ x(t) = M and limt→∞ r(t)x1(t) = 0. 8

Then 9

[r(t)x1(t)]1 = −F(t, xσ (t), x1σ (t)), t ∈ [a, ∞)T. 10

Taking the delta integral on both sides from t to ∞ we obtain 11

r(t)x1(t) =

∫
∞

t
F(s, xσ (s), x1σ (s))1s, t ∈ [a, ∞)T. 12

Dividing by r(t) and integrating again we have 13

M − x(t) =

∫
∞

t

1
r(s)

∫
∞

s
F(u, xσ (u), x1σ (u)) 1u1s, t ∈ [a, ∞)T. 14

Integrating by parts and using the definition of P(t, s) in (3.5) we obtain 15

x(t) = M −

∫
∞

t
P(s, t)F(s, xσ (s), x1σ (s))1s, t ∈ [a, ∞)T. 16

Conversely, assume that x is a solution of (3.7) on [a, ∞)T, that is 17

x(t) = M −

∫
∞

t
P(s, t)F(s, xσ (s), x1σ (s))1s, t ∈ [a, ∞)T. (3.8) 18

Note that limt→∞ x(t) = M . Taking the delta derivative in (3.8) we obtain 19

x1(t) = P(t, σ (t))F(t, xσ (t), x1σ (t)) +
1

r(t)

∫
∞

t
F(s, xσ (s), x1σ (s))1s, t ∈ [a, ∞)T; 20

=
1

r(t)

∫
∞

t
F(s, xσ (s), x1σ (s))1s. 21

Therefore 22

r(t)x1(t) =

∫
∞

t
F(s, xσ (s), x1σ (s))1s, t ∈ [a, ∞)T; (3.9) 23

which implies 24

lim
t→∞

r(t)x1(t) = 0. 25

Differentiating both sides of (3.9) we obtain the desired result 26

[r(t)x1(t)]1 = −F(t, xσ (t), x1σ (t)), t ∈ [a, ∞)T. � 27

Please cite this article in press as: L. Erbe, et al., Basic existence, uniqueness and approximation results for positive solutions to nonlinear
dynamic equations on time scales, Nonlinear Analysis (2007), doi:10.1016/j.na.2007.08.010
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4. Main results1

In this section we state and prove our main results which will be obtained by use of Banach’s fixed-point theorem.2

Banach’s fixed-point theorem is one of the most basic, yet most compelling, ideas from fixed-point theory — mainly3

because the theorem produces a wide range of qualitative and quantitative information about solutions.4

Let (Y, ‖ · ‖Y ) be a Banach space and T : Y → Y . The map T is said to be contractive if there exists a positive5

constant α < 1 such that6

‖T (x) − T (y)‖Y ≤ α‖x − y‖Y , ∀x, y ∈ Y.7

The constant α is called the contraction constant of T .8

For any given y ∈ Y we define the sequence {T i (y)} recursively by: T 0(y) := y; and T i+1(y) := T (T i (y)).9

Theorem 4.1 (Banach). Let (Y, ‖ · ‖Y ) be a Banach space and let T : Y → Y be contractive. Then T has a unique10

fixed point u and T i (y) → u for each y ∈ Y . If we start at an arbitrary y ∈ Y then the following estimate on the11

“error” between the i th iteration T i y and the fixed point u, holds12

‖F i y − u‖Y ≤
αi

1 − α
‖y − Fy‖Y .13

Proof. See [9, p. 10] or [16, Theorem 7.5]. �14

The following two results furnish the existence of a unique, positive solution to (1.2) and (1.1) with solutions15

possessing a horizontal asymptote.16

Theorem 4.2. Consider (1.2). Let r, k : [a, ∞)T → (0, ∞) be rd-continuous and let F : [a, ∞)T × R → R be17

rd-continuous. Let P and p be defined as in Definition 3.2 with k and F satisfying18

F(t, u) ≥ 0, ∀(t, u) ∈ [a, ∞)T × [0, ∞); (4.1)19

|F(t, u) − F(t, v)| ≤ k(t)|u − v|, t ∈ [a, ∞)T, (u, v) ∈ R2
; (4.2)20 ∫

∞

a
p(t)1t < ∞.21

Let M > 0 be a constant such that for all x ∈ XM22 ∫
∞

a
P(t, a)F(t, xσ (t)) 1t ≤ M, t ∈ [a, ∞)T.23

Then there is a unique positive solution x ∈ XM of (1.2) satisfying limt→∞ x(t) = M. Furthermore24

x(t) ≥ r(t)x1(t)
∫ t

a

1
r(u)

1u, t ∈ [a, ∞)T. (4.3)25

In addition, if x0 ∈ XM and we define the “Picard iterates” xi recursively by26

xi+1(t) := M −

∫
∞

t
P(s, t)F(s, xσ

i (s))1s, t ∈ [a, ∞)T;27

then limi→∞ xi (t) = x(t) uniformly on [a, ∞)T.28

Proof. Consider XM defined in (3.2). Let w(t) := e	p(t, a) for all t ∈ [a, ∞)T where p(t) := K [P(t, a) + 1]k(t)29

and K > 1 is an arbitrary constant. Consider the pair (XM , ‖·‖w), which forms a Banach space by Lemma 3.1. Define30

an operator T on XM by31

[T x](t) := M −

∫
∞

t
P(s, t)F(s, xσ (s))1s, t ∈ [a, ∞)T.32

We will now use Banach’s fixed-point theorem to show that T has a unique fixed point in XM . If x ∈ XM , then by33

(4.1), F(t, xσ (t)) ≥ 0 and hence34

0 ≤ [T x](t) ≤ M, t ∈ [a, ∞)T.35
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Also, for all t ∈ [a, ∞)T, 1

[T x]
1(t) = P(t, σ (t))F(t, xσ (t)) +

1
r(t)

∫
∞

t
F(s, xσ (s)) 1s 2

=
1

r(t)

∫
∞

t
F(s, xσ (s)) 1s 3

≥ 0. 4

Since T x : [a, ∞)T → R and (T x)1 : [a, ∞)T → R are continuous we have that T : XM → XM . 5

We now show that T is a contraction mapping on XM . For x, y ∈ XM , consider 6

|[T x](t) − [T y](t)|
w(t)

≤
1

w(t)

∫
∞

t
P(s, t)|F(s, xσ (s)) − F(s, yσ (s))| 1s 7

≤
1

w(t)

∫
∞

t
P(s, t)k(s)|xσ (s) − yσ (s)| 1s 8

=
1

w(t)

∫
∞

t
P(s, t)k(s)wσ (s)

|xσ (s) − yσ (s)|
wσ (s)

1s 9

≤ ‖x − y‖w

1
w(t)

∫
∞

t
P(s, t)k(s)wσ (s) 1s. (4.4) 10

Using (3.4) we obtain 11

k(t)wσ (t) = −
w1(t)

K [P(t, a) + 1]
, t ∈ [a, ∞)T. 12

Therefore, from (4.4), we obtain, for t ∈ [a, ∞)T, 13

|[T x](t) − [T y](t)|
w(t)

≤ −
‖x − y‖w

Kw(t)

∫
∞

t

P(s, t)w1(s)
P(s, a) + 1

1s 14

≤ −
‖x − y‖w

Kw(t)

∫
∞

t
w1(s) 1s 15

=
w(t) − L

Kw(t)
‖x − y‖w 16

≤
1
K

‖x − y‖w. 17

Taking the sup over t we obtain 18

‖T x − T y‖w ≤
1
K

‖x − y‖w = α‖x − y‖w; 19

where α := 1/K < 1, and hence T is a contraction mapping on XM . Therefore, from Banach’s fixed-point theorem, 20

T has a unique fixed point x ∈ XM and so by Lemma 3.3 there is a unique positive solution of (1.2) in XM satisfying 21

limt→∞ x(t) = M . 22

To see that (4.3) holds note that the solution x satisfies, for each t ∈ [a, ∞)T, 23

x(t) = M −

∫
∞

t
P(s, t)F(s, xσ (s))1s 24

= M −

∫
∞

t

[
P(s, a) −

∫ t

a

1
r(u)

1u
]

F(s, xσ (s))1s 25

= M −

∫
∞

t
P(s, a)F(s, xσ (s))1s +

∫ t

a

1
r(u)

1u
∫

∞

t
F(s, xσ (s))1s 26

≥ M −

∫
∞

a
P(s, a)F(s, xσ (s)) 1s +

∫ t

a

1
r(u)

1u
∫

∞

t
F(s, xσ (s))1s 27

≥

∫ t

a

1
r(u)

1u
∫

∞

t
F(s, xσ (s)) 1s. 28
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Since1

x1(t) =
1

r(t)

∫
∞

t
F(s, xσ (s))1s, t ∈ [a, ∞)T;2

we see that (4.3) holds. �3

We now generalise the previous theorem to include the case (1.1).4

Theorem 4.3. Consider (1.1). Let r, k : [a, ∞)T → (0, ∞) be rd-continuous and let F : [a, ∞)T × R → R be5

rd-continuous. Let K > 1 and R be positive constants with: r > R on [a, ∞)T; K R > 1. For P and p defined as in6

Definition 3.2, let k and F satisfy7

F(t, u, w) ≥ 0, ∀t ∈ [a, ∞)T, (u, w) ∈ R2
; (4.5)8

|F(t, u, w) − F(t, v, z)| ≤ k(t) (|u − v| + |w − z|) , t ∈ [a, ∞)T; (u, v) ∈ R2
; (4.6)9 ∫

∞

a
p(t) 1t < ∞.10

Let M > 0 be a constant such that for all x ∈ XMQ111 ∫
∞

a
P(t, a)F(t, xσ (t), x1σ (t))1t ≤ M, t ∈ [a, ∞)T.12

Then there is a unique positive solution x ∈ XM of (1.1) satisfying limt→∞ x(t) = M. Furthermore (4.3) holds. In13

addition, if x0 ∈ XM and we define the “Picard iterates” xi recursively by14

xi+1(t) := M −

∫
∞

t
P(s, t)F(s, xσ

i (s), x1σ
i (s))1s, t ∈ [a, ∞)T;15

then limi→∞ xi (t) = x(t) uniformly on [a, ∞)T.16

Proof. Much of this proof is similar to the proof of Theorem 4.2 and so we only sketch the details. Define T onXM by17

[T x](t) := M −

∫
∞

t
P(s, t)F(s, xσ (s), x1σ (s))1s, t ∈ [a, ∞)T.18

It follows that T : XM → XM . We want to show that T is a contraction mapping on XM . As in the proof of Theo-19

rem 4.2 we get for x, y ∈ XM20

|[T x](t) − [T y](t)|
w(t)

≤
1
K

‖x − y‖w.21

Now for x, y ∈ XM , consider, for t ∈ [a, ∞)T,22

|[T x]
1(t) − [T y]

1(t)|
w(t)

≤
1

r(t)w(t)

∫
∞

t
|F(s, xσ (s), x1σ (s)) − F(s, yσ (s), y1σ (s))|1s23

≤
1

r(t)w(t)

∫
∞

t
k(s)

[
|xσ (s) − yσ (s)| + |x1σ (s) − y1σ (s)|

]
1s24

≤
1

r(t)w(t)

∫
∞

t
k(s)wσ (s)

[
|xσ (s) − yσ (s)|

wσ (s)
+

|x1σ (s) − y1σ (s)|
wσ (s)

]
1s25

≤ ‖x − y‖w

1
r(t)w(t)

∫
∞

t
k(s)wσ (s) 1s26

= ‖x − y‖w

1
r(t)w(t)

∫
∞

t

−w1(s)
K [P(s, a) + 1]

1s27

≤ −
‖x − y‖w

Kr(t)w(t)

∫
∞

t
w1(s) 1s28

=
1

K R
w(t) − L

w(t)
‖x − y‖w29

≤
1

K R
‖x − y‖w.30
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It follows that 1

‖T x − T y‖w ≤ α‖x − y‖w; 2

where 3

α := max
{

1
K

,
1

K R

}
< 1. � 4

The following result bounds the delta derivative of solutions furnished by the previous two theorems. 5

Corollary 4.4. In Theorems 4.2 and 4.3 if we replace XM by 6

YM := {x ∈ XM : x1(t) ≤ M, t ∈ [a, ∞)T} 7

and assume that the inequalities 8

1
r(t)

∫
∞

a
F(t, xσ (t), x1σ (t))1t ≤ M, t ∈ [a, ∞)T; 9

1
r(t)

∫
∞

a
F(t, xσ (t), x1σ (t))1t ≤ M, t ∈ [a, ∞)T; 10

hold for all x ∈ YM , then (1.1) (resp. (1.2)) has a unique positive solution in YM . In particular, 0 ≤ x1
≤ M on 11

[a, ∞)T. 12

In the following result, we obtain the existence and uniqueness of “eventually positive” solutions. 13

Theorem 4.5. Consider (1.1). Let r, k : [a, ∞)T → (0, ∞) be rd-continuous and let F : [a, ∞)T × R → R be 14

rd-continuous. Let P be defined as in Definition 3.2 with
∫

∞

a P(s, a)k(s)1s < ∞. Assume that F satisfies (4.6) with 15

1
r(t)

∫
∞

t
k(s)1s < 1, for sufficiently large t. 16

Let the constant M > 0 be given such that there is a v ∈ C1
T([a, ∞)T) so that the two integrals 17∫

∞

a
P(s, a)|F(s, vσ (s), v1σ (s))| 1s,

∫
∞

a
|F(s, vσ (s), v1σ (s))| 1s; 18

are finite. Then there is a unique solution x ∈ C1
T([a, ∞)T) such that for some t0 ∈ [a, ∞)T, x > 0 on 19

[a, ∞)T ∩ [t0, ∞) and limt→∞ x(t) = M. Furthermore, (4.3) holds on [a, ∞)T ∩ [t0, ∞). 20

Proof. Let M > 0 be given and define TM on C1
T([a, ∞)T) by 21

[TM x](t) := M −

∫
∞

t
P(s, t)F(s, xσ (s), x1σ (s)) 1s, t ∈ [a, ∞)T. 22

To see that TM is well defined, let x ∈ C1
T([a, ∞)T) and consider 23

0 ≤

∫
∞

a
P(s, t)|F(s, xσ (s), x1σ (s))|1s 24

≤

∫
∞

a
P(s, t)|F(s, xσ (s), x1σ (s)) − F(s, vσ (s), v1σ (s))|1s +

∫
∞

a
P(s, t)|F(s, vσ (s), v1σ (s))|1s 25

≤ ‖x − v‖
T
1

∫
∞

a
P(s, t)k(s)1s +

∫
∞

a
P(s, t)|F(s, vσ (s), v1σ (s))|1s 26

≤ ‖x − v‖
T
1

∫
∞

a
P(s, a)k(s)1s +

∫
∞

a
P(s, a)|F(s, xσ (s), x1σ (s))|1s 27

< ∞. 28
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Therefore,1 ∫
∞

a
P(s, t)|F(s, xσ (s), x1σ (s))|1s < ∞, for all x ∈ C1

T([a, ∞)T),2

and TM is well defined on C1
T([a, ∞)T). Clearly, TM (x) is continuous on [a, ∞)T. Also for x ∈ C1

T([a, ∞)T),3 ∫
∞

a
|F(s, xσ (s), x1σ (s))|1s4

≤

∫
∞

a
|F(s, xσ (s), x1σ (s)) − F(s, vσ (s), v1σ (s))|1s +

∫
∞

a
|F(s, vσ (s), v1σ (s))|1s5

≤ ‖x − v‖1

∫
∞

a
k(s)1s +

∫
∞

a
|F(s, vσ (s), v1σ (s))|1s6

< ∞.7

Hence8

[TM x]
1(t) =

1
r(t)

∫
∞

a
F(s, xσ (s), x1σ (s))1s;9

exists and is continuous on [a, ∞)T. Thus TM : C1
T([a, ∞)T) → C1

T([a, ∞)T).10

Next we show that TM is a contraction mapping on a subset of C1
T([a, ∞)T), where our norm ‖ · ‖1 is given by11

(3.1). To this end let x, y ∈ C1
T([a, ∞)T) and consider12

|[TM x](t) − [TM y](t)| ≤

∫
∞

t
P(s, t)|F(s, xσ (s), x1σ (s)) − F(s, yσ (s), y1σ (s))|1s13

≤

∫
∞

t
P(s, t)k(s)[|xσ (s) − yσ (s)| + |x1σ (s) − y1σ (s)|]1s14

≤ ‖x − y‖1

∫
∞

t
P(s, t)k(s)1s. (4.7)15

Also, for x, y ∈ C1
T([a, ∞)T), consider16

|[TM x]
1(t) − [TM y]

1(t)| ≤
1

r(t)

∫
∞

t
|F(s, xσ (s), x1σ (s)) − F(s, yσ (s), y1σ (s))| 1s17

≤
1

r(t)

∫
∞

t
k(s)[|xσ (s) − yσ (s)| + |x1σ

− y1σ
|]1s18

≤ ‖x − y‖1
1

r(t)

∫
∞

t
k(s)1s. (4.8)19

Now we choose t1 ∈ [a, ∞)T, sufficiently large so that:20 ∫
∞

t
P(s, t) 1s ≤ α < 1;

1
r(t)

∫
∞

t
k(s)1s ≤ α < 1, for t ∈ [a, ∞)T ∩ [t1, ∞).21

Then using (4.7) and (4.8) we see that TM is a contraction mapping on C1
T([a, ∞)T ∩ [t1, ∞)). By Banach’s fixed-22

point theorem we conclude that TM has a unique fixed point in C1
T([a, ∞)T ∩ [t1, ∞)) and this leads to a solution on23

all of [a, ∞)T by the assumption that initial value problems for (1.2) have unique solutions. �24

We present our final result, which concerns non-negative solutions.25

Theorem 4.6. Consider (1.2). Let r, k : [a, ∞)T → (0, ∞) be rd-continuous and let F : [a, ∞)T × R → R be26

rd-continuous. Let P be defined as in Definition 3.2. Assume that F satisfies (4.1) and the Lipschitz condition (4.2)27

with28 ∫
∞

a
P(s, a)k(s)1s < 1. (4.9)29
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If there exists a v ∈ C1
T([a, ∞)T) such that 1∫

∞

a
P(s, t)F(s, vσ (s)) 1s < ∞; (4.10) 2

then there is a unique solution x of (1.2) satisfying 3

x(a) = 0; x(t) ≥ 0, for t ∈ [a, ∞)T; 4

with 5

lim
t→∞

x(t) =

∫
∞

a
P(s, a)F(s, xσ (s))1s. 6

Furthermore, x satisfies (4.3). 7

Proof. Consider the Banach space (H, ‖ · ‖0) defined in Section 3. We then define T̂ onH by 8

[T̂ x](t) :=

∫
∞

a
P(s, a)F(s, xσ (s))1s −

∫
∞

t
P(s, t)F(s, xσ (s))1s, t ∈ [a, ∞)T. 9

It follows similar to the proof of Theorem 4.5 that the assumption (4.10) ensures T̂ is well defined on H and T̂ x is 10

continuous on [a, ∞)T. Furthermore, [T̂ x](a) = 0. 11

Next, note that 12

[T̂ x]
1(t) =

1
r(t)

∫
∞

t
F(s, xσ (s))1s > 0, t ∈ [a, ∞)T; 13

so T̂ x is increasing with 14

lim
t→∞

[T̂ x](t) =

∫
∞

a
P(s, a)F(s, xσ (s))1s < ∞ 15

and hence [T̂ x](t) ≥ 0 and is bounded for all t ∈ [a, ∞)T. Therefore T̂ : H → H. 16

We now find a different expression for [T̂ x](t), namely 17

[T̂ x](t) =

∫
∞

a
P(s, a)F(s, xσ (s))1s −

∫
∞

t
P(s, t)F(s, xσ (s))1s 18

=

∫ t

a
P(s, a)F(s, xσ (s))1s +

∫
∞

t
[P(s, a) − P(s, t)]F(s, xσ (s))1s 19

=

∫ t

a
P(s, a)F(s, xσ (s))1s +

∫ t

a

1
r(u)

1u
∫

∞

t
F(s, xσ (s))1s. 20

To show that T̂ is a contraction mapping onH, let x, y ∈ H and consider 21

|[T̂ x](t) − [T̂ y](t)| 22

≤

∫ t

a
P(s, a)|F(s, xσ (s)) − F(s, yσ (s))| 1s +

∫ t

a

1
r(u)

1u
∫

∞

t
|F(s, xσ (s)) − F(s, yσ (s))|1s 23

≤

∫ t

a
P(s, a)k(s)|xσ (s) − yσ (s)| 1s +

∫ t

a

1
r(u)

1u
∫

∞

t
k(s)|xσ (s) − yσ (s)|1s 24

≤ ‖x − y‖0

∫ t

a
P(s, a)k(s)1s + ‖x − y‖0

∫
∞

t

(∫ t

a

1
r(u)

1

)
uk(s)1s 25

≤ ‖x − y‖0

∫
∞

a
P(s, a)k(s)1s = α‖x − y‖0, 26

where 27

α :=

∫
∞

a
P(s, a)k(s)1s < 1 28

by (4.9). Hence T̂ is a contraction mapping onH. � 29

Please cite this article in press as: L. Erbe, et al., Basic existence, uniqueness and approximation results for positive solutions to nonlinear
dynamic equations on time scales, Nonlinear Analysis (2007), doi:10.1016/j.na.2007.08.010



UN
CO

RR
EC

TE
D

PR
O

O
F

NA: 6170

ARTICLE  IN  PRESS
14 L. Erbe et al. / Nonlinear Analysis xx (xxxx) xxx–xxx

5. Examples and open problems1

We now present some simple examples to illustrate the application of our new theorems and how they advance2

existing knowledge.3

Example 5.1. Consider the time scale T = R and the ordinary differential equation4 (
1
tδ

x ′

)′

+
1
tγ

x
1 + x2 = 0, t ∈ [1, ∞);5

where γ > δ + 2 > 1 are constants. We claim that this example satisfies the conditions of Theorem 4.2.6

Proof. For this problem we can choose, for all t ∈ [a, ∞)T:7

k(t) =
1
tγ

;8

P(t, 1) =
tδ+1

− 1
δ + 1

;9

p(t) = 3[P(t, 1) + 1]k(t);10

and show that the hypotheses of Theorem 4.2 hold. �11

We note that the theorems in [13,23] do not directly apply to the previous example.12

Example 5.2. For an arbitrary, unbounded time scale interval of the form [a, ∞)T, a > 0, we can obtain a result for13

dynamic equations of the form14 (
(
√

t +

√
σ(t))x1

)1

+ F(t, xσ ) = 0, (5.1)15

where16 ∣∣∣∣∂ F
∂u

(t, u)

∣∣∣∣ ≤
M
tβ

, t ∈ [a, ∞)T, u ∈ R,17

where β > 3
2 and (5.1) satisfies the hypotheses of Theorem 4.2.18

No pre-existing results apply to the previous example in the general time scale setting.19

Finally, we state the following open problem: It would be interesting to advance the results in this paper by20

investigating the more general case of (1.2) where F can assume both positive and negative values. In particular,21

the problem22

[r(t)x1(t)]1 + f (t)g(xσ (t)) = 0, t ∈ [a, ∞)T;23

is still open when f (t) is a bounded function that can be of both signs. This problem is still open even for the special24

case of the differential equation (1.3). Results on the above open problems would be very well-received by the time25

scales and dynamical systems community (see [4]).Q226
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