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Abstract

We present new oscillation criteria for the second order nonlinear
neutral delay differential equation(

a (t) (y (t) + p (t) y (t− τ))′
)′ + q (t) |y (σ (t))|α−1 y (σ (t)) = 0,

where t ≥ t0, τ, and α are positive constants and the functions
p, q, a, σ ∈ C ([t0,∞) , R) . Our results generalize and improve some
known results for oscillation of second order neutral delay differential
equations. Our results are illustrated with an example.
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1 Introduction

Consider the second order nonlinear neutral delay differential equation(
a (t) (y (t) + p (t) y (t− τ))′

)′
+ q (t) |y (σ (t))|α−1 y (σ (t)) = 0, (1.1)

where t ≥ t0, τ, and α are positive constants, p, q, a, σ ∈ C ([t0,∞) ,R) .
Throughout this paper, we assume that

(a) 0 ≤ p (t) ≤ 1, q (t) ≥ 0, a (t) > 0, α > 0;
(b) σ (t) ≤ t, σ′ (t) > 0, limt→∞ σ (t) = ∞;
(c)

∫∞
t0

dt
a(t)

= ∞.

Second order neutral delay differential equations have applications in
problems dealing with vibrating masses attached to an elastic bar and in
some variational problems (see Hale [10]).

Our attention is restricted to those solutions of equation (1.1) that satisfy
sup {|y (t)| : t ≥ T} > 0. We make a standing hypothesis that (1.1) does
possess such solutions. By a solution of equation (1.1) we mean a function
y ∈ C ([θ,∞) ,R) , θ = min {t0 − τ, σ (t0)} in the sense that both y (t) +
p (t) y (t− τ) and a (t) (y (t) + p (t) y (t− τ))′ are continuously differentiable
for t ≥ t0 and y (t) satisfies equation (1.1) on [t0,∞) . For further questions
concerning existence and uniqueness of solutions of neutral delay differential
equations see Hale [10].

A solution of equation (1.1) is said to be oscillatory if it has arbitrarily
large zeros, and otherwise it is nonoscillatory. The equation itself is called
oscillatory if all its solutions are oscillatory.

In the last few decades, there has been increasing interest in obtaining
sufficient conditions for the oscillation and nonoscillation of solutions of dif-
ferent classes of second order neutral delay differential equations, see for
example [2], [6], [7], [9] and the references quoted therein. For oscillation of
various functional differential equations we refer the reader to the mono-
graphs [1], [7], [9], [20].

In particular, much work has been done on the following particular cases
of (1.1) :

y′′ (t) + q (t) y (t) = 0, (1.2)

(r (t) y′ (t))
′
+ q (t) y (t) = 0, (1.3)

y′′ (t) + q (t) y (t− σ) = 0, (1.4)
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(y (t) + p (t) y (t− τ))′′ + q (t) y (t− σ) = 0. (1.5)

An important tool in the study of the oscillatory behavior of solutions of
these equations is the averaging technique which goes back as far as the
classical result of Wintner [25] where it was proved that (1.2) is oscillatory if

lim
t→∞

1

t

∫ t

t0

∫ s

t0

q (v) dvds = ∞. (1.6)

Hartman [11] proved that the limit in (1.6) cannot be replaced by the limit
supremum and proved that the condition

−∞ < lim inf
t→∞

1

t

∫ t

t0

∫ s

t0

q (v) dvds < lim sup
t→∞

1

t

∫ t

t0

∫ s

t0

q (v) dvds ≤ ∞, (1.7)

implies that every solution of (1.2) oscillates.
Kamenev [12] improved Wintner’s result by proving that the condition

lim
t→∞

1

tn

∫ t

t0

(t− s)n q (s) ds = ∞, (1.8)

for some integer n > 1 is sufficient for the oscillation of (1.2) .
Yan [26] proved that if

lim sup
t→∞

1

tn

∫ t

t0

(t− s)n q (s) ds <∞,

for some integer n > 1 and there exists a function φ on [t0,∞) satisfying∫∞
t0
φ2

+ (t) dt = ∞ where φ+ (t) = max{φ (t) , 0} and

lim sup
t→∞

1

tn

∫ t

t0

(t− s)n q (s) ds > sup
u≥t0

φ (u) , (1.9)

then every solution of equation (1.2) oscillates.
Philos [18] further improved Kamenev’s result by proving the following:

Suppose there exist continuous functions H, h : D ≡ {(t, s) : t ≥ s ≥ t0} →
R such that

H (t, t) = 0, t ≥ t0,

H (t, s) > 0, t > s ≥ t0,
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and H has a continuous and nonpositive partial derivative on D with respect
to the second variable and satisfies

−∂H (t, s)

∂s
= h (t, s)

√
H (t, s) ≥ 0. (1.10)

Further, suppose that

lim
t→∞

1

H (t, t0)

∫ t

t0

[
H (t, s) q (s)− 1

4
h2 (t, s)

]
ds = ∞. (1.11)

Then every solution of equation (1.2) oscillates.

We note, however, that when q (t) =
γ

t2
, (1.2) reduces to the well-known

Euler–Cauchy equation

u′′ (t) +
γ

t2
u (t) = 0, t ≥ 1, (1.12)

to which none of the above mentioned oscillation criteria is applicable. In

fact, the Euler–Cauchy equation (1.12) is oscillatory if γ >
1

4
, and nonoscil-

latory if γ ≤ 1

4
, see [13]. For further results on the oscillation of superlinear

and sublinear equations, we refer the reader to the papers [3]− [5], [24].

For oscillation of equation (1.3) , Leighton [15] proved that if:∫ ∞

t0

dt

r (t)
= ∞ and

∫ ∞

t0

q (t) dt = ∞, (1.13)

then every solution of equation (1.3) oscillates.
Willett [23] used the transformation

τ =

(∫ ∞

t

ds

r (s)

)−1

, u (t) = τ−1 (y (t)) ,

to establish a new version of Leighton
′
s criterion and obtained the following

oscillation result: If∫ ∞

t0

dt

r (t)
= ∞ and

∫ ∞

t0

q (t)

(∫ ∞

t

ds

r (s)

)2

dt = ∞, (1.14)

then every solution of (1.3) oscillates.
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We note, however, that the oscillation criteria of Leighton and Willett
are not applicable to the equation(

t2u′ (t)
)′

+ γu (t) = 0, t > 0, (1.15)

where γ is a positive constant. Kong [13], Li [16], Li and Yeh [17], Rogov-
echenkov [19], and Yu [27] used the generalized Riccati technique and have
given several sufficient conditions for oscillation of (1.3) which can be applied

to (1.15); in fact every solution of (1.15) oscillates if γ >
1

4
, see ([17], [18]) .

In [22], Waltman extended Leighton’s criterion to equation (1.4) and
showed that (1.4) is oscillatory if q (t) ≥ 0 and∫ ∞

t0

q (s) ds = ∞.

But, Travis [21] showed that Leighton’s criterion is not enough to ensure
the oscillation of equation (1.4). Hence, the oscillation analysis of the delay
differential equations is more complicated than that of ordinary differential
equations.

There has recently been an increased interest in the studying of the os-
cillation of second order neutral delay differential equations. The results of
Waltman and Travis have been extended to neutral delay differential equa-
tions by Grammatikopoulos, Ladas and Meimaridou [8]. They proved that
if

0 ≤ p (t) ≤ 1, q (t) ≥ 0,

and ∫ ∞

t0

q (s) [1− p (s− σ)] ds = ∞,

then equation (1.5) is oscillatory.

In this paper, we use the generalized Riccati transformation technique to
establish some new sufficient conditions for the oscillation of equation (1.1).
To the best of our knowledge nothing is known regarding the qualitative
behavior of equation (1.1). The relevance of our results becomes clear in an
example that we give in Section 2. In the sequel, when we write a functional
inequality we will assume that it holds for all sufficiently large values of t.
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2 Main Results

In this section, we will establish some new oscillation criteria for the os-
cillation of equation (1.1) , which extend and improve some known results.
Throughout this section, for any function φ ∈ C1 ([t0,∞)) , we define

Q (t) := q (t) (1− p (σ (t)))α , k (t) =
N2

1a (σ (t))

α2σ′ (t)

∫ σ(t)

t1

a (σ (s))

σ′ (s) Φ (s) a2 (s)
ds,

for some constant N1 and t1 ≥ t0, and

Φ (t) = exp

(
−2

∫ t

φ (ζ) dζ

)
, β (t) = φ (t)

(
1− a (t)

k (t)

)
,

ψ (t) = Φ (t)

(
Q (t) +

1

k (t)
(a (t)φ (t))2 − (a (t)φ (t))

′
)
.

Theorem 1. Suppose there exists a negative function φ ∈ C1 ([t0,∞)) , such
that (

Φ′ (t) a (σ (t))

σ′ (t)

)′
≤ 0, for t ≥ t0, (2.1)

and

lim inf
t→∞

∫ t

t0

Φ (s)Q (s) ds > 0, (2.2)

and there exists continuous functions H, h : D → R such that
(i) H (t, t) = 0, for t ≥ t0,
(ii) H (t, s) > 0, for t > s ≥ t0,
(iii) H has a continuous and nonpositive partial derivative on D with

respect to the second variable.
Assume there exists a function υ ∈ C1 ([t0,∞) , (0,∞)) and T ≥ t0 such that

− ∂

∂s
[H(t, s)υ(s)] + 2H (t, s) υ (s)φ (s)

(
1− a (s)

k (s)

)
= h (t, s)

√
H (t, s) υ (s).

Further assume for all sufficiently large T,

lim sup
t→∞

1

H (t, T )

∫ t

T

[
H (t, s) υ (s)ψ (s)− 1

4
Φ (s) k (s)h2 (t, s)

]
ds = ∞.

(2.3)
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Then equation (1.1) is oscillatory for all α > 1.

Proof. Suppose to the contrary that equation (1.1) possesses a nonoscilla-
tory solution y (t) on an interval [t0,∞) . Without loss of generality, we shall
assume that y (t) > 0 for all t ≥ t0. let

z (t) = y (t) + p (t) y (t− τ) . (2.4)

Then in view of condition (a), we see that z (t) > 0, (a (t) z′ (t))′ ≤ 0 for
t ≥ t1 ≥ t0. Therefore a (t) z′ (t) is a decreasing function of t, in view of
Ruan [[20], Theorem 1] , we have immediately that z′ (t) ≥ 0 for t ≥ t1.
Consequently,

z (t) > 0, z′ (t) ≥ 0, (a (t) z′ (t))
′ ≤ 0, for t ≥ t1. (2.5)

Now, observe that from (1.1) , we have

(a (t) z′ (t))
′
+ q (t) yα (σ (t)) = 0, (2.6)

Now using (2.4) and (2.5), we get

y (t) = z (t)− p (t) y (t− τ)

= z (t)− p (t) (z (t− τ)− p (t− τ) y (t− 2τ))

≥ z (t)− p (t) z (t− τ) ≥ z (t) (1− p (t)) . (2.7)

Using (2.6), (2.7) and using the definition of the function Q (t) , we have

(a (t) z′ (t))
′
+Q (t) zα (σ (t)) ≤ 0, t ≥ t1. (2.8)

We now define the function

w (t) = Φ (t) a (t)

(
z′ (t)

zα (σ (t))
+ φ (t)

)
. (2.9)

This and (2.8) imply for t ≥ t1 that

w′ (t) ≤ −2φ (t)w (t)

+Φ (t)

{
−Q (t) + (a (t)φ (t))′ − αa (t)σ′ (t) z′ (t) z′ (σ (t))

zα+1 (σ (t))

}
. (2.10)
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From (2.5) , and assumption (b), we get

a (σ (t)) z′ (σ (t)) ≥ a (t) z′ (t) ,

From this and (2.10) , we get for t ≥ t1

w′ (t) ≤ −2φ (t)w (t)

+Φ (t)

{
−Q (t) + (a (t)φ (t))′ − ασ′ (t)

a (σ (t))

(
a (t) z′ (t)

zγ (σ (t))

)2
}
, (2.11)

where γ =
α+ 1

2
. Also, from (2.5) , and assumption (b), we can write (2.11)

in the form
w′ (t) ≤ Φ (t) {−Q (t)− 2a (t)φ2 (t)

+ (a (t)φ (t))′ − 2φ (t) a (t) z′ (t)

zα (σ (t))
− ασ′ (t)

a (σ (t))

(
a (t) z′ (t)

zγ (t)

)2

}. (2.12)

Integrating (2.12) from t1 to t (t > t1) , we get

Φ (t)
a (t) z′(t)

zα (σ (t))
≤ C −

∫ t

t1

Φ(s)Q (s) ds+

∫ t

t1

Φ′ (s) a (s) z′(s)

zα (σ (s))
ds

−
∫ t

t1

ασ′ (s) Φ (s)

a (σ (s))

(
a (s) z′ (s)

zγ (s)

)2

ds (2.13)

where C = w (t1) − a (t1) Φ (t1)φ (t1) . Since limt→∞ σ (t) = ∞, for t suf-
ficiently large σ (t) > t1, a (s) z′ (s) ≤ a (σ (s)) z′ (σ (s)). Then by Bonnet’s

Theorem, since
Φ′ (t) a (σ (t))

σ′ (t)
is nonincreasing, for a fixed t ≥ t1, there exists

ξ ∈ [t1, t] such that∫ t

t1

Φ′ (s) a (s) z′ (s)

zα (σ (s))
ds ≤

∫ t

t1

Φ′ (s) a (σ (s))

σ′ (s)

z′ (σ (s))σ
′
(s)

zα (σ (s))
ds

=
Φ′ (t1) a (σ (t1))

σ′ (t1)

∫ ξ

t1

z′ (σ (s))σ′ (s)

zα (σ (s))
ds

=
Φ′ (t1) a (σ (t1))

σ′ (t1)

∫ z(σ(ξ))

z(σ(t1))

u−αdu

=
Φ′ (t1) a (σ (t1))

(1− α)σ′ (t1)

(
z1−α (σ (ξ))− z1−α (σ (t1))

)
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<
a (σ (t1)) Φ′ (t1) z

1−α (σ (t1))

(α− 1)σ′ (t1)
= M. (2.14)

Thus, for t ≥ t1, we find from (2.13) , that

Φ (t)
a (t) z′ (t)

zα (σ (t))
≤ L−

∫ t

t1

Φ (s)Q (s) ds

−
∫ t

t1

ασ′ (s) Φ (s)

a (σ (s))

(
a (s) z′ (s)

zγ (s)

)2

ds,

where L = C +M > 0 and hence, since Φ (t)
a (t) z′ (t)

zα (σ (t))
> 0, we have

∫ t

t1

ασ′ (s) Φ (s)

a (σ (s))

(
a (s) z′ (s)

zγ (s)

)2

ds

≤ L− Φ (t)
a (t) z′ (t)

zα (σ (t))
−
∫ t

t1

Φ (s)Q (s) ds

< L−
∫ t

t1

Φ (s)Q (s) ds. (2.15)

From (2.2) and (2.15), we have that the integral∫ t

t1

ασ′ (s) Φ (s)

a (σ (s))

(
a (s) z′ (s)

zγ (s)

)2

ds,

converges as t→∞. Thus, there exists a positive constant N such that∫ t

t1

ασ′ (s) Φ (s)

a (σ (s))

(
a (s) z′ (s)

zγ (s)

)2

ds ≤ N, for all t ≥ t1. (2.16)

By Schwarz’s inequality, we get∣∣∣∣∫ t

t1

z′(s)

zγ(s)
ds

∣∣∣∣2 =

∣∣∣∣∣
∫ t

t1

√
a(σ(s))

ασ′(s)Φ(s)a2 (s)

√
ασ′(s)Φ(s)

a(σ(s))

a(s)z′(s)

zγ(s)
ds

∣∣∣∣∣
2

≤
∫ t

t1

a (σ (s))

ασ′ (s) Φ (s) a2 (s)
ds

(∫ t

t1

ασ′ (s) Φ (s)

a (σ (s))

(
a (s) z′ (s)

zγ (s)

)2

ds

)

≤ N

∫ t

t1

a (σ (s))

ασ′ (s) Φ (s) a2 (s)
ds.
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Hence, for t ≥ t1

∣∣z1−γ (t)− z1−γ (t1)
∣∣ ≤ (γ − 1)N

1

2

(∫ t

t1

a (σ (s))

ασ′ (s) Φ (s) a2 (s)
ds

)1

2
.

Therefore there exists a constant N1 and t2 > t1 such that

∣∣z1−γ (t)
∣∣ ≤ N1

(∫ t

t1

a (σ (s))

ασ′ (s) Φ (s) a2 (s)
ds

)1

2
, for t ≥ t2.

Since limt→∞ σ (t) = ∞, we can assume that there exists a T ≥ t2 such that
σ (t) ≥ t1 for all t ≥ T. Hence

∣∣z1−γ (σ (t))
∣∣ ≤ N1

(∫ σ(t)

t1

a (σ (s))

ασ′ (s) Φ (s) a2 (s)
ds

)1

2
, for t ≥ T,

or

|zγ (σ (t))| ≤ |zα (σ (t))|N1

(∫ σ(t)

t1

a (σ (s))

ασ′ (s) Φ (s) a2 (s)
ds

)1

2
, for t ≥ T.

(2.17)
From (2.17), (2.11) and the definition of k (t), we get, for t ≥ T

w′ (t) ≤ −2φ (t)w (t) + Φ (t)

{
−Q (t) + (a (t)φ (t))′ − 1

k (t)

(
a (t) z′ (t)

zα (σ (t))

)2
}
.

Equation (2.9) , yields

w′ (t) ≤ −2φ (t)w (t)

+Φ (t)

{
−Q (t) + (a (t)φ (t))′ − 1

k (t)

(
w (t)

Φ (t)
− a (t)φ (t)

)2
}

= −ψ (t)− 2φ (t)

(
1− a (t)

k (t)

)
w (t)− 1

k (t) Φ (t)
w2 (t) , (2.18)
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Multiplying both sides of (2.18) by H (t, s) υ (s) and integrating from T to t,
we have, for all t ≥ T ≥ t1,∫ t

T

H (t, s) υ (s)ψ (s) ds

≤ −
∫ t

T

H (t, s) υ (s)w′ (s) ds− 2

∫ t

T

H (t, s) υ (s)φ (s)

(
1− a (s)

k (s)

)
w (s) ds

−
∫ t

T

H (t, s) υ (s)

k (s) Φ (s)
w2 (s) ds

= H (t, T ) υ (T )w (T )

−
∫ t

T

[
− ∂

∂s
(H (t, s) υ (s)) + 2H (t, s) υ (s)φ (s)

(
1− a (s)

k (s)

)]
w (s) ds

−
∫ t

T

H (t, s) υ (s)

k (s) Φ (s)
w2 (s) ds

= H (t, T ) υ (T )w (T )

−
∫ t

T

[√
H (t, s) υ (s)

k (s) Φ (s)
w (s) +

1

2

√
Φ (s) k (s)h (t, s)

]2

ds

+
1

4

∫ t

T

Φ (s) k (s)h2 (t, s) ds.

Hence ∫ t

T

[
H (t, s) υ (s)ψ (s)− 1

4
Φ (s) k (s)h2 (t, s)

]
ds

≤ H (t, T ) υ (T )w (T )−
∫ t

T

[√
H(t, s)υ(s)

k(s)Φ(s)
w(s) +

1

2

√
Φ(s)k(s)h(t, s)

]2

ds.

(2.19)
By this equation, we have, for t ≥ T∫ t

T

[
H (t, s) υ (s)ψ (s)− 1

4
Φ (s) k (s)h2 (t, s)

]
ds

≤ H (t, T ) υ (T ) |w (T )| . (2.20)
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It follows from (2.20) that

lim sup
t→∞

1

H (t, T )

∫ t

T

[
H (t, s) υ (s)ψ (s)− 1

4
Φ (s) k (s)h2 (t, s)

]
ds

≤ υ (T ) |ψ (T )| .

which contradicts assumption (2.3). Therefore, equation (1.1) is oscillatory.

Remark 1. The conclusion of Theorem 1 remains valid if assumption
(2.3) is replaced by the two conditions

lim sup
t→∞

1

H (t, T )

∫ t

T

H (t, s) υ (s)ψ (s) ds = ∞,

lim sup
t→∞

1

H (t, T )

∫ t

T

Φ (s) k (s)h2 (t, s) ds <∞.

Remark 2. With the appropriate choice of the functions H, υ and h,
we can deduce from Theorem 1 a number of oscillation criteria for equation
(1.1). Consider, for example,

H (t, s) = (t− s)n , (t, s) ∈ D, v (s) = s,

where n is an integer greater than one. Then H is continuous on D and
satisfies

H (t, t) = 0, for t ≥ t0,

H (t, s) > 0, for t > s ≥ t0.

Moreover, H has a continuous and nonpositive partial derivative on D with
respect to the second variable. Clearly, the function

h (t, s) =
(t− s)(n−2)/2

√
s

[(n+ 1) s− t+ 2s (t− s) β (s)] , t ≥ s ≥ t0,

is continuous and satisfies for t ≥ s ≥ t0

− ∂

∂s
(H (t, s) υ (s)) + 2H (t, s) υ (s) β (s) = h (t, s)

√
H (t, s) υ (s).

Therefore, by Theorem 1, we get the following oscillation criterion.
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Corollary 1. Let assumptions (2.1) and (2.2) hold. If for all sufficiently
large T,

lim sup
t→∞

1

tn

∫ t

T

[A (t, s)−B (t, s)] ds = ∞,

where

A (t, s) = (t− s)n sψ (s) ,

B (t, s) =
1

4
Φ (s) k (s)

(t− s)n−2

s
[(n+ 1) s− t+ 2s (t− s) β (s)]2 ,

for some integer n > 1, then the equation (1.1) is oscillatory for all α > 1.

Theorem 2. Let assumptions (2.1) and (2.2) hold, the functions H, h, υ
be defined as in Theorem 1, and suppose that

0 < inf
s≥t0

[
lim inf

t→∞

H (t, s)

H (t, t0)

]
≤ ∞. (2.21)

If there exist a function ϕ ∈ C1 ([t0,∞) ,R) such that

lim sup
t→∞

1

H (t, T )

∫ t

T

Φ (s) k (s)h2 (t, s) ds <∞, (2.22)

lim sup
t→∞

1

H (t, T )

∫ t

T

[
H (t, s) υ (s)ψ (s)− 1

4
Φ (s) k (s)h2 (t, s)

]
ds ≥ ϕ (T ) ,

(2.23)

lim sup
t→∞

∫ t

T

ϕ2
+ (s)

υ (s) Φ (s) k (s)
ds = ∞, (2.24)

where ϕ+ (s) = max {ϕ (t) , 0} , then equation (1.1) is oscillatory for all α >
1.

Proof. As in Theorem 1, without loss of generality we may assume that
there exists a solution x (t) of equation (1.1) such that x (t) > 0 on [t1,∞)
for some t1 ≥ t0. Again we define the function w (t) as in Theorem 1, we
arrive at (2.19) which yields for t > T ≥ t1,

1

H (t, T )

∫ t

T

[
H (t, s) υ (s)ψ (s)− 1

4
Φ (s) k (s)h2 (t, s)

]
ds

13



≤ υ (T )w (T )

− 1

H (t, T )

∫ t

T

[√
H (t, s) υ (s)

k (s) Φ (s)
w (s) +

1

2

√
Φ (s) k (s)h (t, s)

]2

ds.

Thus,

lim sup
t→∞

1

H (t, T )

∫ t

T

[
H (t, s) υ (s)ψ (s)− 1

4
Φ (s) k (s)h2 (t, s)

]
ds

≤ υ (T )w (T )

− lim inf
t→∞

1

H (t, T )

∫ t

T

[√
H (t, s) υ (s)

k (s) Φ (s)
w (s) +

1

2

√
Φ (s) k (s)h (t, s)

]2

ds.

From (2.23) , we have
υ (T )w (T ) ≥ ϕ (T )

+lim inf
t→∞

1

H (t, T )

∫ t

T

[√
H (t, s) υ (s)

k (s) Φ (s)
w (s) +

1

2

√
Φ (s) k (s)h (t, s)

]2

ds,

Then, for T ≥ t1,
υ (T )w (T ) ≥ ϕ (T ) (2.25)

and

lim inf
t→∞

1

H (t, T )

∫ t

T

[√
H (t, s) υ (s)

k (s) Φ (s)
w (s) +

1

2

√
Φ (s) k (s)h (t, s)

]2

ds <∞.

Thus

lim inf
t→∞

1

H(t, T )

∫ t

T

[
H(t, s)υ(s)

k (s) Φ (s)
w2(s) +

√
H(t, s)υ(s)w(s)h(t, s)

]
ds

≤ lim inf
t→∞

1

H (t, T )

∫ t

T

[√
H (t, s) υ (s)

k (s) Φ (s)
w (s) +

1

2

√
Φ (s) k (s)h (t, s)

]2

ds

<∞. (2.26)

Define

u (t) =
1

H (t, T )

∫ t

T

H (t, s) υ (s)

k (s) Φ (s)
w2 (s) ds,

14



and

v (t) =
1

H (t, T )

∫ t

T

√
H (t, s) υ (s)w (s)h (t, s) ds,

for t ≥ t1. Then (2.26) implies that

lim inf
t→∞

[u (t) + v (t)] <∞. (2.27)

Now, we claim that ∫ ∞

T

υ (s)w2 (s)

k (s) Φ (s)
ds <∞. (2.28)

Suppose to the contrary that∫ ∞

T

υ (s)w2 (s)

k (s) Φ (s)
ds = ∞ (2.29)

By (2.21) , there is a positive constant M1 such that

inf
s≥t0

[
lim inf

t→∞

H (t, s)

H (t, t0)

]
> M1 > 0. (2.30)

Let M2 be any arbitrary positive number. It follows from (2.29) that there
exists a t2 > T such that∫ t

T

υ (s)w2 (s)

k (s) Φ (s)
ds ≥ M2

M1

, for all t ≥ t2.

Consequently, for all t ≥ t2,

u (t) =
1

H (t, T )

∫ t

T

H (t, s) d

[∫ s

T

υ (ζ)w2 (ζ)

k (ζ) Φ (ζ)
dζ

]
,

=
1

H (t, T )

∫ t

T

[
−∂H (t, s)

∂s

] [∫ s

T

υ (ζ)w2 (ζ)

k (ζ) Φ (ζ)
dζ

]
ds,

≥ 1

H (t, T )

∫ t

t2

[
−∂H (t, s)

∂s

] [∫ s

T

υ (ζ)w2 (ζ)

k (ζ) Φ (ζ)
dζ

]
ds,

≥ M2

M1

1

H (t, T )

∫ t

t2

[
−∂H (t, s)

∂s

]
ds =

M2

M1

H (t, t2)

H (t, T )
.

15



By (2.30), we have

H (t, s)

H (t, t0)
≥M1, for all t ≥ T,

this implies
u (t) ≥M2, for all t ≥ T.

Since M2 is an arbitrary constant, we conclude that

lim
t→∞

u (t) = ∞. (2.31)

Consider a sequence {tn}∞n=1 ∈ (t1,∞) , tn →∞ as n→∞ such that

lim
n→∞

[u (tn) + v (tn)] = lim inf
t→∞

[u (t) + v (t)] .

By (2.27), there exists a number M such that

u (tn) + v (tn) ≤M, for n = 1, 2, ... . (2.32)

It follows from (2.31) that

lim
n→∞

u (tn) = ∞. (2.33)

Thus, (2.32) yields
lim

n→∞
v (tn) = −∞. (2.34)

It follows from (2.33) and (2.34) that for large values of n,

v (tn)

u (tn)
< ε− 1 < 0, (2.35)

where ε ∈ (0, 1). Thus, by (2.34) and (2.35), we conclude that

lim
n→∞

v (tn)

u (tn)
v (tn) = ∞. (2.36)

On the other hand, by the Schwarz inequality, we get

v2 (tn) =

{
1

H (tn, T )

∫ tn

T

√
H (tn, s) υ (s)w (s)h (tn, s) ds

}2
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≤
{

1

H (tn, T )

∫ tn

T

H (tn, s) υ (s)

k (s) Φ (s)
w2 (s) ds

}
{

1

H (tn, T )

∫ tn

T

k (s) Φ (s)h2 (tn, s) ds

}
≤ u (tn)

{
1

H (tn, T )

∫ tn

T

k (s) Φ (s)h2 (tn, s) ds

}
,

for any positive integer n. Consequently for n large enough,

v2 (tn)

u (tn)
≤ 1

H (tn, T )

∫ tn

T

k (s) Φ (s)h2 (tn, s) ds.

By (2.36), we have

lim
n→∞

1

H (tn, T )

∫ tn

T

k (s) Φ (s)h2 (tn, s) ds = ∞.

Consequently,

lim sup
t→∞

1

H (t, T )

∫ t

T

k (s) Φ (s)h2 (t, s) ds = ∞,

which contradicts assumption (2.22). Therefore, (2.29) fails to hold and we
have proved that (2.28) holds. Hence, by (2.25),∫ ∞

T

ϕ2
+ (s)

υ (s) Φ (s) k (s)
ds ≤

∫ ∞

T

υ (s)w2 (s)

Φ (s) k (s)
ds <∞,

which contradicts (2.24). This completes our proof.

Corollary 2. Let assumptions (2.1) and (2.2) hold, the functions H, h, υ
be defined as in Theorem 1, and let (2.21) hold. If there exists a function
ϕ ∈ C1 ([t0,∞) ,R) such that (2.24) and

lim inf
t→∞

1

H (t, T )

∫ t

T

H (t, s)ψ (s) ds <∞, (2.37)

lim inf
t→∞

1

H (t, T )

∫ t

T

[
H (t, s) υ (s)ψ (s)− 1

4
Φ (s) k (s)h2 (t, s)

]
ds ≥ ϕ (T ) ,

(2.38)

17



where ϕ+ (s) = max {ϕ (t) , 0} , then equation (1.1) is oscillatory for all α >
1.

Remark 3. If we take
H (t, s) = (t− s)n ,

where n is an integer with n > 1 as in Remark 2,

v (s) = 1, h (t, s) = (t− s)

n− 2

2 (n+ 2 (t− s) β (s)) ,

then the following oscillation criterion can be obtained from Theorem 2.

Corollary 3. Let assumptions (2.1) and (2.2) hold. If

lim sup
t→∞

1

tn

∫ t

T

L(t, s) <∞,

lim sup
t→∞

1

tn

∫ t

T

[(t− s)n ψ(s)− 1

4
L(t, s)]ds ≥ ϕ (T ) .

where
L(t, s) := Φ (s) k (s) (t− s)n−2 (n+ 2 (t− s) β (s))2

for some integer n > 1, and (2.24) holds , then equation (1.1) is oscillatory
for all α > 1.

Remark 4. When we choose φ (t) = 0 in the above results, we get another
result for the oscillation of equation (1.1) for all α > 0.

Corollary 4. Suppose that there exists continuous functions H, h : D → R
such that

(i) H (t, t) = 0, for t ≥ t0,
(ii) H (t, s) > 0, for t > s ≥ t0,
(iii) H has a continuous and nonpositive partial derivative on D with

respect to the second variable.
Suppose there exists a function υ ∈ C1 ([t0,∞) , (0,∞)) , T ≥ t0 such

that, for some t1 ≥ t0, σ (t) ≥ t1 for t ≥ T and

− ∂

∂s
(H (t, s) υ (s)) = h (t, s)

√
H (t, s) υ (s).

18



If

lim inf
t→∞

∫ t

t0

Q (s) ds > 0,

lim sup
t→∞

1

H (t, T )

∫ t

T

[
H (t, s) υ (s)Q (s)− 1

4
k (s)h2 (t, s)

]
ds = ∞,

then equation (1.1) is oscillatory for all α > 0.

Example. Consider the following second order neutral delay differential
equation, for t ≥ 3, α > 0,(

1√
t
[y(t) +

1√
t− 1

y(t− 1)]′
)′

+
tα+1 (2 + cos t)

(t− 2)α

∣∣∣∣y( t3
)∣∣∣∣α sgn y

(
t

3

)
= 0,

(2.39)

Let us take H (t, s) = (t− s)2 and v (t) =
1

t
. Then t1 = t0 = 3, T = 9,

h (t, s) =
t

s
√
s

+
1√
s
, Q (t) =

tα+1 (2 + cos t))

(t− 2)α

(
1−

√
3√

t− 3

)α

,

and

k (t) =

√
3N2

1

α2

(
2t− 81√

t

)
.

Now, we can prove that

lim
t→∞

1

4H (t, T )

∫ t

T

k (s)h2 (t, s) ds

= lim
t→∞

√
3N2

1

4α2 (t− 9)2

∫ t

9

(
2s− 81√

s

)(
t

s
√
s

+
1√
s

)2

ds

=
N2

1

15
√

3α2
<∞,

lim
t→∞

1

H (t, T )

∫ t

T

H (t, s) υ (s)Q (s) ds

= lim
t→∞

1

(t− 9)2

∫ t

9

(t− s)2

s

sα+1 (2 + cos (s))

(s− 2)α

(
1−

√
3√

s− 3

)α

ds

= ∞
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then all the hypotheses of Corollary 4 are satisfied. Hence equation (2.39)
is oscillatory for α > 0. Note that none of the above mentioned oscillation
criteria can be applied to (2.39) .
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