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Abstract

In this paper we will establish Kamenev-type criteria for oscillation of the second order
delay dynamic equation

(r(t)x∆(t))∆ + p(t)x(τ(t)) = 0, t ∈ T,

where T is a time scale. Our results are not only new for differential and difference
equations, but are also new for the generalized difference and q-difference equations and
many other dynamic equations on time scales. Our results are new for delay equations
and extend some recent results of Medico and Kong. An example is given to illustrate
the main results.
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1 Introduction

A major task of mathematics today is to harmonize the continuous and the discrete, to include
them in one comprehensive mathematics, and to eliminate obscurity from both.

The theory of time scales, which has recently received a lot of attention, was introduced by
Stefan Hilger in his Phd. Thesis in 1988 in order to unify continuous and discrete analysis (see
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[16]). Not only can this theory of the so-called “dynamic equations on time scales” unify the
theories of differential equations and difference equations, but also extends these classical cases
to situations “in between”, e.g., to the so-called q-difference equations.

A time scale T is an arbitrary nonempty closed subset of the reals, and the cases when this
time scale is equal to the reals or to the integers represent the classical theories of differential
and difference equations respectively. Many other interesting time scales exist, and they give
rise to a number of applications, among them the study of population dynamic models which
are continuous while in season (and may follow a difference scheme with variable step-size), die
out in say winter, while their eggs are incubating or dormant, and then hatch in a new season,
giving rise to a nonoverlapping population (see [5]). Since Stefen Hilger introduced the time
scale calculus, several authors have expounded on various aspects of the new theory, see the
paper by Agarwal et al. [1] and the references cited therein. A book on the subject of time
scales, or more generally measure chains, by Bohner and Peterson [5] summarizes and organizes
much of time scale calculus. Many of these results that we use in this paper will be summarized
in Section 2. In recent years there has been much research activity concerning the oscillation
and nonoscillation of solutions of various dynamic equations on time scales (we refer the reader
to the papers [2-4, 6-15, 24, 35]).

In this paper we will be concerned with the second-order linear delay dynamic equation

(r(t)x∆(t))∆ + p(t)x(τ(t)) = 0, t ∈ T, (1)

on a time scale T with sup T = ∞, where the functions r, q are rd−continuous positive functions,
and the so-called delay function τ : T → T satisfies τ(t) ≤ t for t ∈ T and limt→∞ τ(t) = ∞.
Throughout this paper these assumptions will be supposed to hold. Our attention is restricted
to those solutions x(t) of (1) which exist on some half line [tx,∞) and satisfy sup{|x(t)| : t >
t0} > 0 for any t0 ≥ tx. A solution x(t) of (1) is said to be oscillatory if it is neither eventually
positive nor eventually negative, otherwise it is nonoscillatory. The equation itself is called
oscillatory if all its solutions are oscillatory. We consider the following two cases:∫ ∞

t0

∆t

r(t)
= ∞, (2)

or ∫ ∞

t0

∆t

r(t)
< ∞. (3)

Došlý and Hilger [8] have considered the second order dynamic equation

(r(t)x∆(t))∆ + p(t)xσ = 0, t ∈ T, (4)

and have given necessary and sufficient condition for oscillation of all solutions on unbounded
time scales. Unfortunately, the oscillation criteria are not completely satisfactory since addi-
tional assumptions need to be imposed on the unknown solutions.
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Erbe and Peterson [12] have considered equation (4) and supposed that r(t) is bounded
above on [t0,∞), t0 ∈ T, h0 = inf{µ(t) : t ∈ [t0,∞)} > 0, and have used the Riccati transfor-
mation and proved that if ∫ ∞

t0

p(t)∆t = ∞, (5)

then every solution is oscillatory in [t0,∞). This may be regarded as a sort of Fite–Wintner
criterion. It is clear that the results given in [6, 8], can not be applied when r(t) is unbounded,
µ(t) = 0 and p(t) = t−α with α > 1.

Recently Saker [35] and Bohner and Saker [6] used the Riccati substitution and provided
several oscillation criteria for the equation

(r(t)x∆(t))∆ + p(t)(f ◦ xσ) = 0, t ∈ T, (6)

when (2) holds, and improved some of the results established in [8, 12].

Also, Erbe, Peterson and Saker [15] used the generalized Riccati transformation techniques
and the generalized exponential function and obtained some different oscillation criteria for (6)
on time scales, and applied these results to the linear dynamic equations with damping terms
to give some sufficient condition for oscillation. Also, for oscillation of second order dynamic
equations of Emden-Fowler type we refer to the results in [7].

In the case when T = R, equation (4) reduces to the second order linear differential equation

(r(t)x
′
(t))

′
+ p(t)x(t) = 0, t ∈ [t0,∞]. (7)

Numerous oscillation and nonoscillation criteria have been established for equation (7), see for
example [37], in which the authors make a survey of many of the results for this equation. It
is known [17], when r(t) = 1, the condition

lim
t→∞

1

tm

∫ t

t0

(t− s)mp(s) ds = ∞, (8)

plays an important rule in the oscillation of all solutions of equation (7), where m > 1 is an
integer. However, the condition (8) when m = 1 is not sufficient for the oscillation of equation
(7).

In recent years, improvements of the discrete analogues of the Kamenev-type criteria have
been obtained by several authors for different types of second order difference, neutral difference
and partial difference equations. We refer to the results in [18, 19, 20, 22, 26-34, 36, 38-40].

We shall address the following question. Can we obtain oscillation criteria on time scales
from which we are able to deduce the results for differential and difference equations and as a
special case, cover criteria of the type established by Philos and others? The aim of this paper
is to give a positive answer to this question in the time scales setting and also extend the results
to delay equations and to the Euler equation. From this we will deduce the sharpness of the
results.

The paper is organized as follows: In Section 3, we intend to use the Riccati transformation
techniques to obtain some new oscillation criteria of Kamenev-type for equation (1) when (2)
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holds. Our results unify and extend results due to Philos [25], Medico and Kong [23], and
Saker [30]. Moreover, the results in this paper are essentially new in the case when T =qN, for
q > 1, i.e., for the q-difference equations and can be extended to other time scales. Finally, in
Section 3, we consider equations that satisfy (3) and present some conditions that ensure that
all solutions are either oscillatory or converge to zero. An example is considered to illustrate
the main results.

2 Some Preliminaries on time scales

A time scale T is an arbitrary nonempty closed subset of the real numbers R. Since we are
interested in the oscillatory and asymptotic behavior of solutions near infinity, we assume that
sup T = ∞. We define the forward jump operator on such a time scale by

σ(t) := inf{s ∈ T : s > t}.

A point t ∈ T is said to be right-dense if σ(t) = t, and right-scattered if σ(t) > t. The graininess
function µ is defined by µ(t) := σ(t)− t, for t ∈ T. We define the time scale interval [a,∞)T by

[a,∞)T := [a,∞) ∩ T.

For a function f : T → R, the (delta) derivative f∆(t) of f at t ∈ T can be defined by (see
[5, Theorem 1.16])

f∆(t) = lim
s→∞

f(t)− f(s)

t− s
,

if σ(t) = t (in this limit and others in this paper s just takes on values in the time scale T) and

f∆(t) =
f(σ(t))− f(t)

µ(t)

if f is continuous at t and σ(t) > t. A function f : T → R is said to be rd-continuous if it is
continuous at each right-dense point and at all left-dense points left hand limits exist and are
finite. If f is differentiable at t, then a useful formula (see [5, Theorem 1.16]) is

fσ(t) = f(t) + µ(t)f∆(t), where fσ(t) := (f ◦ σ)(t) = f(σ(t)). (9)

Assuming f and g are delta differentiable we will make use of the product rule [5, Theorem
1.20]

(f(t)g(t))∆ = f∆(t)g(t) + f(σ(t))g∆(t)

= f(t)g∆(t) + f∆(t)g(σ(t)), (10)

and the quotient rule [5, Theorem 1.20](
f
g

)∆

(t) = f∆(t)g(t)−f(t)g∆(t)
g(t)g(σ(t))

, (11)
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provided g(t)gσ(t) 6= 0. For a, b ∈ T and a differentiable function f , the Cauchy (delta) integral
of f∆ is defined by ∫ b

a

f∆(t)∆t = f(b)− f(a).

The integration by parts formula [5, Theorem 1.77] reads∫ b

a

f∆(t)g(t)∆t = f(t)g(t)]ba −
∫ b

a

fσ(t)g∆(t)∆t, (12)

and we define the improper integral∫ ∞

a

f(s)∆s = lim
t→∞

∫ t

a

f(s)∆s,

in the standard way. A useful formula is [5, Theorem 1.75]∫ σ(t)

t

f(s)∆s = µ(t)f(t).

We now give some examples of what we have discussed so far. First, if T = R, we have

σ(t) = t, µ(t) ≡ 0, f∆(t) = f ′(t), and

∫ b

a

f(t)∆t =

∫ b

a

f(t)dt.

If T = Z, we have

σ(t) = t + 1, µ(t) ≡ 1, f∆(t) = ∆f(t), and

∫ b

a

f(t)∆t =
b−1∑
t=a

f(t).

For T = hZ, h > 0, we have σ(t) = t + h, µ(t) = h,

f∆(t) = ∆hf(t) :=
f(t + h)− f(t)

h
, and

∫ b

a

f(t)∆t =

b−a−h
h∑

k=0

f(a + kh)h.

Finally, if T = %N0 = {t : t = %k, k ∈ N0}, where % > 1, we have σ(t) = %t, µ(t) = (%− 1)t

x∆(t) =
x(%t)− x(t)

(%− 1)t
and

∫ ∞

a

f(t)∆t =
∞∑

k=0

f(%k)µ(%k).

3 Oscillation Criteria

In this section we give some new oscillation criteria of Philos-type for equation (1).
First, we define < by H ∈ < provided H : [a,∞)T × [a,∞)T → R satisfies

H(t, t) ≥ 0, t ≥ a, H(t, s) > 0, t > s ≥ a,
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H∆s(t, s) ≤ 0, for t ≥ s ≥ a, and for each fixed t, H(t, s) is right-dense continuous with respect
to s. As a simple and important example, note that if T = R, then H(t, s) := (t− s)n is in <.

In what follows it will be assumed that r∆(t) ≥ 0 and∫ ∞

t0

τ(s)p(s)∆s = ∞, (13)

is satisfied.

Lemma 1 Let (2) and (13) be satisfied, and assume that (1) has a positive solution x on
[t0,∞)T. Then there exists a T ∈ [t0,∞)T, sufficiently large, so that

(i) x∆(t) > 0, x∆∆(t) < 0, x(t) > tx∆(t) for t ∈ [T,∞)T;

(ii) x is strictly increasing and x(t)/t is strictly decreasing on [T,∞)T.

Proof: Assume x is a positive solution of (1) on [t0,∞)T. Pick t1 ∈ [t0,∞)T so that t1 > 0 and
so that x(τ(t)) > 0 on [t1,∞)T. Then, since x is a solution of (1),

(r(t)x∆(t))∆ = −p(t)x(τ(t)) < 0, t ∈ [t1,∞)T.

Then r(t)x∆(t) is strictly decreasing on [t1,∞)T. We claim that r(t)x∆(t) > 0 on [t1,∞)T.
Assume not, then there is a t2 ∈ [t1,∞)T such that r(t2)x

∆(t2) =: c < 0. Then

r(t)x∆(t) ≤ r(t2)x
∆(t2) = c, t ∈ [t2,∞)T,

and therefore
x∆(t) ≤ c

r(t)
, t ∈ [t2,∞)T.

Integrating, we get

x(t) = x(t2) +

∫ t

t2

x∆(s)∆s ≤ x(t2) + c

∫ t

t2

∆s

r(s)
→ −∞ as t →∞,

which implies x(t) is eventually negative. This is a contradiction. Hence r(t)x∆(t) > 0 on
[t1,∞)T and so x∆(t) > 0 on [t1,∞)T. Since (r(t)x∆(t))∆ < 0 on [t1,∞)T, we have

x∆∆(t) < −r∆(t)x∆(t)

rσ(t)
≤ 0, t ∈ [t1,∞)T.

Next let X(t) := x(t) − tx∆(t). Since X∆(t) = −σ(t)x∆∆(t) > 0 for t ∈ [t1,∞)T, we have
that X(t) is strictly increasing on [t1,∞)T. We claim there is a t2 ∈ [t1,∞)T such that X(t) > 0
on [t2,∞)T. Assume not, then X(t) < 0 on [t1,∞)T. Therefore,(

x(t)

t

)∆

=
tx∆(t)− x(t)

tσ(t)
= −X(t)

tσ(t)
> 0, t ∈ [t1,∞)T,
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which implies that x(t)/t is strictly increasing on [t1,∞)T. Pick t3 ∈ [t1,∞)T so that τ(t) ≥
τ(t1), for t ≥ t3. Then

x(τ(t))/τ(t) ≥ x(τ(t1))/τ(t1) =: d > 0,

so that x(τ(t)) ≥ dτ(t) for t ≥ t3. Now by integrating both sides of equation (1) from t3 to t
we have

r(t)x∆(t)− r(t3)x
∆(t3) +

∫ t

t3

p(s)x(τ(s))∆s = 0,

which implies that

r(t3)x
∆(t3) = r(t)x∆(t) +

∫ t

t3

p(s)x(τ(s))∆s

≥
∫ t

t3

p(s)x(τ(s))∆s ≥ d

∫ t

t3

p(s)τ(s)∆s,

so using (13) we get a contradiction. Hence there is a t2 ∈ [t1,∞)T such that X(t) > 0 on
[t2,∞)T. Consequently,(

x(t)

t

)∆

=
tx∆(t)− x(t)

tσ(t)
= −X(t)

tσ(t)
< 0, t ∈ [t2,∞)T

and we have that x(t)
t

is strictly decreasing on [t2,∞)T. �

Theorem 2 Assume that (2) and (13) hold, H ∈ <, and for t > s let

h(t, s) := −H∆s(t, s)√
H(t, s)

. (14)

If there exists a positive delta differentiable function δ such that for every t0 ∈ [a,∞)T

lim sup
t→∞

1

H(t, t0)

∫ t

t0

H(t, s)

[
δ(s)p(s)

τ(s)

s
− r(s) (δσ(s))2

4δ(s)
R2(t, s)

]
∆s = ∞, (15)

where

R(t, s) := h(t, s)/
√

H(t, s)− b(s)

δσ(s)
, b(t) := max{0, δ∆(t)}.

Then every solution of equation (1) is oscillatory on [a,∞)T.

Proof: Suppose to the contrary that (1) is nonoscillatory on [a,∞)T. Then there is a solution x
of (1) and a t1 ∈ [a,∞)T such that x(t) and x(τ(t)) are positive on [t1,∞)T. Make the “Riccati”
substitution

w(t) := δ(t)
r(t)x∆(t)

x(t)
, t ∈ [t1,∞)T. (16)
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Then, by Lemma 1, there is a T ∈ [t1,∞)T such that w(t) > 0 on [T,∞)T. Using the product
rule (10) we obtain

w∆(t) =

(
δ(t)

x(t)

)∆

(r(t)x∆(t))σ +
δ(t)

x(t)

(
r(t)x∆(t))

)∆
,

Using (1), the quotient rule (11), and (16), we obtain

w∆(t) = −δ(t)p(t)
x(τ(t))

x(t)
+

δ∆(t)

xσ(t)
(rx∆)σ(t)− (rx∆)σ(t)δ(t)x∆(t)

x(t)xσ(t)

= −δ(t)p(t)
x(τ(t))

x(t)
+

δ∆(t)

δσ(t)
wσ(t)− δ(t)x∆(t)

x(t)δσ(t)
wσ(t). (17)

From Lemma 1, we have x∆(t) > 0,
(
r(t)x∆(t)

)∆
< 0, and x(t)

t
is strictly decreasing for

t ∈ [T,∞)T. It follows that for t ∈ [T,∞)T

x(σ(t)) ≥ x(t), (rx)∆(t) ≥ (rx∆)σ(t),
x(τ(t))

x(t)
≥ τ(t)

t
(18)

(for the last inequality we might have to choose T larger so that this inequality is true).
Applying the inequalities (18) to (17), we have (using b(t) ≥ 0)

w∆(t) ≤ −δ(t)p(t)
τ(t)

t
+

b(t)

δσ(t)
wσ(t)− δ(t)r(t)x∆(t)

r(t)x(t)δσ(t)
wσ(t),

≤ −δ(t)p(t)
τ(t)

t
+

b(t)

δσ(t)
wσ(t)− δ(t)((rx)∆)σ(t)

r(t)xσ(t)δσ(t)
wσ(t)

≤ −δ(t)p(t)
τ(t)

t
+

b(t)

δσ(t)
wσ(t)− δ(t)

r(t) (δσ)2 (t)
(wσ)2 (t) (19)

for t ∈ [T,∞)T.
From (19), it follows that∫ t

T

H(t, s)δ(s)p(s)
τ(s)

s
∆s ≤ −

∫ t

T

H(t, s)w∆(s)∆s

+

∫ t

T

H(t, s)
b(s)

δσ(s)
wσ(s)∆s−

∫ t

T

H(t, s)
δ(s)

r(s) (δσ)2 (s)
(wσ)2(s)∆s. (20)

Using the integration by parts formula (12), we have∫ t

T

H(t, s)w∆(s)∆s = H(t, s)w(s)|s=t
s=T −

∫ t

T

H∆s(t, s)wσ(s)∆s

= H(t, t)w(t)−H(t, T )w(T )−
∫ t

T

H∆s(t, s)wσ(s)∆s

≥ −H(t, T )w(T )−
∫ t

T

H∆s(t, s)wσ(s)∆s. (21)
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From (21) and (20) and using (14) we get∫ t

T

H(t, s)δ(s)p(s)
τ(s)

s
∆s ≤ H(t, T )w(T )−

∫ t

T

h(t, s)
√

H(t, s)wσ(s)∆s

+

∫ t

T

H(t, s)
b(s)

δσ(s)
wσ(s)∆s−

∫ t

T

H(t, s)
δ(s)

r(s) (δσ)2 (s)
(wσ)2(s)∆s. (22)

Hence, ∫ t

T

H(t, s)δ(s)p(s)
τ(s)

s
∆s

≤ H(t, T )w(T )−
∫ t

T

[
h(t, s)

√
H(t, s)−H(t, s)

b(s)

δσ(s)

]
wσ(s)∆s

−
∫ t

T

H(t, s)
δ(s)

r(s) (δσ)2 (s)
(wσ)2(s)∆s. (23)

Therefore, completing the square,∫ t

T

H(t, s)δ(s)p(s)
τ(s)

s
∆s ≤ H(t, T )w(T )

−
∫ t

T

√
Hδ

r (δσ)2 wσ +

[
h
√

H −H b
δσ

]
2
√

Hδ
r(δσ)2

2

∆s

+

∫ t

T

H(t, s)
r(s) (δσ)2 (s)

4δ(s)

[
h(t, s)/

√
H(t, s)− b(s)

δσ(s)

]2

∆s. (24)

Then, for all t ≥ T we have∫ t

T

H(t, s)

[
δ(s)p(s)

τ(s)

s
− r(s) (δσ)2 (s)

4δ(s)
R2(t, s)

]
∆s

≤ H(t, T )w(T ), (25)

and this implies that

1

H(t, T )

∫ t

T

H(t, s)

[
δ(s)p(s)

τ(s)

s
− r(s) (δσ)2 (s)

4δ(s)
R2(t, s)

]
∆s

≤ w(T ), (26)

for all large t, which contradicts (15). Therefore every solution of (1) oscillates on [t0,∞)T.
�

As an immediate consequence of Theorem 2 we get the following.
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Corollary 3 Let the assumption (15) in Theorem 2 be replaced by

lim sup
t→∞

1

H(t, t0)

∫ t

t0

H(t, s)δ(s)p(s)
τ(s)

s
∆s = ∞,

and

lim sup
t→∞

1

H(t, t0)

∫ t

t0

H(t, s)
r(s) (δσ)2 (s)

4δ(s)
R2(t, s)∆s < ∞,

for all t0 ∈ [a,∞)T sufficiently large. Then every solution of equation (1) is oscillatory on
[t0,∞)T.

From Theorem 2 we can derive some oscillation criteria for equation (1) on different types
of time scales.

If T = R, then σ(t) = t, µ(t) ≡ 0, δ∆ = δ′ and H∆s(t, s) = ∂H(t, s)/∂s. Let τ(t) = t − β,
where β is a positive constant. Then (15) becomes

lim
t→∞

sup
1

H(t, t0)

∫ t

t0

H(t, s)

[
δ(s)p(s)

s− β

s
− δ(s)r(s)A2(t, s)

4

]
ds = ∞, (27)

where

A(t, s) := h(t, s)/
√

H(t, s)− b(s)

δ(s)
, b(s) := max{0, δ′(s)}.

Note that when δ(t) ≡ 1 and r(t) ≡ 1, the condition (27) reduces to a result due to Philos [25].
If T = Z, then δ∆(n) = ∆δ(n) = δ(n+1)− δ(n), H∆s(m,n) = ∆2H(m, n) = H(m, n+1)−

H(m, n), and (15) becomes

lim
m→∞

sup
1

H(m, n0)

m−1∑
n=n0

H(m, n)

[
δ(n)p(n)

τ(n)

n
− δ2(n + 1)r(n)

4δ(n)
B2(m, n)

]
= ∞, (28)

where

B(m, n) :=

(
h(m, n)/

√
H(m, n)− b(n)

δ(n + 1)

)
, b(n) := max{0, ∆b(n)}.

If T = hZ, h > 0, then σ(t) = t + h, µ(t) = h, δ∆(t) = ∆hδ(t) = δ(t+h)−δ(t)
h

, H∆s(t, s) =

∆2H(t, s) = H(t,s+h)−H(t,s)
h

and (15) becomes for t, s ∈ hZ

lim sup
t→∞

1

H(t, t0)

t−1∑
s=t0

H(t, s)

[
δ(s)p(s)

τ(s)

s
− δ2(s + h)r(s)C2(t, s)

4δ(s)

]
= ∞, (29)

where

C(t, s) :=

(
h(t, s)/

√
H(t, s)− b(s)

δ(s + h)

)
, b(s) := max{0, ∆hδ(s)}.

When T = Z, r(t) ≡ 1, τ(t) = t − k and k ∈ N, we get a result for the second-order delay
difference equation

x(n + 2)− 2x(n + 1) + x(n) + p(t)x(t− k) = 0, t ∈ [t0,∞]. (30)
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When T = hZ, h > 0, r(t) ≡ 1, τ(t) = t − k0h and k0 ∈ N our results are essentially new for
the second-order generalized delay-difference equation

x(t + 2h)− 2x(t + h) + x(t) + h2p(t)x(t− k0h) = 0. (31)

When T=qN, r(t) ≡ 1,τ(t) = t− qn0 and n0 ∈ N our results are essentially new for the second
order q-delay difference equation

x(q2t)− (q + 1)x(qt) + qx(t) + q(q − 1)2t2p(t)x(t− qn0) = 0. (32)

When T = N2
0 = {t = n2 : n ∈ N0}, then we have σ(t) = (

√
t + 1)2 and µ(t) = 1 + 2

√
t for

t ∈ T, and equation (1) becomes the difference equation

x((
√

t + 2)2) − 4 + 4
√

t

1 + 2
√

t
x((
√

t + 1)2)

+
3 + 2

√
t

1 + 2
√

t
x(t) + (3 + 2

√
t)(1 + 2

√
t)p(t)x(τ(t)) = 0.

Finally, when T = {Hn : n ∈ N0}, where the Hn’s are the so-called harmonic numbers defined
by

H0 = 0, Hn =
n∑

k=1

1

k
, n ∈ N,

then σ(Hn) = Hn+1, µ(Hn) = 1
n+1

, and equation (1) becomes the difference equation

x(Hn+2)−
1

n + 2
x(Hn+1) +

n + 1

n + 2
x(Hn) +

p(Hn)

(n + 1)(n + 2)
x(τ(Hn)) = 0. (33)

Our results for equations (32) and (33) are also essentially new and can be applied to many
other time scales.

With an appropriate choice of the functions H and δ one can derive from Theorem 2 a
number of oscillation criteria for equation (1) for many different types of time scales. For
example if T = R, if H(t, s) = (t − s)λ, for t ≥ s ≥ a, where λ ≥ 1 is an integer, δ(t) = 1,
and r(t) = 1, then (15) reduces to the oscillation criterion of Kamenev-type [17]. Next we give
another example of this type for different choices of H and δ.

Example 4 Consider the delay dynamic equation

x∆∆(t) + p(t)x(τ(t)) = 0, (34)

where the delay function δ : T → T satisfies τ(t) ≤ t and limt→∞ τ(t) = ∞ and p(t) > 0. From
Theorem 2, by choosing H(t, s) = 1 and δ(t) = t, we see that if∫ ∞

a

(
p(t)τ(t)− 1

4t

)
∆t = ∞

11



then equation (34) is oscillitory. As a special case note that the Euler–Cauchy equation

x∆∆(t) +
γ

tσ(t)
x(τ(t)) = 0, (35)

is oscillatory if ∫ ∞

a

(
γτ(t)

σ(t)
− 1

4

)
1

t
∆t = ∞.

Note that this holds if there is an ε > 0 such that

γτ(t)

σ(t)
>

1

4
+ ε

for all large t. This is sharp in the case when T = R and when T = N (in particular, for the
case when τ(t) = t). See [21, 30] for additional details for these two cases respectively.

4 Other Criteria

In this section we consider (1), where r does not satisfy (2), i.e.,∫ ∞

a

1

r(t)
∆t < ∞. (36)

We start with the following auxiliary result, whose proof is similar to that which can be found
in [35], and so is omitted.

Lemma 5 [35]: Assume (36) holds, and∫ ∞

t0

1

r(t)

∫ t

t0

p(s)∆s∆t = ∞. (37)

Suppose that x is a nonoscillatory solution of (1) such that there exists t1 ∈ T with

x(t)x∆(t) < 0 for all t ≥ t1.

Then
lim
t→∞

x(t) = 0.

Using Lemma 5, we can derive the following criterion.

Theorem 6 Let the assumptions (36) and (37) hold, let H ∈ <, and assume (14) holds. If
there exists a positive differentiable function δ(t) such that for every t0 ≥ a we have that (15)
holds, then every solution of (1) is oscillatory or converges to zero as t →∞.

12



Proof: Assume that x is a nonoscillatory solution of (1). Then x is either eventually positive
or eventually negative, i.e., there exists t0 with x(t) > 0 for all t ≥ t0 or x(t) < 0 for all t ≥ t0.
Without loss of generality we assume that x(t) is eventually positive. From (1) we have

(r(t)x∆(t))∆ = −p(t)x(τ(t)) < 0,

for all large t. Hence rx∆ is an eventually decreasing function and either x∆(t) is eventually
positive or eventually negative. If x∆(t) is eventually positive we can derive a contradiction as
in Theorem 2. If x∆(t) is eventually negative we see from Lemma 5 that x(t) converges to zero
as t →∞. This completes the proof. �

More examples can be obtained similar to those given following Corollary 3. The details
are left to the reader.
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[4] M. Bohner, O. Došlý, and W. Kratz, An oscillation theorem for discrete eigenvalue prob-
lems, Rocky Mountain J. Math, to appear.

[5] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with
Applications, Birkhäuser, Boston, 2001.
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