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Abstract. In this paper, we consider the pair of second-order dynamic
equations

(r(t)(x∆)γ)∆ + p(t)xγ(t) = 0,

and
(r(t)(x∆)γ)∆ + p(t)xγσ(t) = 0,

on a time scale T, where γ > 0 is a quotient of odd positive integers.
We establish some necessary and sufficient conditions for nonoscillation
of Hille-Kneser type. Our results in the special case when T = R in-
volve the well–known Hille–Kneser type criteria of second-order linear
differential equations established by Hille. For the case of the second
order half-linear differential equation, our results extend and improve
some earlier results of Li and Yeh and are related to some work of Došlý
and Řehák and some results of Řehák for half-linear equations on time
scales. Several examples are considered to illustrate the main results.

1. Introduction

The theory of time scales, which has recently received a lot of attention,
was introduced by Stefan Hilger in his Ph.D. Thesis in 1988 in order to unify
continuous and discrete analysis, see [20]. This theory of “dynamic equa-
tions” unifies the theories of differential equations and difference equations,
and also extends these classical cases to situations “in between”, e.g., to
the so-called q−difference equations and can be applied on different types
of time scales. Many authors have expounded on various aspects of the new
theory. A book on the subject of time scales, i.e., measure chains, by Bohner
and Peterson [5] summarizes and organizes much of time scale calculus for
dynamic equations. For advances on dynamic equations on time scales, we
refer the reader to the book by Bohner and Peterson [6].

In recent years, there has been an increasing interest in studying the
oscillation of solutions of dynamic equations on time scales, which simulta-
neously treats the oscillation of the continuous and the discrete. In this way
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we do not require to write the oscillation criteria for differential equations
and then write the discrete analogues for difference equations. For conve-
nience we refer the reader to the results given in [1-4, 7-8, 10-12, 14-19,
21-34].

In this paper, we present some oscillation criteria of Hille-Kneser type for
the second-order dynamic equations of the form

(1.1) L1x = (r(t)
(
x∆(t

)
)γ)∆ + p(t)xγ(t) = 0,

and

(1.2) L2x = (r(t)
(
x∆(t

)
)γ)∆ + p(t)xγσ(t) = 0,

on an arbitrary time scale T, where we assume throughout this paper that
r and p are real rd-continuous functions on T with r(t) > 0, p(t) > 0, and
γ > 0 is a quotient of odd positive integers. We denote xσ := x ◦ σ, where
the forward jump operator σ and the backward jump operator ρ are defined
by

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t},
where inf ∅ := sup T and sup ∅ := inf T. A point t ∈ T is right-dense
provided t < sup T and σ(t) = t and left-dense if t > inf T and ρ(t) = t. A
point t ∈ T is right-scattered provided σ(t) > t and left-scattered if ρ(t) < t.
By x : T → R is rd-continuous we mean x is continuous at all right-dense
points t ∈ T and at all left-dense points t ∈ T left hand limits exist (finite).
The graininess function µ : T → R+ is defined by µ(t) := σ(t) − t. Also
Tκ := T− {m} if T has a left-scattered maximum m, otherwise Tκ := T.

Here the domain of L1 and L2 is defined by

D = {x : T → R : (r(t)(x∆(t))γ)∆ is rd-continous}.

When T = R, equations L1x = 0 and L2x = 0 are the half-linear differential
equation

(1.3) (r(t)(x
′
(t))γ)

′
+ p(t)xγ(t) = 0.

See the book by Došlý and Řehák [11] and the references there for numerous
results concerning (1.3). When T = Z, L1x = 0 is the half-linear difference
equation

(1.4) ∆(r(t)∆ (x(t))γ) + p(t)xγ(t) = 0

(in [9] the author studies the forced version of (1.4)). Also, If T = hZ,
h > 0, then σ(t) = t + h, µ(t) = h,

y∆(t) = ∆hy(t) =
y(t + h)− y(t)

h
,
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and L1x = 0 becomes the generalized second-order half-linear difference
equation

(1.5) ∆h(r(t)∆h (x(t))γ) + p(t)xγ(t) = 0.

If T = qN = {t : t = qk, k ∈ N, q > 1}, then σ(t) = q t, µ(t) = (q − 1)t,

x∆(t) = ∆qx(t) =
x(q t)− x(t)

(q − 1) t
,

and L1x = 0 becomes the second-order half-linear q-difference equation

(1.6) ∆q(r(t)∆q (x(t))γ) + p(t)xγ(t) = 0.

If N2
0 = {t2 : t ∈ N0}, then σ(t) = (

√
t + 1)2 and µ(t) = 1 + 2

√
t,

∆Ny(t) =
y((
√

t + 1)2)− y(t)

1 + 2
√

t
, for t ∈ [t20,∞)

and L1x = 0 becomes the second-order half-linear difference equation

(1.7) ∆N(r(t)∆N (x(t))γ) + p(t)xγ(t) = 0,

One may also write down the corresponding equations for L2x = 0 for the
various time scales mentioned above. The terminology half-linear arises
because of the fact that the space of all solutions of L1x = 0 or L2x = 0
is homogeneous, but not generally additive. Thus, it has just “half” of the
properties of a linear space. It is easily seen that if x(t) is a solution of
L1x = 0 or L2x = 0, then so also is cx(t). We note that in some sense much
of the Sturmian theorey is valid for equation (1.2) but that is not the case
for equation (1.1). We refer to Řehák [25] and to his Habilitation Thesis
[24] in which some open problems are also mentioned for (1.2).

Since we are interested in the asymptotic behavior of solutions, we will
suppose that the time scale T under consideration is not bounded above,
i.e., it is a time scale interval of the form [a,∞)T := [a,∞) ∩ T. Solutions
vanishing in some neighborhood of infinity will be excluded from our con-
sideration. A solution x of Lix = 0, i = 1, 2, is said to be oscillatory if it is
neither eventually positive nor eventually negative, otherwise it is nonoscil-
latory. The equation Lix = 0, i = 1, 2, is said to be oscillatory if all its
solutions are oscillatory. It should be noted that the essentials of Sturmian
theory have been extended to the half-linear equation L2x = 0 (cf. Řehák
[25]).

One of the important techniques used in studying oscillations of dynamic
equations on time scales is the averaging function method. By means of
this technique, some oscillation criteria for L2x = 0 for the case γ = 1 have
been established in [12] which involve the behavior of the integral of the
coefficients r and p. On the other hand, the oscillatory properties can be
described by the so called Reid Roundabout Theorem (cf [5], [11], [25]).



4 L. ERBE, A. PETERSON AND S. H. SAKER

This theorem shows the connection among the concepts of disconjugacy,
positive definiteness of the quadratic functional, and the solvability of the
corresponding Riccati equation (or inequality) which in turn implies the ex-
istence of nonoscillatory solutions. The Reid Roundabout theorem provides
two powerful tools for the investigation of oscillatory properties, namely the
Riccati technique and the variational principle.

Sun and Li [33] considered the half-linear second order dynamic equation
L1x = 0, where γ ≥ 1 is an odd positive integer, and r and p are positive
real-valued rd−continuous functions such that

(1.8)

∫ ∞

t0

(
1

r(t)

) 1
γ

∆t = ∞,

and used the Riccati technique and Lebesgue’s dominated convergence the-
orem to establish some necessary and sufficient conditions for existence of
positive solutions.

For the oscillation of the second order differential equation

(1.9) x
′′
(t) + p(t)x(t) = 0, t ≥ t0,

Hille [21] extended Kneser’s theorem and proved the following theorem (see
also [32, Theorem B] and the reference cited therein).

Theorem 1 (Hille-Kneser type criteria). Let

p∗ = lim
t→∞

sup t2p(t) and p∗ = lim
t→∞

inf t2p(t).

Then (1.9) is oscillatory if p∗ > 1
4
, and nonoscillatory if p∗ < 1

4
. The

equation can be either oscillatory or nonoscillatory if either p∗ or p∗ = 1
4
.

So the following question arises: can one extend the Hille-Kneser theorem
to the half-linear dynamic equations L1x = 0 and L2x = 0 on time scales,
and from these deduce the oscillation and nonoscillation results for half-
linear differential and difference equations? The main aim of this paper is
to give an affirmative answer to this question concerning the nonoscillation
result.

Our results in the special case when T = R, involve the results established
by Li and Yeh [23], Kusano and Yoshida [22] and Yang [34] for the second-
order half-linear differential equations, and when r(t) ≡ 1 and γ = 1 the
results involve the criteria of Hille–Kneser type for second-order differential
equations established by Hille [21], and are new for equations (1.4)-(1.6).
Also, in the special case, γ = 1, we derive Hille-Kneser type nonoscillation
criteria for the second-order linear dynamic equation

(1.10)
(
r(t)

(
x∆(t)

))∆
+ p(t)x(t) = 0,
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on a time scale T, which are essentially new. Several examples are consid-
ered to illustrate the main results.

2. Main Results

Our interest in this section is to establish some necessary and sufficient
conditions of Hille-Kneser type for nonoscillation of L1x = 0 and L2x = 0 by
using the Riccati technique. We search for a solution of the corresponding
Riccati equations corresponding to L1x = 0 and L2x = 0 respectively.
Associated with L1x = 0 is the Riccati dynamic equation

R1w = w∆ + p(t) + wσF (w, t) = 0,(2.1)

where, for u ∈ R and t ∈ T,

F (u, t) =


„

1+µ(t)( u
r(t)

)
1
γ

«γ

−1

µ(t)
, if µ(t) > 0

γ
(

u
r(t)

) 1
γ

, if µ(t) = 0.

(2.2)

Here we take the domain of the operator R1 to be

D := {w : T → R : w∆ is rd-continuous on Tκ and
(w

r

) 1
γ ∈ R},

where R is the class of regressive functions (page 58, [5]) defined by

R := {x : T → R : x is rd-continuous on T and 1 + µ(t)x(t) 6= 0}.
Associated with equation L2x = 0 is the Riccati dynamic equation

R2w = w∆ + p(t) + S(w, t) = 0,(2.3)

where, for u ∈ R and t ∈ T,

S(u, t) :=


u

„
1+µ(t)( u

r(t))
1
γ

«γ

−1

µ(t)

„
1+µ(t)( u

r(t)
)
1
γ

«γ , if µ(t) > 0,

γu
(

u
r(t)

) 1
γ

, if µ(t) = 0.

(2.4)

Here we take the domain of the operator R2 to be D. The dynamic Riccati
equation (2.1) is studied in [33] (they assume γ is an odd positive integer)
and the Riccati dynamic equation (2.3) is studied extensively in [25]. A
number of oscillation criteria are also given based on the variational tech-
nique. It is easy to show that if w ∈ D, then F (w(t), t) and S(w(t), t) are
rd-continuous on T.

We next state two theorems that relate our second order half-linear equa-
tions to their respective Riccati equations.
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Theorem 2 (Factorization of L1). If x ∈ D with x(t) 6= 0 on T and

w(t) := r(t)(x∆(t))γ

xγ(t)
, t ∈ Tκ, then w ∈ D and

L1x(t) = xγ(t)R1w(t), t ∈ Tκ2

.(2.5)

Conversely, if w ∈ D and

x(t) := e
(w

r
)
1
γ
(t, t0),

then x ∈ D, x(t) 6= 0, and (2.5) holds. Furthermore x(t)xσ(t) > 0 iff

(w
r
)

1
γ ∈ R+ := {x ∈ R : 1 + µ(t)x(t) > 0, t ∈ T}.

Proof. First we prove the converse statement. Let w ∈ D, then since
(

w
r

) 1
γ ∈

R, we know that

x(t) = e
(w

r )
1
γ
(t, t0) 6= 0

is well defined (see [5, page 59]). Let x(t) = e
(w

r )
1
γ
(t, t0), then x∆(t) =(

w(t)
r(t)

) 1
γ

x(t) from which it follows that

r(t)(x∆(t))γ = xγ(t)w(t).

From this last equation and the product rule we get that

L1x(t) = (r(t)((x∆(t))γ)∆ + p(t)xγ(t)

= xγ(t)w∆(t) + wσ(t)(xγ)∆(t) + p(t)xγ(t)

= xγ(t)[w∆(t) +
(xγ)∆(t)

xγ(t)
wσ(t) + p(t)].(2.6)

We now show that

(xγ)∆(t)

xγ(t)
= F (w(t), t).(2.7)

First if µ(t) = 0, then

(xγ)∆(t) = γxγ−1x∆(t)

from which it follows that

(xγ)∆(t)

xγ(t)
= γ

x∆(t)

x(t)
= γ

(
w(t)

r(t)

) 1
γ

= F (w(t), t).
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Next assume µ(t) > 0, then

(xγ)∆(t)

xγ(t)
=

xγ(σ(t))− xγ(t)

µ(t)xγ(t)

=
(xσ(t)

x(t)
)γ − 1

µ(t)

=

(
1 + µ(t)x∆(t)

x(t)

)γ

− 1

µ(t)

=

(
1 + µ(t)

(
w(t)
r(t)

) 1
γ

)γ

− 1

µ(t)

= F (w(t), t).

Hence in general we get that (2.7) holds. Using (2.7) and (2.6) we get the
desired factorization (2.5) in all cases.

Next assume x ∈ D and x(t) 6= 0. Let w(t) = r(t)(x∆)γ(t)
xγ(t)

. Using the

product rule

w∆(t) = (r(t)(x∆(t))γ)∆ 1

xγ(t)
+ (r(t)(x∆(t))γ)σ

(
1

xγ(t)

)∆

.

(2.8)

Hence

xγ(t)w∆(t) = (r(t)(x∆(t))γ)∆ + wσ(t)xγ(t)xγσ(t)(x−γ(t))∆.(2.9)

We claim that

xγσ(t)(x−γ(t))∆ = −F (w(t), t).(2.10)

If µ(t) = 0, then

xγσ(t)(x−γ(t))∆ = −γ
x∆(t)

x(t)
= −γ

(
w(t)

r(t)

) 1
γ

= −F (w(t), t).

Next assume that µ(t) > 0. Then

xγσ(t)(x−γ)∆(t) = xγσ(t)
(x−γ)σ(t)− x−γ(t)

µ(t)

= − 1

xγ(t)

xγσ(t)− xγ(t)

µ(t)
= −(xγ)∆(t)

xγ(t)
= −F (w(t), t)
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by (2.7). Now by (2.7) and (2.9) we get (2.5). Finally note that if x(t) 6= 0

and w(t) := r(t)(x∆(t))γ

xγ(t)
, then

xσ(t)

x(t)
=

x(t) + µ(t)x∆(t)

x(t)
= 1 + µ(t)

x∆(t)

x(t)
= 1 + µ(t)

(
w(t)

r(t)

) 1
γ

.

It follows that
(

w(t)
r(t)

) 1
γ ∈ R. Also we get

x(t)xσ(t) > 0 iff
(w

r

) 1
γ ∈ R+.

�

In a similar manner, we may obtain.

Theorem 3 (Factorization of L2). If x ∈ D with x(t) 6= 0 and w(t) :=
r(t)(x∆(t))γ

xγ(t)
, then w ∈ D and

L2x(t) = xγσ(t)R2w(t), t ∈ Tκ.(2.11)

Conversely, if w ∈ D and

x(t) := e
(w

r
)
1
γ
(t, t0),

then x ∈ D and (2.11) holds. Furthermore x(t)xσ(t) > 0 iff (w
r
)

1
γ ∈ R+.

The following corollary follows easily from the factorizations given in
Theorems 2 and 3 respectively and the fact that if x(t) 6= 0 and w(t) :=
r(t)(x∆(t))γ

xγ(t)
, then

xσ(t)

x(t)
= 1 + µ(t)

(
w(t)

r(t)

) 1
γ

.

Corollary 1. For i = 1, 2 the following hold:
(a) The dynamic equation Lix = 0 has a solution x(t) with x(t) 6= 0 on T
iff the Riccati equation Riw = 0 has a solution w(t) on Tκ with

(
w
r

) 1
γ ∈ R.

(b) The dynamic equation Lix = 0 has a solution x(t) with x(t)xσ(t) > 0
on T iff the Riccati equation Riw = 0 has a solution w(t) on Tκ with(

w
r

) 1
γ ∈ R+.

(c) The dynamic inequality Lix ≤ 0 has a positive solution x(t) on T iff the

Riccati inequality Riz ≤ 0 has a solution z(t) on Tκ with
(

z
r

) 1
γ ∈ R+.

We state for convenience the following theorem involving the Riccati tech-
nique for equations L1x = 0 and L2x = 0. This theorem follows immediately
from Theorems 2 and 3. Part (B) is proven in Řehák [25]. Part (A) is con-
sidered in Sun and Li [33] when γ is an odd positive integer. The proof



HILLE-KNESER TYPE CRITERIA 9

of (A) is quite straightforward and is based on an iterative technique. We
omit the details.

Theorem 4. Assume sup T = ∞ and (1.8) holds.
(A) The Riccati inequality R1z ≤ 0 has a positive solution on [t0,∞)T iff

the dynamic equation L1x = 0 has a positive solution on [t0,∞)T.

(B) The Riccati inequality R2z ≤ 0 has a positive solution on [t0,∞)T iff
the dynamic equation L2x = 0 has a positive solution on [t0,∞)T.

Theorem 5. Assume sup T = ∞ and (1.8) holds.
(A) If γ ≥ 1 and there is a t0 ∈ [a,∞)T such that the inequality

(2.12) z∆ + p(t) +
γ

r
1
γ (t)

(
1 + µ(t)

(
z

r(t)

) 1
γ

)γ−1

z
γ+1

γ ≤ 0

has a positive solution on [t0,∞)T, then L1x = 0 is nonoscillatory on
[a,∞)T.

(B) If γ ≥ 1 and there exists a t0 ∈ [a,∞)T such that the inequality

(2.13) z∆ + p(t) +
γ

r
1
γ (t)

(
1 + µ(t)

(
z

r(t)

) 1
γ

)−1

z
γ+1

γ ≤ 0

has a positive solution on [t0,∞)T, then L2x = 0 is nonoscillatory on
[a,∞)T.

(Â) If 0 < γ ≤ 1 and there is a t0 ∈ [a,∞)T such that the inequality

(2.14) z∆ + p(t) +
γ

r
1
γ (t)

z
γ+1

γ ≤ 0

has a positive solution on [t0,∞)T, then L1x = 0 is nonoscillatory on
[a,∞)T.

(B̂) If 0 < γ ≤ 1 and there exists a t0 ∈ [a,∞)T such that the inequality

(2.15) z∆ + p(t) +
γ

r
1
γ (t)

(
1 + µ(t)

(
z

r(t)

) 1
γ

)−γ

z
γ+1

γ ≤ 0

has a positive solution on [t0,∞)T, then L2x = 0 is nonoscillatory on
[a,∞)T.

Proof. Assume γ ≥ 1. Using the mean value theorem one can easily prove
that if x ≥ y ≥ 0 and γ ≥ 1, then the inequality

γyγ−1(x− y) ≤ xγ − yγ ≤ γxγ−1(x− y)(2.16)
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holds. We will use (2.16) to show that if u ≥ 0 and t ∈ T, then

F (u, t) ≤ γ

(
1 + µ(t)

(
u

r(t)

) 1
γ

)γ−1(
u

r(t)

) 1
γ

.(2.17)

For those values of t ∈ T, where µ(t) = 0 it is easy to see that (2.17) is an
equality. Now assume µ(t) > 0, then using (2.16) we obtain for u ≥ 0

F (u, t) =

(
1 + µ(t)

(
u

r(t)

) 1
γ

)γ

− 1

µ(t)

≤ γ

(
1 + µ(t)

(
u

r(t)

) 1
γ

)γ−1(
u

r(t)

) 1
γ

,

and hence (2.17) holds. To prove (A) assume z is a positive solution of
(2.12) on [T,∞)T. Now consider

R1z(t) = z∆(t) + p(t) + zσ(t)F (z(t), t)

≤ z∆(t) + p(t) + zσ(t)γ

(
1 + µ(t)

(
z(t)

r(t)

) 1
γ

)γ−1(
z(t)

r(t)

) 1
γ

by (2.17)

≤ z∆(t) + p(t) + z(t)γ

(
1 + µ(t)

(
z(t)

r(t)

) 1
γ

)γ−1(
z(t)

r(t)

) 1
γ

by z∆(t) ≤ 0

= z∆(t) + p(t) + γ

(
1 + µ(t)

(
z

r(t)

) 1
γ

)γ−1

z
γ+1

γ (t)

r
1
γ (t)

≤ 0 by (2.12).

The proof of Part (B) of this theorem is very similar, where instead of
the inequality (2.17) one uses the inequality

S(u, t) ≤ γ

r
1
γ (t)

(
1 + µ(t)

(
u

r(t)

) 1
γ

)u
γ+1

γ

for γ ≥ 1, u ≥ 0, t ∈ T.
Now assume 0 < γ ≤ 1, then using the mean value theorem one can show

that if 0 < y ≤ x, then

γxγ−1(x− y) ≤ xγ − yγ ≤ γyγ−1(x− y).(2.18)

Using (2.18) we have that for u ≥ 0, t ∈ T,

F (u, t) ≤ γ

(
u

r(t)

) 1
γ

(2.19)
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and

S(u, t) ≤ γu
γ+1

γ

r
1
γ (t)

(
1 + µ(t)( u

r(t)
)

1
γ

)γ .

The rest of the proof for parts (Â) and (B̂) is similar to the proofs for (A)
and (B) respectively. �

We note that as a special case when T = R, Theorem 5, is related to
some results of Li and Yeh [23, Theorem 3.2], Yang [34, Theorem 2] and
Yang [34, Corollary 2] for the second-order half-linear differential equation
(1.3).

Now, we are ready to establish our main oscillation and nonoscillation
results.

Theorem 6 (Hille-Kneser type nonoscillation criteria for L1x = 0). Assume
sup T = ∞ and (1.8) holds.

Assume γ ≥ 1. Suppose there exist a t0 ∈ [a,∞)T, and constants c ≥ 0
and d ≥ 1 such that for t ∈ [t0,∞)T,

(2.20) p(t) +

γc
γ+1

γ

(
1 + µ(t)

(
c

tdr(t)

) 1
γ

)γ−1

(td)
γ+1

γ r
1
γ (t)

≤ cd

t(σ(t))d
.

Then L1x = 0 is nonoscillatory on [a,∞)T. In particular, if for t ≥ t0
sufficiently large there is a c ≥ 0 such that

(2.21) p(t) ≤ cγ

t(σ(t))γ

[
1−

(
c

r(t)

) 1
γ
(

σ(t)

t

)2γ−1
]

then L1x = 0 is nonoscillatory on [a,∞)T.
Now assume 0 < γ ≤ 1. Suppose there exist a t0 ∈ [a,∞)T, and constants

c ≥ 0 and 0 < d ≤ 1 such that for t ∈ [t0,∞)T,

(2.22) p(t) +
γc

γ+1
γ

(td)
γ+1

γ r
1
γ (t)

≤ cd

tdσ(t)
.

Then L1x = 0 is nonoscillatory on [a,∞)T.
In particular, if for t ≥ t0 sufficiently large there is a c ≥ 0 such that

(2.23) p(t) ≤ cγ

tγσ(t)

[
1−

(
c

r(t)

) 1
γ
(

σ(t)

t

)]
then L1x = 0 is nonoscillatory on [a,∞)T.
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Proof. First assume γ ≥ 1. From Theorem 5 we see that if the inequality
(2.12) has a positive solution in a neighborhood of ∞, then L1x = 0 is
nonoscillatory. Let z(t) := c

td
for t ≥ t0, where c > 0 and d ≥ 1. We claim

that

z∆(t) ≤ − cd

t(σ(t))d
.(2.24)

If µ(t) = 0 it is easy to see that (2.24) is an equality. Now assume µ(t) > 0,
then

z∆(t) =
1

µ(t)

[
c

(σ(t))d
− c

td

]
=

c

σ(t)− t

[
1

(σ(t))d
− 1

td

]
= − c

(σ(t))dtd

(
(σ(t))d − td

σ(t)− t

)
.(2.25)

Applying inequality (2.16) to (2.25) we get that

z∆(t) ≤ − c

(σ(t))dtd
(dtd−1) = − cd

t(σ(t))d
.

Hence (2.24) holds in general. It follows from (2.24) that

z∆(t) + p(t) +
γ

r
1
γ (t)

(
1 + µ(t)

(
z(t)

r(t)

) 1
γ

)γ−1

z
γ+1

γ (t)

≤ − cd

t(σ(t))d
+ p(t) +

γc
γ+1

γ

(
1 + µ(t)

(
c

tdr(t)

) 1
γ

)γ−1

(td)
γ+1

γ r
1
γ (t)

≤ 0 (by (2.20)).(2.26)

It then follows from Theorem 5 that L1x = 0 is nonoscillatory on [a,∞)T.
Letting d = γ in (2.20) and simplifying, we have

p(t) ≤ cγ

t(σ(t))γ
− γc

γ+1
γ

tγ+1r
1
γ (t)

(
1 +

µ(t)

tr
1
γ (t)

c
1
γ

)γ−1

.(2.27)

Hence, if for some c ≥ 0, p(t) satisfies (2.27) for t ∈ [t0,∞)T, then L1x = 0
is nonoscillatory on [a,∞)T. Note that since we are assuming p(t) satisfies
(2.21) (and p(t) > 0) we have that c

r(t)
≤ 1 which we use in the next chain

of inequalites.



HILLE-KNESER TYPE CRITERIA 13

By (2.21)

p(t) ≤ cγ

t(σ(t))γ

[
1−

(
c

r(t)

) 1
γ
(

σ(t)

t

)2γ−1
]

=
cγ

t(σ(t))γ
−

(
γc

γ+1
γ

tγ+1r
1
γ (t)

)(
σ(t)

t

)γ−1

=
cγ

t(σ(t))γ
−

(
γc

γ+1
γ

tγ+1r
1
γ (t)

)(
1 +

µ(t)

t

)γ−1

≤ cγ

t(σ(t))γ
−

(
γc

γ+1
γ

tγ+1r
1
γ (t)

)(
1 +

µ(t)

t

(
c

r(t)

) 1
γ

)γ−1

.

Hence (2.27) holds and thus L1x = 0 is nonoscillatory on [a,∞)T.
To prove the second half of this theorem (the case 0 < γ ≤ 1) note that

from (2.18) in this case (since 0 < d ≤ 1) one gets the inequality

z∆(t) ≤ − cd

tdσ(t)

instead of (2.24). The proof of the result concerning (2.22) follows directly

from (Â) in Theorem 5 and the result concerning (2.23) follows easily by
letting d = γ in (2.22). �

Similar to the proof of Theorem 6, one can establish the following result.

Theorem 7 (Hille-Kneser type nonoscillation criteria for L2x = 0). Assume
sup T = ∞ and (1.8) holds.

Assume γ ≥ 1. If for t ≥ t0 sufficiently large, there exist positive constants
c and d ≥ 1 such that

(2.28) p(t) +
γc

γ+1
γ

(td)
γ+1

γ r
1
γ (t)

(
1 + µ(t)

(
c

tdr(t)

) 1
γ

) ≤ cd

t(σ(t))d
.

Then L2x = 0 is nonoscillatory on [a,∞)T. In particular, if for t ≥ t0
sufficiently large there is a c ≥ 0 such that

(2.29) p(t) ≤ cγ

t(σ(t))γ

1−
(

σ(t)

t

)γ


(

c
r(t)

) 1
γ

1 + µ(t)
t

(
c

r(t)

) 1
γ




then L2x = 0 is nonoscillatory on [a,∞)T.
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Now assume 0 < γ ≤ 1. If for t ≥ t0 sufficiently large, there exist positive
constants c and 0 < d ≤ 1 such that

(2.30) p(t) +
γc

γ+1
γ

(td)
γ+1

γ r
1
γ (t)

(
1 + µ(t)

(
c

tdr(t)

) 1
γ

)γ ≤
cd

tdσ(t)
.

Then L2x = 0 is nonoscillatory on [a,∞)T. In particular, if for t ≥ t0
sufficiently large there is a c ≥ 0 such that

(2.31) p(t) ≤ cγ

tγσ(t)

1−
(

σ(t)

t

)
(

c
r(t)

) 1
γ(

1 + µ(t)
t

(
c

r(t)

) 1
γ

)γ




then L2x = 0 is nonoscillatory on [a,∞)T.

We now give some interesting examples.

Example 1. If T = R, then L1x = 0 and L2x = 0 are the same. If γ = 1
the conditions (2.21) and (2.29) both reduce to

p(t) ≤ c

t2

(
1− c

r(t)

)
.

In the special case r(t) ≡ 1, this reduces (taking c = 1
2
) to

p(t) ≤ 1

4t2
,

which is the Hille–Kneser criterion mentioned in Theorem 1.
More generally, if γ > 0 and r(t) ≡ 1, then (2.21) and (2.23) with

c =
(

γ
γ+1

)γ

both reduce to

p(t) ≤
(

γ

γ + 1

)γ+1
1

t1+γ
.

Moreover, in the case γ > 1, Došlý and Řehák [11] have improved this
criterion.

Example 2. If T = N, γ = 1 and r(t) ≡ 1, then the condition (2.21) for
L1x = 0 reduces to

p(t) ≤ c

t(t + 1)

(
1− c

t + 1

t

)
.

Letting c = 1
2
, it is easily seen that if there is a k < 1

4
, such that

p(t) ≤ k

t(t + 1)
,
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for large t, then L1x = 0 is nonoscillatory on N.
If T = N, r(t) ≡ 1, γ = 1, condition (2.29) reduces to

p(t) ≤ c

t(t + 1)

1− c

1 + c
t

.

Letting c = 1
2

one can argue that if there is a k < 1
4

such that

p(t) ≤ k

t(t + 1)

for large t, then L2x = 0 is nonoscillatory on N.
If γ ≥ 1, r(t) ≡ 1 then using (2.29) it is not difficult to see that if there

exists k <
(

γ
γ+1

)γ+1

such that

p(t) ≤ k

t(t + 1)γ

for large t, then L2x = 0 is nonoscillatory on N. On the other hand if 0 <

γ ≤ 1, then using (2.31) it is easily shown that if there exists k <
(

γ
γ+1

)γ+1

such that

p(t) ≤ k

tγ(t + 1)

for large t, then L2x = 0 is nonoscillatory on N. Combining these results

we see that if γ > 0, r(t) ≡ 1, and there is a k <
(

γ
γ+1

)γ+1

such that

p(t) ≤ k

tγ+1

for large t, then L2x = 0 is nonoscillatory on N. See Agarwal et al [1] for
additional results.

Example 3. If T = qN0 , q > 1, then (2.21) becomes (in the case γ = 1 and
r(t) ≡ 1),

p(t) ≤ c

qt2
(1− cq) .

Taking c = 1
2q

we get

p(t) ≤ 1

4q2t2
,(2.32)

for large t implies L1x = 0 is nonoscillatory on qN0. With the same as-
sumptions (T = qN0 , q > 1, r(t) ≡ 1, γ = 1) condition (2.29) becomes

p(t) ≤ c

qt2
1− c

1 + (q − 1)c
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and with c = 1
1+
√

q
, we get

p(t) ≤ 1

q(1 +
√

q)2t2
,(2.33)

for large t implies the nonoscillation of L2x = 0 on qN0.
We see therefore that the criteria for nonoscillation of the linear (γ = 1)

equations L1x = 0 and L2x = 0 as consequences of Theorems 6 and 7, are
different in general. Solving the Euler–Cauchy equations

x∆∆ +
a

tσ(t)
x = 0(2.34)

and

x∆∆ +
a

tσ(t)
xσ = 0.(2.35)

one can show that if a ≤ 1
4
, then (2.34) is nonoscillatory on qN0, and if

a ≤ 1
(
√

q+1)2
, then (2.35) is nonoscillatory on qN0. We note that the result

(2.32) is not sharp; however, the result (2.33) is sharp as can be seen by a
more detailed analysis. See also Řehák [25]

If γ ≥ 1, r(t) ≡ 1, then applying (2.21) we get that if

p(t) ≤ 1

q2γ2

(
γ

γ + 1

)γ+1
1

t1+γ
,

for large t, then L1x = 0 is nonoscillatory. On the other hand if 0 < γ ≤ 1,
then applying (2.23) we get that if

p(t) ≤ 1

qγ+1

(
γ

γ + 1

)γ+1
1

t1+γ
,

for large t, then L1x = 0 is nonoscillatory. If γ ≥ 1, r(t) ≡ 1, we get using
(2.29) that if

p(t) ≤ cγ

t1+γqγ

[
1− qγ

(
c

1
γ

1 + (q − 1)c
1
γ

)]
for large t, then L2x = 0 is nonoscillatory. On the other hand if 0 < γ ≤ 1,
then using (2.31) we get that if

p(t) ≤ cγ

t1+γqγ

1− qγ

 c
1
γ[

1 + (q − 1)c
1
γ

]γ


for large t, then L2x = 0 is nonoscillatory.
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Example 4. For a general time scale T, where sup T = ∞ and (1.8) holds,
it follows from (2.21) that if γ > 1, and(

σ(t)

t

)2γ−1

≤ mr
1
γ (t)

for large t, for some constant m > 0, then L1x = 0 is nonoscillatory on
[a,∞)T provided

t(σ(t))γp(t) ≤ m

(
γ

m(γ + 1)

)γ+1

,(2.36)

for large t. To see this, observe that in (2.21) the right hand side is bounded
above by

γ

t(σ(t))γ
h(c),

where h(c) := c − c
γ+1

γ m, which has its maximum at c =
(

γ
m(γ+1)

)γ

. (For

T = R, γ = 1, r(t) ≡ 1, we can take m = 1 and this again reduces to the
Hille–Kneser criterion.)

For the case of L2x = 0, we first observe that in (2.29), the expression(
c

r(t)

) 1
γ

1 + µ(t)
t

(
c

r(t)

) 1
γ

≤
(

c

r(t)

) 1
γ

,

so that the right side of (2.29) is bounded below by

cγ

t(σ(t))γ

[
1−

(
σ(t)

t

)γ (
c

r(t)

) 1
γ

]
.

Therefore, if there exists an m > 0 such that(
σ(t)

t

)γ

≤ m r
1
γ (t)

for large t, then L2x = 0 is nonoscillatory provided (2.36) holds. Notice
that if γ = 1, T = R, r(t) ≡ 1, then (2.36) reduces to the Hille–Kneser
criterion p(t) ≤ 1

4t2
. One can also give additional special cases. We leave

this to the interested reader.

Acknowledgement: The authors gratefully acknowledge the referee’s de-
tailed comments and corrections on an earlier version.



18 L. ERBE, A. PETERSON AND S. H. SAKER

References

[1] R. P. Agarwal, M. Bohner, S. Grace, and D. O’Regan, Discrete Oscillation Theory,
Hindawi, New York, 2005.

[2] R. P. Agarwal, M. Bohner and S. H. Saker, Oscillation of second order delay dynamic
equations, Canad. Appl. Math. Quart., to appear.

[3] E. Akin-Bohner, M. Bohner and S. H. Saker, Oscillation criteria for a certain class
of second order Emden-Fowler dynamic equations, Elect. Trans. Numer. Anal., to
appear.

[4] E. A. Bohner and J. Hoffacker, Oscillation properties of an Emden-Fowler type
equations on discrete time scales, J. Difference Eqns. Appl., 9 (2003) 603–612.

[5] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction
with Applications, Birkhäuser, Boston, 2001.
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