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a b s t r a c t

Let T be a time scale (i.e., a closed nonempty subset of R) with supT = +∞. Consider the

∧
second-order half-linear dynamic equation

(r(t)(x∆(t))α)∆
+ p(t)xα(σ (t)) = 0,

where r(t) > 0, p(t) are continuous,
∫

∞

t0
(r(t))−

1
α ∆t = ∞, α is a quotient of odd positive

integers. In particular, no explicit sign assumptions aremadewith respect to the coefficient
p(t). We give conditions under which every positive solution of the equations is strictly
increasing. For α = 1, T = R, the result improves the original theorem [see: [Lynn Erbe,
Oscillation theorems for

∧
second-order linear differential equation, Pacific J. Math. 35 (2)

(1970) 337–343]]. As applications, we get two comparison theorems and an oscillation
theorem for half-linear dynamic equationswhich improve and extend earlier results. Some
examples are given to illustrate our theorems.

© 2008 Published by Elsevier Ltd

1. Introduction 1

LetT be a time scale (i.e., a closed nonempty subset ofR) with supT = ∞. Consider the
∧
second-order half-linear dynamic 2

equation 3

(r(t)(x∆(t))α)∆
+ p(t)xα(σ (t)) = 0, (1.1) 4

where r(t) > 0, p(t) are continuous,
∫

∞

t0
(r(t))−

1
α ∆t = ∞, α is a quotient of odd positive integers. We emphasize that no 5

explicit sign assumptions are made with respect to the coefficient p(t). 6

For completeness, we recall some basic results for dynamic equations and the calculus on time scales. The forward jump 7

operator is defined by 8

σ(t) = inf{s ∈ T : s > t}, 9

and the backward jump operator is defined by 10

ρ(t) = sup{s ∈ T : s < t}, 11

where inf∅ = supT, where ∅ denotes the empty set. If σ(t) > t , we say t is right-scattered, while if ρ(t) < t we say t is 12

left-scattered. If σ(t) = t we say t is right-dense, while if ρ(t) = t and t 6= infT we say t is left-dense. Given a time scale 13
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interval [c, d] := {t ∈ T : c ≤ t ≤ d} in T the notation [c, d]κ denotes the interval [c, d] in case ρ(d) = d and denotes1

the interval [c, d) in case ρ(d) < d. The graininess function µ for a time scale T is defined by µ(t) = σ(t) − t , and for any2

function f : T → R the notation f σ (t) denotes f (σ (t)).3

The theory of time scales was introduced by Stefan Hilger in his Ph.D. Thesis in 1988 in order to unify continuous and4

discrete analysis (see [1]). Not only does this unify the theories of differential equations and difference equations, but it also5

extends these classical situations to cases ‘‘in between’’— e.g., to the so-called q-difference equations which are important6

in the theory of orthogonal polynomials. Moreover, the theory can be applied to numerous other time scales. We refer to7

the two books on the subject of time scales by Bohner and Peterson [2,3] which summarize and organize much of time scale8

calculus and applications to dynamic equations.9

A function f : T → R is said to be rd-continuous provided it is continuous at right-dense points in T and its left-sided10

limits exist (finite) at left-dense points in T. The set of rd-continuous functions f : T → R will be denoted by Crd. The set of11

functions f : T → R that are delta differentiable on [c, d]κ andwhose delta derivative is
∧
rd-continuous on [c, d]κ is denoted12

by C1
rd.13

Werecall that a solution of Eq. (1.1) is said to be oscillatory on [a, ∞) in case it is neither eventually positive nor eventually14

negative. Otherwise, the solution is said to be nonoscillatory. Eq. (1.1) is said to be oscillatory in case all of its solutions are15

oscillatory. The study of the oscillatory and nonoscillatory properties of Eq. (1.1) and itsmany generalizations and extensions16

is voluminous and we refer to [4,5] and the references therein.17

The following condition (A) was introduced in [6] for the continuous case in order to obtain some new oscillation and18

comparison results for the linear homogeneous differential equation in the case when the function p(t) can take on both19

positive and negative values for large t .20

Definition 1. We say that a function g : T → R satisfies condition (A) if the following condition holds:21

lim inf
t→∞

∫ t

T
g(s)∆s ≥ 0 and 6≡ 0,22

for all large T .23

We wish to extend this notion to a triple of functions (α, p, r), so we introduce the following definition:24

Definition 2. We say that the triple (α, p, r) satisfies condition (Â), if there exists a continuously differentiable function25

h : T → R, such that either h∆(t) is of one sign for all t ∈ T or h∆(t) ≡ 0 and is such that p(t)hα+1(σ (t)) − r(t)(h∆(t))α+1
26

satisfies condition (A).27

Notice that if h(t) = 1, α = 1, then this means that p(t) satisfies condition (A).28

A continuous version of the following definition appeared in [7], Page 814.29

Definition 3. We say that a function p : T → R satisfies condition (B) in case there exists a sequence {τn} ⊂ T, τn → ∞,30

such that
∫ t
τn

p(s)∆s ≥ 0, for t ≥ τn.31

It is obvious that condition (A) implies both condition (Â) and condition (B) (see [6]), but the converse is not true (see32

Examples 1.1 and 1.2). In Section 2, we prove that if p(t) satisfies condition (B) and the triple (α, p, r) satisfies condition33

(Â), then positive solutions of (1.1) are strictly increasing. This improves and extends a result of [6].34

In Sections 3 and 4, we prove two comparison theorems that improve two main results of [8] and give two examples to35

illustrate that our theorems are new.36

In Section 5, we obtain an oscillation theorem that extends the results of [4,9,10] and give several examples to illustrate37

our theorem.38

The following examples show that the class of functions which satisfy condition (Â) and condition (B) but do not satisfy39

condition (A) is nonempty.40

Example 1.1. Let q > 1. Consider the time scale T = qN0 := {qk : k ∈ N0}. In this case, σ(t) = qt , µ(t) = (q − 1)t for all41

t ∈ T. (Recall that any dynamic equation on the time scale qN0 is called a q-difference equation.) Let42

p(t) =
λ

t(σ (t))b
+

β(−1)n

t(σ (t))b
, n :=

ln t
ln q

43

where λ > 0, 0 < b < 3. Let α = 3. Consider the q-difference equation44

((x∆(t))3)∆
+ p(t)x3(σ (t)) = 0.45

Let46

m :=
qb − 1
qb + 1

,47
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and assume further that 0 < λ < mβ . Then we have, for tn = qn, 1∫
∞

tn
p(s)∆s =

1
qb

∞∑
k=n

1
qk(1+b)

[λ + β(−1)k](q − 1)qk 2

=
(q − 1)

qnb

(
λ

qb − 1
+

β(−1)n

qb + 1

)
3

=
(q − 1)

qnb
×

1
qb − 1

(λ + mβ(−1)n). 4

Notice that this last expression may be negative, for large n, since 0 < λ < mβ . Hence, p(t) does not satisfy condition (A). 5

Take h(t) = t
b
4 , r(t) = 1. Then we have, for t = qn 6∫ t

1
{p(s)h4(σ (s)) − r(s)[h∆(s)]4}∆s =

∫ t

1

λ

s
+

β(−1)
ln s
ln q

s
−

[
q

b
4 − 1
q − 1

]4
1

s4−b

∆s → ∞. 7

So the triple (3, p, 1) satisfies condition (Â). 8

Let τn = q2n. It is easy to see that
∫ t
τn

p(s)∆s ≥ 0, for t ≥ τn and so p(t) satisfies condition (B). 9

Example 1.2. Let T be the real interval [1, ∞), g(t) = 1 + t sin t . Then we have 10

(i) g(t) does not satisfy condition (A), since
∫

∞

T g(t)dt does not converge and
∫

∞

T g(t)dt 6= ∞. 11

(ii) Let h(t) = t−
1
8 , r(t) = 1. Then 12∫ t

T
{g(s)h2(s) − r(s)[h′(s)]2}ds = t

3
4

(
4
3

+ t−
3
4

∫ t

T
s
3
4 sin sds

)
+

1
80

t−
5
4 −

4
3
T

3
4 −

1
80

T−
5
4 . (1.2) 13

∧
Integrating by parts twice, it is easy to see that 14

lim sup
t→∞

t−
3
4

∫ t

T
s
3
4 sin sds = 1, lim inf

t→∞
t−

3
4

∫ t

T
s
3
4 sin sds = −1. 15

Take ε =
1
9 . We have 16

−
10
9

= 1 − ε ≤ t−
3
4

∫ t

T
s
3
4 sin s ds ≤ 1 + ε =

10
9

, 17

for large t . 18

Therefore, for large t , we have 19

t
3
4

(
4
3

+ t−
3
4

∫ t

T
s
3
4 sin s ds

)
≥

1
9
t
3
4 . 20

Hence by (1.2), we obtain 21∫
∞

T
{g(s)h2(s) − r(s)[h′(s)]2}ds = ∞. 22

Similarly, we also can get 23∫
∞

T
{g(s)h4(s) − r(s)[h′(s)]4}ds = ∞. 24

Therefore the triple (1, g, 1) and (3, g, 1) satisfy the condition (Â). 25

(iii) In the following, we show that g(t) satisfies condition (B). 26

Assume that 0 < t1 < t2 < · · · < t2k < t2k+1 < t2k+2 < · · · are the positive zero points of g(t). It suffices to prove that 27∫ t2k+2

t2k
g(s)ds ≥ 0, 28

i.e., 29∫ t2k+1

t2k
g(s)ds ≥ −

∫ t2k+2

t2k+1

g(s)ds, 30
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for large k. That is,1

t2k+1 − t2k+1 cos t2k+1 + sin t2k+1 − (t2k − t2k cos t2k + sin t2k)2

≥ −(t2k+2 − t2k+2 cos t2k+2 + sin t2k+2) + (t2k+1 − t2k+1 cos t2k+1 + sin t2k+1). (1.3)3

Using the fact that sin tj =
−1
tj

and rearranging, we see that (1.3) is equivalent to4

t2k+2 −
1

t2k+2
−

√
t22k+2 − 1 ≥ t2k −

1
t2k

−

√
t22k − 1. (1.4)5

If we set6

f (x) = x −
1
x

−

√
x2 − 1,7

then it is easy to see that f ′(x) > 0 for large x and therefore it follows that (1.4) holds for large k. This completes the proof.8

2. Lemma9

Lemma 2.1. Let x(t) be a nonoscillatory solution of (1.1) and assume that p(t) satisfies condition (B), the triple (α, p, r) satisfies10

condition (Â), and
∫

∞

t0
(r(t))−

1
α ∆t = ∞. Then there exists T ≥ t0 such that x(t)x∆(t) > 0, for t ≥ T .11

Proof. Suppose that x is a nonoscillatory solution of (1.1) and without loss of generality, assume x(t) > 0 for t ≥ t0. Since12

p(t) satisfies condition (B), let τn be the corresponding sequence with
∫ t
τn

p(s)∆s ≥ 0, for t ≥ τn.13

Let us assume, for the sake of contradiction, that x∆(t) is not strictly positive for all large t . First consider the case when14

x∆(t) < 0 for all large t . Then without loss of generality, we can assume that x∆(t) < 0 for t ≥ τk ≥ t0, where k is large and15

fixed. An integration of Eq. (1.1) for t > τk gives16

r(t)(x∆(t))α +

∫ t

τk

p(s)xα(σ (s))∆s = r(τk)(x∆(τk))
α. (2.1)17

Now
∧
integrating by parts, we have18 ∫ t

τk

p(s)xα(σ (s))∆s = xα(t)
∫ t

τk

p(s)∆s −

∫ t

τk

(xα(s))∆s

(∫ s

τk

p(u)∆u
)

∆s. (2.2)19

By the Pötzsche Chain Rule, ([2] Theorem 1.90) we have20

(xα(t))∆
=

{∫ 1

0
α(x(t) + hµ(t)x∆(t))α−1dh

}
x∆(t) ≤ 0,21

since (x(t) + hµ(t)x∆(t))α−1
≥ 0 and x∆(t) < 0. Hence, it follows that22 ∫ t

τk

(xα(t))∆

(∫ s

τk

p(u)∆u
)

∆s ≤ 0,23

and so from (2.2), we have24 ∫ t

τk

p(s)xα(σ (s))∆s ≥ xα(t)
∫ t

τk

p(s)∆s ≥ 0.25

Consequently, from (2.1), we have26

r(t)(x∆(t))α ≤ r(τk)(x∆(τk))
α, t ≥ τk.27

Hence28

x(t) ≤ x(τk) + (r(τk))
1
α x∆(τk)

∫ t

τk

[
1

r(s)

] 1
α

∆s → −∞,29

as t → ∞, which is a contradiction.30

So x∆(t) is not negative for all large t and since we are assuming x∆(t) is not positive for all large t , it follows that x∆(t)31

must change sign infinitely often.32

Make the substitution33

ω(t) = r(t)
[
x∆(t)
x(t)

]α

hα+1(t),34

Please cite this article in press as: B. Jia, et al., New comparison and oscillation theorems for
∧
second-order half-linear dynamic equations on time scales,

Computers and Mathematics with Applications (2008), doi:10.1016/j.camwa.2008.05.014



UN
CO

RR
EC

TE
D
PR

OO
F

CAMWA: 4402

ARTICLE  IN  PRESS
B. Jia et al. / Computers and Mathematics with Applications xx (xxxx) xxx–xxx 5

for t ≥ T1. We may suppose that T1 is sufficiently large so that 1

lim inf
t→∞

∫ t

T1
{p(s)hα+1(σ (s)) − r(s)[h∆(s)]α+1

}∆s ≥ 0, (2.3) 2

holds and is such that ω(T1) ≤ 0, (i.e., x∆(T1) ≤ 0). 3

ω∆(t) =

[
r(t)

(
x∆(t)
x(t)

)α]∆

hα+1(σ (t)) + r(t)
[
x∆(t)
x(t)

]α

(hα+1(t))∆
4

= −p(t)hα+1(σ (t)) + r(t)(h∆(t))α+1
5

− r(t)
[
(h∆(t))α+1

−

(
x∆(t)
x(t)

)α

(hα+1(t))∆
+

(x∆(t))α(xα(t))∆

xα(t)xα(σ (t))
hα+1(σ (t))

]
. 6

If we define (omitting arguments) 7

F(t) := r
[
(h∆)α+1

−

(
x∆

x

)α

(hα+1)∆
+

(x∆)α(xα)∆

xα(xσ )α
(hσ )α+1

]
, 8

then we have 9

ω∆(t) = −p(t)hα+1(σ (t)) + r(t)[h∆(t)]α+1
− F(t). (2.4) 10

(i) Suppose that t ∈ T is right-dense. Then (hα+1(t))∆
= (α + 1)hα(t)h∆(t), so we have (again omitting arguments) 11

F(t) = (α + 1)r

 [h∆
]
α+1

α + 1
− h∆

[
x∆h
x

]α

+

[
( x∆h

x )α
] α+1

α

α+1
α

 . 12

We use Young’s inequality [11], which says that 13

|u|p

p
− uv +

|v|
q

q
≥ 0, p > 1, q > 1,

1
p

+
1
q

= 1, 14

with equality if and only if v = uα , α :=
p
q . 15

So if we let 16

u = h∆(t), v =

[
x∆(t)h(t)

x(t)

]α

, p = α + 1, q =
α + 1

α
, 17

then we have that F(t) ≥ 0 and 18

F(t) = 0 iff
x∆(t)h(t)

x(t)
= h∆(t). 19

(ii) Suppose next that t ∈ T is right-scattered. Then x∆(t) =
x(σ (t))−x(t)

µ(t) , (xα(t))∆
=

xα(σ (t))−xα(t)
µ(t) , h∆(t) =

h(σ (t))−h(t)
µ(t) , 20

(hα+1(t))∆
=

hα+1(σ (t))−hα+1(t)
µ(t) . Let us put a :=

h(σ (t))
h(t) , b :=

x(σ (t))
x(t) . Then after substituting and rearranging we have 21

F(t) =
r(t)hα+1(t)aα+1

µα+1(t)
f (a, b) 22

where f (a, b) := (1 − a−1)α+1
− (b − 1)α(1 − a−(α+1)) + (b − 1)α(1 − b−α). 23

Notice that f (a, a) = 0 and 24

∂ f
∂a

(a, b) =
(α + 1)a−2

aα
[(a − 1)α − (b − 1)α]. 25

It follows that if a > b, then ∂ f
∂a (a, b) > 0, and so f (a, b) > 0. Likewise, if a < b, then ∂ f

∂a (a, b) < 0, and so f (a, b) > 0. 26

In other words, f (a, b) ≥ 0 and 27

f (a, b) = 0 ⇔ a = b ⇔
h(σ (t))
h(t)

=
x(σ (t))
x(t)

⇔
x∆(t)
x(t)

=
h∆(t)
h(t)

. 28

From (i) and (ii), we
∧
obtain that F(t) ≥ 0 and 29

F(t) = 0 iff
h∆(t)
h(t)

=
x∆(t)
x(t)

. 30
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Integrating both sides of (2.4) from T1 to t , we have1

ω(t) − ω(T1) = −

∫ t

T1
{p(s)hα+1(σ (s)) − r(s)[h∆(s)]α+1

}∆s −

∫ t

T1
F(s)∆s. (2.5)2

In the following, we will consider two cases:3

Case (I)4

F(s) ≡ 0, s ≥ T1.5

We then have6

h∆(s)
h(s)

≡
x∆(s)
x(s)

.7

So x(s) = Ch(s). Without loss of generality we assume that h(s) > 0, for s ≥ T1, since the other case is similar. Therefore,8

we have C > 0.9

(i) If h∆(s) > 0, for s ∈ [T1, ∞), we have x∆(t) > 0, which is a contradiction to the assumption that x∆(t) changes sign10

infinitely often.11

(ii) If h∆(s) ≡ 0, we will have p(s) ≡ 0, which contradicts the definition of condition (Â).12

(iii) If h∆(s) < 0, for s ∈ [T1, ∞), we have x∆(t) < 0. which is also a contradiction to the assumption that x∆(t) changes13

sign infinitely often.14

Case (II)15

F(s) 6≡ 0,16

for s ≥ T1.17

In this case we can choose ε > 0 and T2 > T1 such that for t ≥ T2,18 ∫ t

T1
F(s)∆s > ε.19

By (2.3), there exists T3 > T2 such that for t ≥ T3,20 ∫ t

T1
{p(s)hα+1(σ (s)) − r(s)[h∆(s)]α+1

}∆s ≥ −
ε

2
.21

So by (2.5), when t > T3, we have22

ω(t) ≤ ω(T1) +
ε

2
− ε < 0,23

which implies that x∆(t) < 0 for all large t > T3, which is again a contradiction to the assumption that x∆(t) changes sign24

infinitely often. This completes the proof of Lemma 2.1. �25

3. Comparison theorems26

We are now in a position to obtain some comparison results. Consider the
∧
second-order half-linear dynamic equations27

(r(t)(x∆(t))α)∆
+ p(t)xα(σ (t)) = 0, (3.1)28

and29

(R(t)(x∆(t))α)∆
+ a(t)P(t)xα(σ (t)) = 0, (3.2)30

where r(t) > 0, R(t) > 0, p(t), P(t) are continuous, a(t) is continuously differentiable, and α is a quotient of odd positive31

integers.32

The following two lemmas from [8] are very useful in establishing oscillation, nonoscillation, and comparison results for33

∧
second-order linear and half-linear dynamic equations on time scales.34

Lemma 3.1 (Riccati Technique). Eq. (3.1) is nonoscillatory if and only if there exists T ∈ [t0, ∞) and a continuously differentiable35

function ω : [T , ∞) → R such that r
1
α (t) + µ(t)ω

1
α (t) > 0 holds and36

ω∆(t) + p(t) + S[ω, r](t) ≤ 0, for t ∈ [T , ∞), (3.3)37
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where 1

S[ω, r](t) =



{
αω

α+1
α

r
1
α

}
(t) at right-dense t,{

ω

µ

(
1 −

r

[µω
1
α + r

1
α ]α

)}
(t) at right-scattered t.

2

If in Lemma 2.1, we let h(t) ≡ 1 then it is easy to obtain the expression for S[ω, r](t) from the expression for F(t). 3

Lemma 3.2 (Sturm–Picone Comparison Theorem). Consider the equation 4

[r̃(t)(x∆(t))α]
∆

+ p̃(t)xα(σ (t)) = 0, (3.4) 5

where r̃ and p̃ satisfy the same assumptions as r and p. Suppose that 0 < r̃(t) ≤ r(t) and p(t) ≤ p̃(t) on [T , ∞) for all large T . 6

Then (3.4) is nonoscillatory on [t0, ∞) implies that (3.1) is nonoscillatory on [t0, ∞). 7

The proofs of the following two theorems may be found in [8]: 8

Theorem A. Assume a ∈ C1
cd, 0 < r(t) ≤ R(t), P(t) ≤ p(t) for t ∈ [t0, ∞) and 9

(i) the function p(t) satisfies condition (A), 10

(ii)
∫

∞

t0
(r(t))−

1
α ∆t = ∞, 11

(iii) 0 < a(t) ≤ 1, a∆(t) ≤ 0. 12

Then (3.1) is nonoscillatory on [t0, ∞) implies that (3.2) is nonoscillatory on [t0, ∞). 13

Theorem B. Assume a ∈ C1
cd, 0 < R(t) ≤ r(t), p(t) ≤ P(t) for t ∈ [t0, ∞) and 14

(i) the function aP satisfies condition (A), 15

(ii)
∫

∞

t0
(R(t))−

1
α ∆t = ∞, 16

(iii) a(t) ≥ 1, a∆(t) ≥ 0, t ∈ [t0, ∞). 17

Then (3.1) is oscillatory on [t0, ∞) implies (3.2) is oscillatory on [t0, ∞). 18

Our goal in this section is to show that condition (A) (i.e., condition (i)) in Theorems A and B can be weakened to the 19

assumptions that condition (B) and condition (Â) hold for the triple (α, p, r). 20

Theorem 3.3. Assume a ∈ C1
cd, r(t) ≤ R(t), P(t) ≤ p(t) and 21

(i) p(t) satisfies condition (B), the triple (α, p, r) satisfies condition (Â), 22

(ii)
∫

∞

t0
(r(t))−

1
α ∆t = ∞, 23

(iii) 0 < a(t) ≤ 1, a∆(t) ≤ 0. 24

Then (3.1) is nonoscillatory on [t0, ∞) implies (3.2) is nonoscillatory on [t0, ∞). 25

Proof. The assumptions of the theorem imply that there exists a solution x of (3.1) and T ∈ T such that x(t) > 0 and x∆(t) > 26

0 on [T , ∞) by Lemma 2.1. Therefore, the function ω(t) = r(t)( x∆(t)
x(t) )α > 0 satisfies (3.3) with r

1
α (t) + µ(t)ω

1
α (t) > 0. We 27

have aS[ω, r] = S[aω, ar] (see Lemma 3.1). 28

Now, multiplying (3.3) by a(t), we get 29

0 ≥ ω∆a + pa + S[aω, ar](t) 30

≥ ω∆a + Pa + S[aω, ar](t) 31

≥ ω∆a + ωa∆
+ Pa + S[aω, ar](t) 32

= (ωa)∆
+ Pa + S[aω, ar](t) 33

for t ∈ [T , ∞). Hence the function ϕ = ωa satisfies the generalized Riccati inequality, 34

ϕ∆
+ P(t)a(t) + S[ϕ, ar](t) ≤ 0 35

with (ar)
1
α (t) + µ(t)ϕ

1
α (t) > 0, for t ∈ [T , ∞). Therefore the equation 36

(a(t)r(t)(x∆(t))α)∆
+ a(t)P(t)xα(σ (t)) = 0, 37

is nonoscillatory by Lemma 3.1 and so Eq. (3.2) is nonoscillatory by Lemma 3.2 since a(t)r(t) ≤ r(t) ≤ R(t). � 38
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The corresponding ‘‘oscillation’’ result is1

Theorem 3.4. Assume a ∈ C1
cd, R(t) ≤ r(t), p(t) ≤ P(t) and2

(i) aP satisfies condition (B), the triple (α, aP, r) satisfies condition (Â),3

(ii)
∫

∞

t0
(R(t))−

1
α ∆t = ∞,4

(iii) a(t) ≥ 1, a∆(t) ≥ 0.5

Then (3.1) is oscillatory on [t0, ∞) implies (3.2) is oscillatory on [t0, ∞).6

Proof. The proof of Theorem 3.4 follows from Theorem 3.3. If we let b =
1
a , then b(t) ≤ 1 and b∆(t) ≤ 0. Therefore if (3.2)7

is nonoscillatory, then from Theorem 3.3, it follows that8

(R(t)(x∆(t))α)∆
+ b(t)a(t)P(t)xα(σ (t)) = 0,9

is also nonoscillatory. That is,10

(R(t)(x∆(t))α)∆
+ P(t)xα(σ (t)) = 0,11

is nonoscillatory. But then since P(t) ≥ p(t) and R(t) ≤ r(t), Lemma 3.2 (the Sturm–Picone comparison theorem) implies12

that Eq. (3.1) is also nonoscillatory. That is a contradiction and completes the proof. �13

4. Examples14

In this section, wewill give several examples to illustrate Theorems 3.3 and 3.4. Since Example 4.1 is somewhat involved,15

we give the basic idea of its construction. We would also like to point out that in [12] the linear case (α = 1) for the case16

T = R as well as several other illustrative time scales was extensively investigated and a wide class of functions of the form17

p(t) =
a
t2

+
b sin t

t was determined which are such that the triple (1, p, 1) satisfies condition (Â). This was shown to lead to18

a number of very useful comparison and oscillation results for the linear case. The following examples deal in an analogous19

way with the case α 6= 1.20

Example 4.1. Let α = 3, and let T be the real interval. Let us consider a function p(t) of the form p(t) =
a
t4

+
b sin t
t3

,21

a > 0, b > 0. It is easy to observe that if a > 3b then p(t) satisfies condition (A). So we seek to find conditions on a and b22

such that p(t) satisfies the conditions of Theorem 3.3 but does not satisfy condition (A). For simplicity, We consider the case23

r ≡ 1 so that (1.1) becomes24

((x′)3)′(t) + p(t)x3(t) = 0. (4.1)25

Let h(t) = tγ , γ < 3
4 . Denote26

I(T ) = lim inf
t→∞

∫ t

T
[p(t)h4(t) − (h′(t))4]dt27

= T 4γ−3
{
a − γ 4

3 − 4γ
+ bT 3−4γ

∫
∞

T

sin t
t3−4γ

dt
}

. (4.2)28

The basic idea of constructing Example 4.1 is based on the following steps (i)–(iv).29

(i) By Theorem 5.2, when I(T ) = +∞, (4.1) is oscillatory. Therefore, in order that (4.1) be nonoscillatory, we choose30

γ < 3
4 .31

(ii) Since32 ∫
∞

T
p(t)dt = T−3

[
a
3

+ bT 3
∫

∞

T

sin t
t3

dt
]

,33

it follows that p(t) does not satisfy condition (A), if a
3 < b.34

(iii) Also we have35

lim sup
t→∞

t3
∫

∞

t
p(s)ds =

a
3

+ b,36

lim inf
t→∞

t3
∫

∞

t
p(s)ds =

a
3

− b.37
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By Hille’s Theorem [11], if 1

−
2α + 1
α + 1

(
α

α + 1

)α

< lim inf
t→∞

t3
∫

∞

t
p(s)ds 2

≤ lim sup
t→∞

t3
∫

∞

t
p(s)ds <

1
α + 1

(
α

α + 1

)α

, 3

then Eq. (4.1) is nonoscillatory. Therefore, if we choose 4

−
7
4

×
33

43
<

a
3

− b <
a
3

+ b <
33

44
, 5

then Eq. (4.1) is nonoscillatory. Note that a > 0, b > 0, a + b < 33

44
implies a

3 − b > −
7
4 ×

33

43
. Therefore, Hille’s condition 6

holds if we choose a > 0, b > 0 and a + b < 33

44
. That is, Eq. (4.1) is nonoscillatory. 7

(iv) From (4.2), we see that the triple (α, p, r) satisfies the condition ˆ(A), if we take a−γ 4

3−4γ > b. 8

Therefore, from (i)–(iv), if we choose 0 < a
3 < b with a

3 + b < 33

44
, and γ < 3

4 with a−γ 4

3−4γ > b, then it follows that the 9

triple (α, p, r) satisfies condition (Â). In particular, if we take a =
1
4 , b =

1
64 , γ =

1
16 , it follows that p(t) =

1
4t4

+
sin t
64t3

is 10

such that Eq. (4.1) is nonoscillatory. 11

Now if we set a(t) := ct−d(log t)β , c > 0, d > 0, β ∈ R, then we have 0 < a(t) ≤ 1, a′(t) ≤ 0, for large t . So by 12

Theorem 3.3, the equation 13

((x′)3)′(t) +

(
c(log t)β

4t4+d
+

c(log t)β sin t
64t3+d

)
x3(t) = 0 14

is nonoscillatory on (2, ∞) for all c > 0, d > 0, β ∈ R. 15

Example 4.2. Let α = 3, T = [1, ∞). Let 16

P(t) =
a

t1+b+c
+

sin t
tb+c

, a(t) = tc, 17

where a > 0, 0 < b < 3, c =
3−b
2 . 18

We have 19∫
∞

T
a(s)P(s)ds = T−b

(
a
b

+ T b
∫

∞

T

sin t
tb

dt
)

. 20

With h(t) = t
b
4 , r(t) = 1. Then we have 21∫ t

T
{a(s)P(s)h4(s) − r(s)[h′(s)]4}ds 22

= a ln s |tT +

∫ t

T
sin sds +

(
b
4

)4

×
1

b − 3
sb−3

|
t
T → ∞, (t → ∞). 23

So when 0 < a
b < 1, 0 < b < 3, a(t)P(t) does not satisfy condition (A), but the triple (3, aP, 1) does satisfy condition 24

(Â). 25

Take h1(t) = t
b+c
4 , r(t) = 1. Then we have 26∫ t

T
{P(s)[h1(s)]4 − r(s)[h′

1(s)]
4
}ds → ∞, (t → ∞), 27

where a > 0, 0 < b < 3, c =
3−b
2 . By Theorem 5.2, ((x′)3)′(t) + P(t)x3(t) = 0 is oscillatory. Since a(t) = tc ≥ 1, for t ≥ 1 28

and a′(t) ≥ 0, it follows by Theorem 3.4 that ((x′)3)′(t) + a(t)P(t)x3(t) = 0 is oscillatory. 29

Example 4.3. Let T = Z, α = 3, p(t) =
γ

t(σ (t))3
+

λ(−1)t

(σ (t))3
, r(t) = 1, γ > 0, λ > 0. We have 30∫

∞

t
p(s)∆s =

∞∑
k=n

[
γ

k(k + 1)3
+ λ

(−1)k

(k + 1)3

]
. 31

Note that 32

∞∑
k=n

[
γ

k(k + 1)3

]
∼

γ

3n3
, for large n. 33
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Also, we have1

(2m)3
∞∑

k=2m

(−1)k

(k + 1)3
= (2m)3

{
1

(2m + 1)3
−

[(
1 +

1
2m+2

)3
− 1

(2m + 3)3
+

(
1 +

1
2m+4

)3
− 1

(2m + 5)3
+ · · ·

]}
2

= (2m)3

{
1

(2m + 1)3
−

[
3

2m+2 + o
( 1
2m+2

)
(2m + 3)3

+

3
2m+4 + o

( 1
2m+4

)
(2m + 5)3

+ · · ·

]}
3

→ 1 −
1
2

∫
∞

0

1
(1 + x)2

dx =
1
2
, (n → ∞).4

Similarly, we have5

(2m + 1)3
∞∑

k=2m+1

(−1)k

(k + 1)3
→ −1 +

1
2

∫
∞

0

1
(1 + x)2

dx = −
1
2
.6

So, in this case, if γ

3 < λ
2 , p(t) does not satisfy condition (A).7

Furthermore,8

lim sup
t→∞

t3
∫

∞

t
p(s)∆s =

γ

3
+

λ

2
,9

lim inf
t→∞

t3
∫

∞

t
p(s)∆s =

γ

3
−

λ

2
.10

By Hille’s Theorem [11], if we choose γ

3 +
λ
2 < 33

44
, then equation11

((x∆)3)∆(t) + p(t)x3(σ (t)) = 012

is nonoscillatory.13

Let h(t) = tβ , β < 3
4 . Denote14

I(n) = lim inf
t→∞

∫ t

n

(
p(s)h4(σ (s)) − (h∆(s))4

)
∆s15

=

∞∑
k=n

[
γ

k(k + 1)3−4β
+

λ(−1)k

k3−4β
− [(k + 1)β − kβ

]
4
]

.16

Note that17

∞∑
k=n

[
1

k(k + 1)3−4β

]
∼

1
(3 − 4β)n3−4β

.18

Since (k + 1)β − kβ
∼

β

k1−β , for large k, we have19

[(k + 1)β − kβ
]
4

=
β4

k4−4β
+

β4

k4−4β
o(1).20

So21

lim
n→∞

n3−4β
∞∑
k=n

[(k + 1)β − kβ
]
4

= lim
n→∞

n3−4β
∞∑
k=n

[
β4

k(4−4β)

]
22

=
β4

3 − 4β
.23

Therefore24

∞∑
k=n

[(k + 1)β − kβ
]
4

∼
β4

(3 − 4β)n3−4β
.25

So the triple (3, p, 1) will satisfy condition (Â) if we take γ−β4

3−4β > λ
2 .26

Therefore, choosing 0 < β < 3
4 , 0 <

γ

3 < λ
2 with γ

3 +
λ
2 < 33

44
, γ−β4

3−4β > λ
2 , then p(t) =

γ

t(t+1)3
+

λ(−1)t

(t+1)3
satisfies all the27

requirements. In particular, if we take γ =
1
3 , λ =

3
4 , β =

7
10 . it follows that p(t) =

1
3t(t+1)3

+
3(−1)t

4(t+1)3
is such that Eq. (3.1)28

is nonoscillatory.29
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5. Oscillation theorem 1

In this section, by means of Lemma 2.1, we obtain an oscillation theorem which extends some earlier results. The 2

following theorem may be found in [9], Theorem 5.81. (See also [10,4].) 3

Theorem 5.1. The equation (r(t)x′(t))′ + p(t)x = 0 is oscillatory on the interval [t0, ∞), if
∫

∞

t0
r−1(t)dt = ∞ and there exists 4

a continuously differentiable function u(t) > 0 such that 5∫
∞

t0
[p(t)u2(t) − r(t)(u′(t))2]dt = +∞. 6

Analogous to the above theorem,wemay obtain a corresponding version for half-linear dynamic equations on time scales 7

which we state as follows: 8

Theorem 5.2. Assume that p(t) satisfies condition (B) and assume
∫

∞

t0
(r(t))−

1
α ∆t = ∞. If there exists a continuously 9

differentiable function h : T → R, such that either h∆(t) is of one sign for all t ∈ T or h∆(t) ≡ 0, and is such that 10∫
∞

t0
[p(t)hα+1(σ (t)) − r(t)(h∆(t))α+1

]∆t = +∞, (5.1) 11

then all solutions of (1.1) are oscillatory. 12

Proof. Let us suppose that (1.1) is nonoscillatory and x is a solution of (1.1). To be specific, suppose that x(t) > 0 for all 13

large t , since the other case is similar. 14

By (5.1), we
∧
obtain that the triple (α, p, r) satisfies condition (Â). In view of Lemma 2.1, we may then suppose also that 15

x∆(t) > 0 for t ≥ T . Make the substitution ω(t) = r(t)
[
x∆(t)
x(t)

]α

, for t ≥ T . By the proof of Lemma 2.1, we have 16

ω∆(t) = −p(t)hα+1(σ (t)) + r(t)[h∆(t)]α+1
− F(t) 17

where F(t) ≥ 0. So 18

ω∆(t) ≤ −p(t)hα+1(σ (t)) + r(t)[h∆(t)]α+1. 19

Integrating from T to t gives 20∫ t

T
{p(t)hα+1

− r(t)[h∆(t)]α+1
}∆t ≤ (ωhα+1)(T ) − (ωhα+1)(t) ≤ (ωhα+1)(T ). 21

But now the
∧
left-hand side is unbounded and the

∧
right-hand side is bounded. this contradiction proves the theorem. � 22

For T = R, we proved in Section 1 that p(t) = 1 + t sin t satisfies condition (B) and the triple (3, p(t), 1) satisfies 23

condition (Â). So by Theorem 5.2 all solutions of 24

[(x′)3]′(t) + (1 + t sin t)x3(t) = 0, 25

are oscillatory. 26

Let q > 1. Consider the time scale T = qN0 := {qk : k ∈ N0}. Let 27

p(t) =
λ

tσ(t)b
+

β(−1)n

tσ(t)b
28

where λ > 0, 0 < b < 3. Let α = 3. Consider the q-difference equation 29

((x∆(t))3)∆
+ p(t)x3(σ (t)) = 0. (5.2) 30

In Section 1, we have proved that p(t) satisfies condition (B) and for h(t) = t
b
4 , r(t) = 1, t = qn 31∫ t

1
{p(s)h4(σ (s)) − r(s)[h∆(s)]4}∆s → ∞. 32

So by Theorem 5.1, all solutions of (5.2) are oscillatory. 33

Example 5.1. Let T = R, α = 3, r(t) = 1 and p(t) =
a

t1+b +
c sin t
tb

, where 0 < b < 3, a > 0, c ∈ R. It is easy to see that p(t) 34

satisfies condition (B). Take h(t) = t
b
4 . We have 35∫

∞

T
{p(s)[h(s)]4 − r(s)[h′(s)]4}ds = ∞. 36
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So by Theorem 5.2, all solutions of the
∧
second-order half-linear differential equations1

((x′)3)′(t) +

(
a

t1+b
+

c sin t
tb

)
x3(t) = 0,2

are oscillatory for all 0 < b < 3, a > 0, c ∈ R.3

Note that4 ∫
∞

t
p(s)ds = t−b

[
a
b

+ ctb
∫

∞

t

sin s
sb

ds
]

.5

So for 0 < b < 3, a > 0,6

lim inf
t→∞

t3
∫

∞

t
p(s)ds =


+∞ if

a
b

> |c|

−∞ if
a
b

< |c|.
7

By Hille’s Theorem [4], if8

lim inf
t→∞

t3
∫

∞

t
p(s)ds >

1
4

×

(
3
4

)3

, that is :
a
b

> |c|,9

then Eq. (4.1) is oscillatory.10

Therefore the oscillation conditions of Eq. (5.3) that we get improve the oscillation conditions of Hille’s theorem.11

Example 5.2. Consider the generalized Euler–Cauchy dynamic equation12

((x∆)α)∆
+

β

(σ(t))α+1
xα(σ (t)) = 0, (5.3)13

for t ∈ T. Take h(t) = t
α

α+1 . Then14 ∫
∞

T
{hα+1(σ (t))p(t) − [h∆(t)]α+1r(t)}∆t (5.4)15

=

∫
∞

T

{
β

σ(t)
−

[(
t

α
α+1

)∆
]α+1

}
∆t. (5.5)16

If T = R, then the dynamic equation (5.3) is the half-linear Euler–Cauchy differential equation ((x∆)α)∆
+

β

tα+1 xα(t) = 017

and in this case (t
α

α+1 )∆
=

α
α+1 t

−
1

α+1 . Therefore (5.5) can be rewritten as18 ∫
∞

T

{
β

σ(t)
−

[(
t

α
α+1

)∆
]α+1

}
∆t =

∫
∞

T

1
t

[
β −

(
α

α + 1

)α+1
]

∆t = ∞19

provided that β > ( α
α+1 )

α+1. Hence every solution of (5.3) oscillates if β > ( α
α+1 )

α+1, which agrees with the
∧
well-known20

oscillatory behavior of (5.3).21

If T = Z, then (5.3) is the half-linear Euler–Cauchy difference equation22

((x∆)α)∆
+

β

(t + 1)α+1
x(t + 1) = 0,23

and we have
(
t

α
α+1

)∆

= (t + 1)
α

α+1 − t
α

α+1 . Therefore (5.5) can be rewritten as24 ∫
∞

T

{
β

σ(t)
−

[
(t

α
α+1 )∆

]α+1
}

∆t =

∫
∞

T

{
1

t + 1

[
β − (t + 1)[(t + 1)

α
α+1 − t

α
α+1 ]

α+1
]}

∆t.25

Note that26

lim
t→∞

(t + 1)
[
(t + 1)

α
α+1 − t

α
α+1

]α+1
=

(
α

α + 1

)α+1

.27

So28 ∫
∞

T

{
1

t + 1

[
β − (t + 1)[(t + 1)

α
α+1 − t

α
α+1 ]

α+1
]}

∆t = ∞29
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provided that β > ( α
α+1 )

α+1. Hence every solution of (5.3) oscillates if β > ( α
α+1 )

α+1, which agrees with the
∧
well-known 1

oscillatory behavior of (5.3). 2

If T = qN
0 = {1, q, q2, . . .}, q > 1. Then the dynamic equation (5.3) is the q-difference equation 3

((x∆)α)∆
+

β

(qt)α+1
x(qt) = 0, 4

and in this case, (5.5) can be rewritten as 5∫
∞

T

{
β

σ(t)
−

[(
t

α
α+1

)∆
]α+1

}
∆t =

∫
∞

T

1
qt

β − q

[
q

α
α+1 − 1
q − 1

]α+1
∆t = ∞ 6

provided that β > q
[

q
α

α+1 −1
q−1

]α+1

. Hence every solution of (5.3) oscillates if β > q
[

q
α

α+1 −1
q−1

]α+1

. 7

Note that q
[

q
α

α+1 −1
q−1

]α+1

is different from ( α
α+1 )

α+1 which is the well-known critical constant from the continuous and 8

the discrete cases. 9

The interested reader may give additional examples. We remark that the results in the example above may not be 10

obtained by any existing criteria, as far as the authors are aware. 11
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