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Abstract. Consider the Emden-Fowler sublinear dynamic equation

(0.1) x∆∆(t) + p(t)xα(σ(t)) = 0,

where p ∈ C(T, R), where T is a time scale, 0 < α < 1, α is the quotient
of odd positive integers. We obtain a Kamenev-type oscillation theorem
for (0.1). As applications, we get that the sublinear difference equation

(0.2) ∆2x(n) + b(−1)nncxα(n + 1) = 0,

where 0 < α < 1, b > 0, c > 1, is oscillatory.
Keywords and Phrases: oscillation; Emden-Fowler equation; sublin-
ear
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1. Introduction

Consider the second order sublinear dynamic equation

(1.1) x∆∆ + p(t)xα(σ(t)) = 0,

where p ∈ C(T, R), 0 < α < 1, and where α is the quotient of odd positive
integers. When T = R and α = 1, the dynamic equation (1.1) is the second

*Supported by the Guangdong Provincial Natural Science Foundation of China .

1



2 BAOGUO, ERBE, AND PETERSON

order sublinear differential equation

(1.2) x′′(t) + p(t)xα(t) = 0.

When α = 1, the differential equation (1.2) is the second order linear differ-
ential equation

(1.3) x′′ + p(t)x = 0.

Wintner [11] proved if

(1.4) lim
t→∞

1
t

∫ t

t0

[∫ s

t0

p(τ)dτ

]
ds = ∞,

all solutions of (1.3) are oscillatory. Hartman [10] has proved (1.4) cannot
be replaced by

(1.5) lim sup
t→∞

1
t

∫ t

t0

[∫ s

t0

p(τ)dτ

]
ds = ∞.

However, in the nonlinear cases this is not true. Kamenev [8] proved that
(1.5) ensures that all regular solutions of (1.2) (i.e., all solutions infinitely
continuable to the right) are oscillatory, for 0 < α < 1. Many additional
references to earlier work for both the superlinear (α > 1) and the sublinear
(0 < α < 1) cases may be found in Wong [6] and the references therein.

In this paper, we extend Kamenev’s oscillation theorem to dynamic
equations on time scales and as an application, we show that the sublin-
ear difference equation

(1.6) ∆2x(n) + b(−1)nncxα(n + 1) = 0

is oscillatory, for 0 < α < 1, b > 0, c > 1. This equation is a discrete analog
of the equation (1.2) with p(t) = tλ sin t.

For completeness, (see [4] and [5] for elementary results for the time
scale calculus), we recall some basic results for dynamic equations and the
calculus on time scales. Let T be a time scale (i.e., a closed nonempty subset
of R) with sup T = ∞. The forward jump operator is defined by

σ(t) = inf{s ∈ T : s > t},

and the backward jump operator is defined by

ρ(t) = sup{s ∈ T : s < t},

where sup ∅ = inf T, where ∅ denotes the empty set. If σ(t) > t, we say t is
right-scattered, while if ρ(t) < t we say t is left-scattered. If σ(t) = t we say
t is right-dense, while if ρ(t) = t and t 6= inf T we say t is left-dense. Given
a time scale interval [c, d]T := {t ∈ T : c ≤ t ≤ d} in T the notation [c, d]κT
denotes the interval [c, d]T in case ρ(d) = d and denotes the interval [c, d)T
in case ρ(d) < d. The graininess function µ for a time scale T is defined by
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µ(t) = σ(t)− t, and for any function f : T → R the notation fσ(t) denotes
f(σ(t)). We say that x : T → R is differentiable at t ∈ T provided

x∆(t) := lim
s→t

x(t)− x(s)
t− s

,

exists when σ(t) = t (here by s → t it is understood that s approaches t in
the time scale) and when x is continuous at t and σ(t) > t

x∆(t) :=
x(σ(t))− x(t)

µ(t)
.

Note that if T = R , then the delta derivative is just the standard derivative,
and when T = Z the delta derivative is just the forward difference operator.
Hence our results contain the discrete and continuous cases as special cases
and generalize these results to arbitrary time scales.

2. Main Theorem

Following Philos [7], we consider a non-negative kernel function h(t, s)
defined on D = {(t, s) ∈ T2 : t ≥ s ≥ t0}. We shall assume that h(t, s)
satisfies the following conditions:

(H1) h(t, t) ≡ 0 for t ≥ t0,

(H2) h∆s(t, s) ≤ 0 for t ≥ s ≥ t0,

where h∆s(t, s) denotes the partial delta derivative of h with respect to s.

(H3) h∆2
s(t, s) ≥ 0 for t ≥ s ≥ t0,

where h∆2
s(t, s) denotes the second order partial delta derivative of h with

respect to s.

(H4) − h−1(t, t0)h∆s(t, s)|s=t0 ≤ M0 for large t.

We will also need the following second mean value theorem (see [5, page
143]).

Lemma 2.1. Let f be a bounded function that is integrable on [a, b]T.
Let mF and MF be the infimum and supremum, respectively, of the function
F (t) =

∫ t
a f(s)∆s on [a, b]T. Suppose that g is nonincreasing with g(t) ≥ 0

on [a, b]T. Then there is some number Λ with mF ≤ Λ ≤ MF such that∫ b

a
f(t)g(t)∆t = g(a)Λ.

Let T̂ := {t ∈ T : µ(t) > 0} and let χ denote the characteristic function
of T̂. The following condition, which will be needed later, imposes a lower
bound on the graininess function µ(t), for t ∈ T̂. More precisely, we intro-
duce the following (see [2] and [3]).
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Condition (C) We say that T satisfies condition C if there is an M > 0
such that

χ(t) ≤ Mµ(t), t ∈ T.

We note that if T satisfies condition (C), then the set

Ť = {t ∈ T| t > 0 is isolated or right-scattered or left-scattered}

is necessarily countable.

Theorem 2.2. Assume that T satisfies condition (C) and suppose there
exists a non-negative kernel function h(t, s) on D satisfying (H1)−−(H4),
such that

(2.1) lim sup
t→∞

1
h(t, t0)

∫ t

t0

h(t, σ(s))p(s)∆s = ∞.

Then all regular solutions (i.e., all solutions infinitely continuable to the
right) of (1.1) are oscillatory.

Remark 2.3. In the case T = R, an additional requirement was imposed
on h(t, s), namely, ∂h

∂s (t, s)|s=t ≡ 0. Therefore when T = R, the above
theorem improves [6, Theorem 1].

Remark 2.4. Let h(t, s) = (t− s)γ , γ > 0. It is easy to see that h(t, s)
satisfies (H1) − −(H4). So we get the following Kamenev-type criterion on
time scales (Note that in [6] it is assumed that γ > 1.)

We define for t > t0

G(t, t0) :=
1

(t− t0)γ

∫ t

t0

[t− σ(s)]γp(s)∆s.

Corollary 2.5. Assume that T satisfies condition (C). If there exists
real number γ > 0 such that

(2.2) lim sup
t→∞

G(t, t0) = ∞,

then all regular solutions of (1.1) are oscillatory.

Remark 2.6. Using integration by parts, we have

1
t

∫ t

t0

[∫ s

t0

p(τ)∆τ

]
∆s

=
1
t

[
t

∫ t

t0

p(s)∆s−
∫ t

t0

(σ(s))p(s)∆s

]
=

1
t

∫ t

t0

[t− σ(s)]p(s)∆s.

So when T = R, γ = 1, Corollary 2.5 is Kamenev’s theorem [8].
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Proof. Assume that (1.1) is nonoscillatory. Then without loss of gen-
erality there is a solution x(t) of (1.1) and a T ∈ T with x(t) > 0, for
all t ∈ [T,∞)T. Make the Riccati substitution w(t) = x∆(t)

xα(t) , t ≥ t0. Dif-
ferentiating w and using the Pötzsche chain rule [4, Theorem 1.90] we get
that

w∆(t) = −p(t)− w2(t)
xα(t)

xα(σ(t))

[∫ 1

0
α(xh(t))α−1dh

]
,

where xh(t) = x(t) + hµ(t)x∆(t) = (1 − h)x(t) + hx(σ(t)) > 0. So we get
that

(2.3) w∆(t) ≤ −p(t).

Multiplying (2.3) by h(t, σ(s)) and integrating from t0 to t, we obtain

(2.4)
∫ t

t0

h(t, σ(s))w∆(s)∆s ≤ −
∫ t

t0

h(t, σ(s))p(s)∆s.

Now integrating by parts and using the second mean value theorem (Lemma
2.1) and (H1)−−(H3), we get that∫ t

t0

h(t, σ(s))w∆(s)∆s = −h(t, t0)w(t0)−
∫ t

t0

h∆s(t, s)w(s)∆s

= −h(t, t0)w(t0)− h∆s(t, s)|s=t0Λ,(2.5)

where mx ≤ Λ ≤ Mx, and where mx and Mx denote the infimum and
supremum, respectively, of the function

∫ t
t0

x∆(s)
xα(s) ∆s.

In the following, we will obtain an estimate for mx, i.e., a lower bound
for the function

∫ t
t0

x∆(s)
xα(s) ∆s.

Assume first that t = t1 < t2 = σ(t). Then∫ σ(t)

t

x∆(s)
xα(s)

∆s =
x∆(t)µ(t)

xα(t)
=

x(σ(t))− x(t)
xα(t)

.(2.6)

We consider the two possible cases x(t) ≤ x(σ(t)) and x(t) > x(σ(t)). First
if x(t) ≤ x(σ(t)) we have that

x(σ(t))− x(t)
xα(t)

≥
∫ x(σ(t))

x(t)

1
sα

ds =
1

1− α
[x1−α(σ(t))− x1−α(t)].(2.7)

On the other hand if x(t) > x(σ(t)), then

x(t)− x(σ(t))
xα(t)

≤
∫ x(t)

x(σ(t))

1
sα

ds =
1

1− α
[x1−α(t)− x1−α(σ(t))],

which implies that

x(σ(t))− x(t)
xα(t)

≥ 1
1− α

[x1−α(σ(t))− x1−α(t)].(2.8)
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Hence, whenever t1 = t < σ(t) = t2, we have that from (2.6) and (2.7) in
the one case and (2.4) and (2.6) in the other case that∫ t2

t1

x∆(s)
xα(s)

∆s ≥ 1
1− α

[x1−α(σ(t))− x1−α(t)].(2.9)

If the real interval [t1, t2] ⊂ T, then

(2.10)
∫ t2

t1

x∆(s)
xα(s)

∆s =
1

1− α
[x1−α(t2)− x1−α(t1)]

and so (2.9) holds.
Note that since T satisfies condition (C), we have from (2.9), (2.10) and

the additivity of the integral that

(2.11)
∫ t

t0

x∆(s)
xα(s)

∆s ≥ 1
1− α

[x1−α(t)− x1−α(t0)] ≥ −x1−α(t0)
1− α

.

So

(2.12) Λ ≥ mx ≥ −x1−α(t0)
1− α

.

From (2.4), (2.5) and (2.12), we have that

(2.13) −h(t, t0)w(t0) + h∆s(t, s)|s=t0 ·
x1−α(t0)
1− α

≤ −
∫ t

t0

h(t, σ(s))p(s)∆s.

Dividing by h(t, t0) and using (H4), we arrive at

(2.14) w(t0) + M0 ·
x1−α(t0)
1− α

≥ 1
h(t, t0)

∫ t

t0

h(t, σ(s))p(s)∆s.

We can now use (2.1) to deduce from (2.14) a desired contradiction upon
taking lim sup as t →∞. Thus equation (1.1) is oscillatory. �

3. Example

Example 3.1. Consider the difference equation

(3.1) ∆2x(n) + p(n)xα(n + 1) = 0

where p(n) = b(−1)nnc, b > 0, c > 1. We need the following two lemmas.
The first lemma may be regarded as a discrete version of L’Hopital’s rule
and can be found in [4, page 48].

Lemma 3.2. (Stolz–Cesáro Theorem) Let {an}n≥1 and {bn}n≥1 be two
sequences of real number. If bn is positive, strictly increasing and unbounded
and the following limit exists:

lim
n→∞

an+1 − an

bn+1 − bn
= l.

Then
lim

n→∞

an

bn
= l.

We will use Lemma 3.2 to prove the following result.
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Lemma 3.3. For each real number d > 0, we have

(3.2) lim
m→∞

∑m
i=1 id

md+1
=

1
d + 1

,

(3.3) lim
m→∞

∑m
i=1 id − md+1

d+1

md
=

1
2
.

For each real number c > 1, we have

(3.4) lim
m→∞

∑m
i=1 ic − mc+1

c+1 − mc

2

mc−1
=

c

12
.

Proof. Here we only prove (3.4) as the proofs of (3.2) and (3.3) are
similar.

By Taylor’s formula, we have

(3.5) (1 +
1
m

)a = 1 +
a

m
+

a(a− 1)
2m2

+
a(a− 1)(a− 2)

6m3
+ o

(
1

m3

)
,

for any real number a. For c > 1, by (3.5) and the Stolz–Cesáro Theorem
(Lemma 3.2), it is easy to see that

lim
m→∞

∑m
i=1 ic − mc+1

c+1 − mc

2

mc−1

= lim
m→∞

(m + 1)c − (m+1)c+1

c+1 − (m+1)c

2 + mc+1

c+1 + mc

2

(m + 1)c−1 −mc−1

= lim
m→∞

m
2 (1 + 1

m)c − m2

c+1(1 + 1
m)c+1 + m2

c+1 + m
2

(1 + 1
m)c−1 − 1

.(3.6)

By (3.5), we have

(3.7)
(

1 +
1
m

)c−1

= 1 +
c− 1
m

+ o

(
1
m

)
,

(3.8)
(

1 +
1
m

)c

= 1 +
c

m
+

c(c− 1)
2m2

+ o

(
1

m2

)
,

(3.9)
(

1 +
1
m

)c+1

= 1 +
c + 1
m

+
c(c + 1)

2m2
+

c(c + 1)(c− 1)
6m3

+ o

(
1

m3

)
.

Using (3.7)-(3.9) in (3.6), it follows that (3.4) holds. �

So given 0 < ε < 1, for large m, we have the inequality

(3.10)
mc+1

c + 1
+

mc

2
+

c(1− ε)
12

mc−1 <

m∑
i=1

ic <
mc+1

c + 1
+

mc

2
+

c(1 + ε)
12

mc−1.
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Therefore for t = m, by integrating by parts we have

I(t) =:
1
t

∫ t

1

[∫ s

1
p(τ)∆τ

]
∆s

=
1
t

[
t

∫ t

1
p(s)∆s−

∫ t

1
(σ(s))p(s)∆s

]
=

∫ t

1
p(s)∆s− 1

t

∫ t

1
(s + 1)p(s)∆s

= b

[
m−1∑
n=1

(−1)nnc − 1
m

m−1∑
n=1

(−1)nnc(n + 1)

]

= b

[
m−2∑
n=1

(−1)nnc − 1
m

m−2∑
n=1

(−1)nnc(n + 1)

]
,

since the terms corresponding to n = m − 1 cancel. Letting m = 2k, by
(3.10) we have by rearranging

I(2k)
b

= −
2k−2∑
i=1

ic + 2c+1
k−1∑
i=1

ic +
1
2k

2k−2∑
i=1

ic+1

− 2c+2

2k

k−1∑
i=1

ic+1 +
1
2k

2k−2∑
i=1

ic − 2c+1

2k

k−1∑
i=1

ic

≥ −(2k − 2)c+1

c + 1
− (2k − 2)c

2
− c(1 + ε)

12
· (2k − 2)c−1

+
(2k − 2)c+1

c + 1
+

(2k − 2)c+1

2(k − 1)
+

c(1− ε)
12(k − 1)2

· (2k − 2)c+1

+
(2k − 2)c+2

2k(c + 2)
+

(2k − 2)c+1

4k
+

(c + 1)(1− ε)
24k

· (2k − 2)c

− (2k − 2)c+2

2k(c + 2)
− (2k − 2)c+1

2k
− (c + 1)(1 + ε)

6k
· (2k − 2)c

+
(2k − 2)c+1

2k(c + 1)
+

(2k − 2)c

4k
+

c(1− ε)
24k

· (2k − 2)c−1

− (2k − 2)c+1

2k(c + 1)
− (2k − 2)c+1

2k(2k − 2)
− c(1 + ε)

6k
· (2k − 2)c−1.
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Observing that the first terms in the last six lines add to zero, and regrouping
the last twelve terms in three groups of four respectively we can write

I(2k)
b

≥ (2k − 2)c−1

[
−(k − 1)− c(1 + ε)

12
+ 2(k − 1) +

c(1− ε)
3

]
+ (2k − 2)c−1

[
(k − 1)2

k
+ (c + 1)(1− ε)

k − 1
12k

− 2(k − 1)2

k
− (c + 1)(1 + ε)

k − 1
3k

]
+ (2k − 2)c−1

[
k − 1
2k

+
c(1− ε)

24k
− k − 1

k
− c(1 + ε)

6k

]
.

Factoring out (2k − 2)c−1 and simplifying we get

(3.11)
I(2k)

b
≥ (2k − 2)c−1

[(
1
4
− 5(1 + 2c)ε

12

)
+ O

(
1
k

)]
.

Take 0 < ε < 3
5(2c+1) . From (3.11), for c > 1, we obtain that

lim sup
t→∞

I(t) = ∞.

By Corollary 2.5, equation (1.1) is oscillatory for b > 0, c > 1.

Remark 3.4. In fact, by (3.5) and (3.10), we can also prove that

lim
t→∞

I(2k + 1) = 0, for b > 0, c > 1.

Example 3.5. Consider the q-difference equation

(3.12) x∆∆(t) + p(t)xα(qt) = 0

where p(t) = b(−1)ntc, t = qn ∈ T = qN
0 , q > 1, b > 0, c > −1, 0 < α < 1.

For t = qm, we have

I(t) =:
1
t

∫ t

1

[∫ s

1
p(τ)∆τ

]
∆s

=
∫ t

1
p(s)∆s− 1

t

∫ t

1
σ(s)p(s)∆s

= b

[
m−1∑
n=1

(−1)nqcn(q − 1)qn − 1
qm

m−1∑
n=1

(−1)nq(c+1)n+1(q − 1)qn

]
.

Take m = 2k. We get that

I(q2k)
b(q − 1)qc+1

= −q(2k−1)(c+1) + 1
qc+1 + 1

+
q2(q(2k−1)(c+2) + 1)

q2k(qc+2 + 1)

=
q(2k−1)(c+1)(q − 1) + q−2k+1(qc+1 + 1)− qc+2 − 1

(1 + qc+1)(1 + qc+2)
.
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So
lim sup

t→∞
I(t) = ∞.

By Corollary 2.5, equation (3.12) is oscillatory for b > 0, c > −1.
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