1. Given the vectors $\vec{u} = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 3 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 2 \end{bmatrix}$, find

(a) (3 points) $\vec{u} \cdot \vec{v}$

(b) (3 points) $||\vec{u}||$

(c) (4 points) $\text{proj}_L \vec{u}$, where L is the line in the direction of \vec{v}.

(d) (5 points) A vector orthogonal to both \vec{u} and \vec{v}.
2. Suppose that \(B = \{ \vec{b}_1, \vec{b}_2 \} \) and \(C = \{ \vec{u}_1, \vec{u}_2 \} \) are two bases for a subspace \(W \) and that \(\vec{u}_1 = 3\vec{b}_1 + 5\vec{b}_2 \), and \(\vec{u}_2 = 2\vec{b}_1 + 4\vec{b}_2 \).

(a) (4 points) Find \(P_{C \leftarrow B} \)

(b) (4 points) Find \(P_{B \leftarrow C} \)

(c) (3 points) If \([\vec{x}]_B = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \), determine \([\vec{x}]_C \)

(d) (3 points) If \([\vec{y}]_C = \begin{bmatrix} 1 \\ -3 \end{bmatrix} \), determine \([\vec{y}]_B \)

(e) (4 points) Suppose that in addition to the above information, it is known that \(P_B = \begin{bmatrix} 2 & -1 \\ -2 & 0 \end{bmatrix} \).

Use this fact to compute \(P_C \)
3. Given the matrix \(A = \begin{bmatrix} 3 & -2 \\ 4 & -1 \end{bmatrix} \), find

(a) (4 points) The eigenvalues of \(A \).

(b) (4 points) One eigenvector of \(A \).

(c) (4 points) An invertible matrix \(P \) and a matrix \(C \) of the form \(\begin{bmatrix} a & -b \\ b & a \end{bmatrix} \) such that \(A = PCP^{-1} \).

4. (8 points) Find a least squares solution to \(A\bar{x} = \bar{b} \) for \(A = \begin{bmatrix} 2 & 2 \\ 0 & 1 \\ 1 & 2 \\ 1 & 0 \end{bmatrix} \) and \(\bar{b} = \begin{bmatrix} 3 \\ -2 \\ 0 \\ 1 \end{bmatrix} \).
5. Below are four vectors we will use in this problem. Suppose (a) \(B = \{ \vec{u}_1, \vec{u}_2 \} \) is an orthogonal basis for the vector space \(W \), (b) \(\vec{y} \) is in \(W \), and (c) \(\vec{z} \) is some other vector.

\[
\vec{u}_1 = \begin{bmatrix} -1 & 1 & -1 \end{bmatrix}^T \quad \vec{u}_2 = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T \quad \vec{y} = \begin{bmatrix} -7 & 7 & 5 \end{bmatrix}^T \quad \vec{z} = \begin{bmatrix} 3 & 4 & 1 \end{bmatrix}^T
\]

(a) (5 points) Use the fact that \(B \) is an orthogonal basis for \(W \) to write \(\vec{y} \) as a linear combination of \(\vec{u}_1 \) and \(\vec{u}_2 \). (Note: Your method of solution must utilize the orthogonality of \(B \).)

(b) (5 points) Find the best approximation to \(\vec{z} \) in the subspace spanned by \(W \).

(c) (4 points) Is \(\vec{z} \) in \(W \)? Why or why not?

6. (5 points) Find the area of the parallelogram in \(\mathbb{R}^2 \) determined by the vectors \[\begin{bmatrix} 1 \\ 6 \end{bmatrix} \text{ and } \begin{bmatrix} 3 \\ -1 \end{bmatrix} \].

7. (5 points) Suppose that \(A \) is a \(4 \times 3 \) matrix and that \(\text{Nul} \ A = \{ \vec{0} \} \). Find rank \(A \) and explain your answer.
8. (10 points) Use the Gram-Schmidt orthogonalization process to find an orthogonal basis for W, given that $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ is a basis for W, where

$$\vec{u}_1 = \begin{bmatrix} 1 & 1 & 0 & 2 \end{bmatrix}^T, \quad \vec{u}_2 = \begin{bmatrix} 3 & 2 & 0 & 1 \end{bmatrix}^T, \quad \vec{u}_3 = \begin{bmatrix} 2 & 0 & 1 & 1 \end{bmatrix}^T$$

9. (5 points) Determine if the vectors

$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

span \mathbb{R}^5.
10. For the matrix \[A = \begin{bmatrix} 3 & 2 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix} \], find

(a) (4 points) The eigenvalues of \(A \).

(b) (4 points) An eigenvector for the smallest eigenvalue you found in part (a).

(c) (4 points) Suppose each eigenspace of \(A \) is one dimensional. Would \(A \) be diagonalizable? Explain.

11. (5 points) Suppose that \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^2 \) is a linear transformation, where \(T \left(\begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \right) = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \) and \(T \left(\begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \). Find a vector \(\vec{x} \) in \(\mathbb{R}^3 \) such that \(T(\vec{x}) = \begin{bmatrix} 4 \\ 1 \end{bmatrix} \).
12. For the matrix \(A = \begin{bmatrix}
1 & 2 & 0 & -1 & -1 \\
1 & 2 & 1 & 0 & 1 \\
2 & 4 & 1 & -1 & 0 \\
3 & 6 & 0 & -3 & -2
\end{bmatrix} \), find the following:

(a) \((6 \text{ points})\) A basis for \(\text{Nul} \ A \).

(b) \((4 \text{ points})\) A basis for \(\text{Col} \ A \).

(c) \((4 \text{ points})\) A basis for \(\text{Row} \ A \).

13. \((5 \text{ points})\) If \(B \) is a \(5 \times 8 \) matrix, what is the smallest possible dimension of \(\text{Nul} \ B \)? Explain.
14. (2 points each) True or false. Read each question carefully and circle the correct answer.

(a) T F Any linear combination of vectors can always be written in the form $A\vec{x}$ for a suitable matrix A and vector \vec{x}.

(b) T F If A is an invertible $n \times n$ matrix, then the equation $A\vec{x} = \vec{b}$ is consistent for each \vec{b} in \mathbb{R}^n.

(c) T F If the columns of an $m \times n$ matrix A are linearly independent, then these columns span \mathbb{R}^m.

(d) T F The dimension of the vector space \mathbb{P}_4 is 4.

(e) T F Every stochastic matrix has a steady-state vector.

(f) T F An eigenspace of an $n \times n$ matrix A is the null space of a certain matrix.

15. (5 points) Suppose that B is a non-invertible 6×6 matrix. What can you say about the rank of B?

16. (5 points) Suppose that A is an 7×10 matrix and $\dim \text{Row } A = 5$. Find $\dim \text{Nul } A$.

Five Point Bonus: Suppose $T: \mathbb{R}^2 \rightarrow \mathbb{R}^3$ is a linear transformation. Find the standard matrix of T, that is, the matrix A such that $T(\vec{x}) = A\vec{x}$ for all \vec{x} in \mathbb{R}^2, given the following information:

\[
T\left(\begin{bmatrix} 2 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix} \quad \text{and} \quad T\left(\begin{bmatrix} 5 \\ 4 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}
\]