1. (12 points) Find the functions $f(x)$ and $g(x)$ that fit the following data:

 a.
 \[
 \begin{array}{c|cccc}
 x & 1 & 2 & 3 & 4 \\
 \hline
 f(x) & 4.9 & 8.1 & 11.3 & 14.5 \\
 \end{array}
 \]

 b.
 \[
 \begin{array}{c|cccc}
 x & 2 & 4 & 6 & 8 \\
 \hline
 g(x) & 9.3 & 5.95 & 3.81 & 2.48 \\
 \end{array}
 \]

2. (12 points)
 a. Find the growth rate and the doubling time of a population given by
 \[P(t) = 2000(1.4)^t. \]

 b. Find the decay rate and the half-life of a radioactive substance whose amount at time t is given by
 \[Q(t) = 300(0.7)^t. \]
3. (13 points) How much money would you have after 20 years if you initially invest $400 in a bank that has an annual interest rate of 6 percent and interest is compounded five times a year? If, instead, interest is compounded continuously, how much money would you have?

4. (12 points)
 a. Below is the graph of a function $f(x)$. In the same xy-plane, graph the inverse function $f^{-1}(x)$.

 b. Given $g(x) = 4x + 9$, find the inverse function $g^{-1}(x)$.
5. (12 points) a. Given the function \(f(x) = x^3 + x - 3 \), find \(f^{-1}(20) \).

b. Find an equation of the line that passes through the points (1,4), (5,-3).

6. (18 points) Find a possible formula for each of the following functions \(f(x) \), \(g(x) \), and \(h(x) \):
7. (21 points) a. If a bank has an annual interest rate of 5 percent and interest is compounded monthly, what is the effective interest rate?

b. Let \(f(t) \) represent the distance Mary is from home at time \(t \). Assume at time \(t=0 \) she leaves home for school. Mary stops at a friend’s house which is on the way to school and is half way to school. Mary talks to her friend for a good amount of time. She then notices that she forgot her books so she returns home to get her books and immediately walks to school. Draw a possible graph of \(f(t) \) up to the time she arrives at school.

c. Find the values of \(\ln(1) \), \(\log(100) \), and \(\ln(\sqrt{e}) \).

d. Find the length of the arc of a circle of radius 5 if the central angle determined by the arc is 3 radians.