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Notes, books, and calculators are not authorized. Show all your work in the blank space you are given
on the exam sheet. Answers with no justification will not be graded.

Question 1: Let u be a solution to the PDE dyu(z,t) + 1 0,u*(z,t) — vdypu(z,t) = 0, z € (—o0, +00),
t>0. (a) Let ¢(x,t) = [ Owu(&, t)dE + su?(x, t) — vOyu(w,t). Compute dy1p(x, t).

The definition of ¢ implies that

Opp(z,t) = 5'35(/30 Opu(€, t)dx + %uz(x,t) — voyu(z,t))
= Owu(z,t)r + %amuQ(:mt) — Oggu(z,t) =0

i.e., 0z9(x,t) = 0. This means that ¢ depends on ¢ only.

(b) Let ¢(z,t) := e~ 2w [ ulEDdE Compute 9,8, 9,6, and 9y, 0.
The definition of ¢, together with the chain rule, implies that

() = O <1 / " e t)d5> o3 7 ulE 04

v |
= (;V - 3tu(§,t)d§> e 25 SO oo w(E1)dE
and
Opp(,t) = Oy (—21/ u(f,t)d§> e 2 oo ulEDde
— <_211/U(.’E,t)) 67% ffoo u(€,t)dg
and

1 . 1 2 .
Dot (,1) — <2V3mU($,t)> e S ulene | (%uu,w) e 7 ulene
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(c¢) Compute 01 — V0, P, assuming ¥(z,t) = 0.

The above computations give

1 1 «
V0 (2, t) = ~% <—1/8£u(1:,t) + 2u2(x,t)> e S uEnde

In conclusion

Do — V0sao = f% ( / Dyu(€, t)dé + %zﬁ(m,t) - uamucc,t)) e 20 [T e

1 1 x
= — (e J* o ulgbde

This means 0;¢ — v0,.¢ = 0.

Question 2: Consider the vibrating beam equation Oupu(z,t) + Opprru(z,t) = 0, € (—00, +00),
t > 0 with u(doo,t) = 0, dyu(too,t) = 0, Opru(doo,t) = 0. Use the energy method to compute
Oy f_*j([atu(x,t)ﬁ + [Ozzu(z,t)]?)dz. (Hint: test the equation with du(z,t)).

Using the hint we have

+oo
0= / (Orru(z, t)Opu(x, t) + Opgazu(x, t)Opu(x, t))dx

— 0o

Using the product rule, adia = 10;a* where a = Oyu(w,t), and integrating by parts two times (i.e.,
applying the fundamental theorem of calculus) we obtain

“+o0
0= / (%@(&u(x,t))z = Oyaati(z, )0l 1)) d

+oo 1
_ / (05 (Oru(,1))? + Dyl 1) DyDyu(, 1))

— 00

We apply again the product rule adya = $8,a* where a = 0,,u(z,t),

+o0
0= / (8t%(8tu(x,t))2 + %&(amu(x,t))Q)dx.

— 00

Switching the derivative with respect to ¢ and the integration with respect to x, this finally gives

+oo
0— %at /_ (D) + Dol ),
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Question 3: Let k, f : [-1,41] — R be such that k(z) = 2, f(z) =0if x € [
f(z) =2if z € (0,1]. Consider the boundary value problem —3, (k(x)0,T(x)) =
—2 and T(1) = 2.

(a) What should be the interface conditions at « = 0 for this problem to make sense?

The function T' and the flux k(z)0,T(z) must be continuous at = 0. Let T~ denote the solution
n [—1,0] and 7" the solution on [0,+1]. One should have T~ (0) = T (0) and k= (0)0, 7~ (0) =

kT (0)0,T(0), where k= (0) = 2 and k*(0) = 1.

(b) Solve the problem, i.e., find T'(z), x € [-1, +1].

On [—1,0] we have k= (z) = 2 and f~(x) = 0 which implies —0,, T (

T~ (z) = ax +b. The Dirichlet condition at x = —1 implies that T~ (-1

a=b+2and T (z) =(b+2)xz+0.

We proceed similarly on [0, +1] and we obtain —9,, T~ (z) = 2, which implies that T+ (x) = —2% +cx +d.
The Dirichlet condition at 2z = 1 implies 77 (1) =2 = —1 4 c¢+d. This gives c =3 —d and T~ (z) =
22+ (3 —d)z+d.

The interface conditions 7~ (0) = T+(O) and kK~ ( )0, T~(0) = kT (0)0,T+(0) give b=d and 2(b+2) =

x) = This in turn implies
) = —2 = —a+b. This gives

3 — d, respectively. In conclusion b = —%, d = —= and
Sp—1 if -1,0
T(x): 3x2 310 1 I xE[ ’ L
-2+ Fr—5 ifxe(01]

Question 4: Let CS(f) = %2 — 2(cos(z) — Cosz(fx) + COSB(QSI) — Coz(fz) ...) be the Fourier cosine series
of the function f(z) := 22 defined over [—, +].

(a) For which values of x in [—m, +] does this series coincide with f(z)? (Explain).

The Fourier cosine series coincides with the function f(x) over the entire interval [—m, 47| since f is
smooth over [—m, +7] and f(—7) = f(+7n).

(b) Compute the Fourier sine series, SS(z), of the function g(z) := « defined over [—m, +7].

We know from class that it is always possible to obtain a Fourier sine series by differentiating term by term
a Fourier cosine series, in other words

SS(x) = @CCS(%x )= 2 (bm( - sin(22x) N sin;3ac) 3 sinE:lx) sin:w:) ) .
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(c) For which values of z € [—7, +7] does the Fourier sine series of g coincide with g(z)?.

The Fourier sine series coincides with the function g(z) := x over the interval (—m, +) since g is smooth
over [—m, +xland g(0) = 0. The Fourier sine series of g is zero at &, and thus differs from g(+£m).

Question 5: Using cylindrical coordinates and the method of separation of variables, solve the equa-
tion, 10, (rd,u)+ 5 dpeu = 0, inside the domain D = {0 € [0, 2x], r € [0, 3]}, subject to the boundary
conditions u(r,0) = 0, u(r, 27) = 0, u(3,0) = 18sin(26). (Give all the details.)

(1) We set u(r,0) = ¢(0)g(r). This means ¢” = —A¢, with $(0) = 0 and ¢(27) = 0, and rf—r(rf—rg(r)) =
Ag(r).

(2) The usual energy argument applied to the two-point boundary value problem

¢” = _)‘¢7 ¢(O) = Oa (b(*ﬂ-) = 07

implies that A is non-negative. If A\ = 0, then ¢(f) = ¢1 + c20 and the boundary conditions imply
c1 =co =0, i.e., =0, which in turns gives © = 0 and this solution is incompatible with the boundary
condition u(3,0) = 18sin(26). Hence A > 0 and

B(0) = ¢1 cos(VAD) + co sin(V ).
(3) The boundary condition ¢(0) = 0 implies ¢; = 0. The boundary condition ¢(37) = 0 implies
VASm =nm with n € N\ {0}. This means VA= 2n, n=1,2,....

(4) From class we know that g(r) is of the form r® « > 0. The equality r<t(rr®) = \® gives
a? = \. The condition a > 0 implies %n = a = v/\. The boundary condition at r = 3 gives 18sin(20) =

¢35 sin(2nf) for all 6 € [0, 3x]. This implies n = 3 and ¢, = 2.

(5) Finally, the solution to the problem is

u(r,0) = 2r? sin(26).
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Question 6: Let p,q : [-1,+1] — R be smooth functions. Assume that p(z) > 0 and ¢(z) > ¢ for
all z € [-1,+1], where gy € R. Consider the eigenvalue problem —9, (p(x)d,¢(x))+q(x)p(x) = Ap(z),
supplemented with the boundary conditions ¢(—1) = 0 and ¢(1) = 0.

(a) Prove that it is necessary that A > ¢o for a non-zero (smooth) solution, ¢, to exist. (Hint:

g [ $*(@)dz < [1] g(2)¢?(2)da)

As usual we use the energy method. Let (¢, \) be an eigenpair, then

+1 +1
/ (=0x(p(2)02$(2))$(@) + g(2)¢* () )dz = A ) ¢*(w)dw.

—1 —

After integration by parts and using the boundary conditions, we obtain

+1 +1
/_ - (p)0.0()0,0(0) + ()6 @)de = A [ (o)

which, using the hint, can also be re-written
+1 +1
/ - (p@)0:9()0,0(2) + a0 @)z < A [ Py
Then
+1 +1
/ - p@)(0:0() < (A=) [ (@i

Assume that ¢ is non-zero, then

I p(@)(0,(x))2de §

)\ _
° T T s

which proves that it is necessary that A > ¢g for a non-zero (smooth) solution to exist.

(b) Assume that p(z) > po > 0 for all x € [—1,+41] where py € Ry. Show that A = ¢o cannot be an
eigenvalue, i.e., prove that ¢ = 0 if A = go. (Hint: pg fjll P2 (z)dx < fjll p(x)y?(x)dz.)

Assume that A = qq is an eigenvalue. Then the above computation shows that

+1 +1
P / (8,6(x))2dz < / p() (0 (x))?dr = 0,

—1 -1

which means that fjll (0:¢(x))?dz = 0 since pg > 0. As a result 9,¢ = 0, i.e., ¢(x) = c where c is a
constant. The boundary conditions ¢(—1) = 0 = ¢(1) imply that ¢ = 0. In conclusion ¢ = 0 if A = qo,
thereby proving that (¢, go) is not an eigenpair.
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Question 7: Use the Fourier transform technique to solve d;u(x, t)+sin(t)0,u(z, t)+ (2+3t*)u(z, t) =
0,z € R, t >0, with u(z,0) = uo(z). (Use the shift lemma: F(f(z — ))(w) = F(f)(w)e™” and the
definition F(f)(w) := 5= joooo f(z)e?dx)

27

Applying the Fourier transform to the equation gives
OpF (u)(w, t) + sin(t) (—iw) F (u) (w, t) + (2 4 3t*) F(u)(w,t) = 0

This can also be re-written as follows:

O F(u)(w,t) . . 5

W = w Sln(t) (2 + 3t )

Then applying the fundamental theorem of calculus between 0 and ¢, we obtain
log(F(u)(w,t)) — log(F(u)(w,0)) = —iw(cos(t) — 1) — (2t + t°).

This implies |
‘F(u) (wv t) = f(uo)(w)e*iUJ(COs(t)71)67(2,54,153).

Then the shift lemma gives
F(u)(w,t) = F(up(z + cos(t) — 1)(w)e—(2t+t3).

This finally gives
u(z,t) = ug(x + cos(t) — 1)67(2t+t3).




