
Math 602 1

1 Laplace equation

Question 1: (a) Find a function U(x, y) = a+ bx+ cy+ dxy, such that U(x, 0) = x, U(1, y) =
1 + y, U(x, 1) = 3x− 1, and U(0, y) = −y.

Solution:
U(x, y) = x− y + 2xy

solves the problem.

(b) Use (a) to solve the PDE uxx + uyy = 0, ∀(x, y) ∈ (0, 1)×(0, 1), with the boundary
conditions u(x, 0) = 3 sin(πx) + x, u(1, y) = 1 + y, u(x, 1) = 3x− 1,and u(0, y) = sin(2πy)− y.

Solution: By setting φ = u − U , we observe that φxx + φyy = 0 and at the boundary of the
domain we have

φ(x, 0) = 3 sin(πx), φ(1, y) = 0, φ(x, 1) = 0, and φ(0, y) = sin(2πy).

It is clear that

φ(x, y) = 3 sin(πx)
sinh(π(1− y))

sinh(π)
+

sinh(2π(1− x))

sinh(2π)
sin(2πy)

Then,
u(x, y) = φ(x, y) + U(x, y)

Question 2: Consider the Laplace equation ∆u = 0 in the rectangle x ∈ [0, L], y ∈ [0, H] with
the boundary conditions u(0, y) = 0, u(L, y) = 0, u(x, 0) = 0, u(x,H) = f(x).
(a) Is there any compatibility condition that f must satisfy for a smooth solution to exist?

Solution: f must be such that f(0) = 0 and f(L) = 0, otherwise u would not be continuous at
the two upper corners of the domain.

(b) Solve the Equation.

Solution: Use the separation of variable technique. Let u(x) = φ(x)ψ(y). Then, provided ψ and

φ are non zero functions, this implies φ′′

φ = −ψ
′′

ψ = λ. Observe that φ(0) = φ(L) = 0. The usual

energy technique implies that λ is negative. That is to say φ(x) = a cos(
√
λx) + b sin(

√
λx). The

boundary conditions imply a = 0 and
√
λL = nπ, i.e., φ(x) = b sin(nπx/L). The fact that λ is

negative implies ψ(y) = c cosh(
√
λy) + d sinh(

√
λy). The boundary condition at y = 0 implies

c = 0. Then

u(xy) =

∞∑
n=1

An sin(
nπx

L
) sinh(

nπy

L
)

Question 3: Solve the PDE (note that the width and the height of the rectangle are not equal)

∂xxu+ ∂yyu = 0, 0 < x < 1, 0 < y < 2,

u(x, 0) = 8 sin(9πx), u(x, 2) = 0, 0 < x < 1,

u(0, y) = sin(2πy), u(1, y) = 0, 0 < y < 2.

Solution: The method of separation of variables tells us that the solution is a sum of terms
like sin(nπx) sinh(nπ(y − 2)) and sin(mπy/2) sinh(mπ(x − 1)/2). By looking at the boundary
conditions we infer that there are two nonzero terms in the expansion: one corresponding to n = 9
and one corresponding to m = 4. This gives

u(x, y) = 8 sin(9πx)
sinh(9π(2− y))

sinh(18π))
+ sin(2πy)

sinh(2π(1− x))

sinh(2π))

Question 4: Consider the Laplace equation ∆u = 0 in the rectangle x ∈ [0, L], y ∈ [0, H] with
the boundary conditions u(0, y) = 0, u(L, y) = 0, u(x, 0) = 0, u(x,H) = f(x).
(a) Is there any compatibility condition that f must satisfy for a smooth solution to exist?
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Solution: f must be such that f(0) = 0 and f(L) = 0, otherwise u would not be continuous at
the two upper corners of the domain.

(b) Solve the Equation.

Solution: Use the separation of variable technique. Let u(x) = φ(x)ψ(y). Then, provided ψ and

φ are non zero functions, this implies φ′′

φ = −ψ
′′

ψ = λ. Observe that φ(0) = φ(L) = 0. The usual

technique implies that λ is negative. That is to say φ(x) = a cos(
√
λx)+b sin(

√
λx). The boundary

conditions imply a = 0 and
√
λL = nπ, i.e., φ(x) = b sin(nπx/L). The fact that λ is negative

implies ψ(y) = c cosh(
√
λy) + d sinh(

√
λy). The boundary condition at y = 0 implies c = 0. Then

the ansatz is

u(x, y) =

∞∑
n=1

An sin(
nπx

L
) sinh(

nπy

L
),

and the usual computation gives

An =
2

L sinh(nπHL )

∫ L

0

f(ξ) sin(
nπξ

L
)dξ.

Question 5: Consider the Laplace equation ∆u = 0 in the rectangle x ∈ [0, L], y ∈ [0, H] with
the boundary conditions u(0, y) = 0, ∂xu(L, y) = 0, u(x, 0) = 0, u(x,H) = sin( 3

2πx/L). Solve
the Equation using the method of separation of variables. (Give all the details.)

Solution: Let u(x) = φ(x)ψ(y). Then, provided ψ and φ are non zero functions, this implies
φ′′

φ = −ψ
′′

ψ = λ. Observe that φ(0) = 0 and φ′(L) = 0. The usual energy technique implies that

λ is negative. That is to say φ(x) = a cos(
√
λx) + b sin(

√
λx). The Dirichlet condition at x = 0

implies a = 0. The Neumann condition at L implies cos(
√
λL) = 0, which implies

√
λL = (n+ 1

2 )π,
where n is an integer. This means that φ(x) = b sin((n + 1

2 )πx/L). The fact that λ is negative

implies ψ(y) = c cosh(
√
λy) + d sinh(

√
λy). The boundary condition at y = 0 implies c = 0. Then

u(x, y) = A sin((n+ 1
2 )π

x

L
) sinh((n+ 1

2 )π
y

L
).

The boundary condition at y = H gives

sin(
3

2
π
x

L
) = A sin((n+ 1

2 )π
x

L
) sinh((n+ 1

2 )π
H

L
),

which implies n = 1 and A = sinh−1
(

3
2πH

L

)
, i.e.,

u(x, y) =
sinh

(
3
2πy

L

)
sinh

(
3
2πH

L

) sin(
3

2
πx/L)

Question 6: Consider the equation −∆u = 0 in the rectangle {(x, y); x ∈ [0, L], y ∈ [0, H]}
with the boundary conditions u(0, y) = 0, u(L, y) = −5 cos( 3

2π
y
H ), ∂yu(x, 0) = 0, u(x,H) = 0.

Solve the equation using the method of separation of variables. (Give all the details.)

Solution: Let u(x) = φ(x)ψ(y). Then, provided ψ and φ are non zero functions, this implies
φ”(x)
φ(x) = −ψ”(y)

ψ(y) = λ. Observe that ψ′(0) = 0 and ψ(H) = 0. The energy technique applied to

−ψ”(y) = λψ(y) gives∫ H

0

−ψ”(y)ψ(y)dy =

∫ H

0

ψ′(y)2dy − ψ′(H)ψ(H) + ψ′(0)ψ(0) = λ

∫ H

0

ψ(y)2y,

which implies
∫H

0
ψ′(y)2dy = λ

∫H
0
ψ(y)2dy since ψ′(0) = 0 and ψ(H) = 0. This in turn implies

that λ is nonnegative. Actually λ cannot be zero since it would mean that ψ = 0, which would
contradict the fact that the solution u is nonzero (λ = 0 ⇒ ψ′(y) = 0 ⇒ ψ(y) = ψ(H) = 0 for all
y ∈ [0, H]). As a result λ is positive and

ψ(y) = a cos(
√
λy) + b sin(

√
λy).



Math 602 3

The Neumann condition at y = 0 gives b = 0. The Dirichlet condition at H implies cos(
√
λH) = 0,

which implies
√
λH = (n+ 1

2 )π, where n is any integer. This means that ψ(y) = a cos((n+ 1
2 )π y

H ).

The fact that λ is positive implies φ(x) = c cosh(
√
λx) + d sinh(

√
λx). The boundary condition at

x = 0 implies c = 0. Then

u(x, y) = A cos((n+ 1
2 )π

y

H
) sinh((n+ 1

2 )π
x

H
).

The boundary condition at x = L gives

−5 cos(
3

2
π
y

H
) = A cos((n+ 1

2 )π
y

H
) sinh((n+ 1

2 )π
L

H
),

which, by identification, implies 1 = 2 and A = −5 sinh−1
(

3
2πL

H

)
, i.e.,

u(x, y) = −5
sinh

(
3
2πx

H

)
sinh

(
3
2πL

H

) cos(
3

2
π
y

H
).

1.1 Cylindrical coordinates

Question 7: Using cylindrical coordinates and the method of separation of variables, solve the
Laplace equation, 1

r∂r(r∂ru) + 1
r2 ∂θθu = 0, inside the domain D = {θ ∈ [0, π2 ], r ∈ [0, 1]},

subject to the boundary conditions ∂θu(r, 0) = 0, u(r, π2 ) = 0, u(1, θ) = cos(3θ).

Solution: We set u(r, θ) = φ(θ)g(r). This means φ′′ = −λφ, with φ′(0) = 0 and φ(π2 ) = 0, and
rdr(rdrg(r)) = λg(r). Then using integration by parts plus the boundary conditions we prove that
λ is non-negative. Then

φ(θ) = c1 cos(
√
λθ) + c2 sin(

√
λθ).

The boundary condition φ′(0) = 0 implies c2 = 0. The boundary condition φ(π2 ) = 0 implies√
λπ2 = (2n + 1)π2 with n ∈ N. This means

√
λ = (2n + 1). From class we know that g(r) is of

the form rα, α ≥ 0. The equality rdr(rdrr
α) = λrα gives α2 = λ. The condition α ≥ 0 implies

2n+ 1 = α. The boundary condition at r = 1 gives cos(3θ) = 12n+1 cos((2n+ 1)θ). This implies
n = 1. The solution to the problem is

u(r, θ) = r3 cos(3θ).

Question 8: Using cylindrical coordinates and the method of separation of variables, solve the
Laplace equation, 1

r∂r(r∂ru) + 1
r2 ∂θθu = 0, inside the domain D = {θ ∈ [0, π2 ], r ∈ [0, 1]},

subject to the boundary conditions u(r, 0) = 0, u(r, π2 ) = 0, u(1, θ) = sin(2θ). (Give all the
details.)

Solution: We set u(r, θ) = φ(θ)g(r). This means φ′′ = −λφ, with φ(0) = 0 and φ(π2 ) = 0,
and rdr(rdrg(r)) = λg(r). The usual energy argument applied to the two-point boundary value
problem

φ′′ = −λφ, φ(0) = 0, φ(
π

2
) = 0,

implies that λ is non-negative. If λ = 0, then φ(θ) = c1 + c2θ and the boundary conditions imply
c1 = c2 = 0, i.e., φ = 0, which in turns gives u = 0 and this solution is incompatible with the
boundary condition u(1, θ) = sin(2θ). Hence λ > 0 and

φ(θ) = c1 cos(
√
λθ) + c2 sin(

√
λθ).

The boundary condition φ(0) = 0 implies c1 = 0. The boundary condition φ(π2 ) = 0 implies√
λπ2 = nπ with n ∈ N. This means

√
λ = 2n. From class we know that g(r) is of the form rα,

α ≥ 0. The equality rdr(rdrr
α) = λrα gives α2 = λ. The condition α ≥ 0 implies 2n = α. The
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boundary condition at r = 1 gives sin(2θ) = 12n sin(2nθ) for all θ ∈ [0, π2 ]. This implies n = 1.
The solution to the problem is

u(r, θ) = r2 sin(2θ).

Question 9: Using cylindrical coordinates and the method of separation of variables, solve the
equation, 1

r∂r(r∂ru) + 1
r2 ∂θθu = 0, inside the domain D = {θ ∈ [0, π], r ∈ [0, 1]}, subject to

the boundary conditions u(r, 0) = 0, u(r, π) = 0, u(1, θ) = 2 sin(5θ). (Give all the details.)

Solution: (1) We set u(r, θ) = φ(θ)g(r). This means φ′′ = −λφ, with φ(0) = 0 and φ(π) = 0,
and r d

dr (r d
drg(r)) = λg(r).

(2) The usual energy argument applied to the two-point boundary value problem

φ′′ = −λφ, φ(0) = 0, φ(π) = 0,

implies that λ is non-negative. If λ = 0, then φ(θ) = c1 + c2θ and the boundary conditions imply
c1 = c2 = 0, i.e., φ = 0, which in turns gives u = 0 and this solution is incompatible with the
boundary condition u(1, θ) = 2 sin(5θ). Hence λ > 0 and

φ(θ) = c1 cos(
√
λθ) + c2 sin(

√
λθ).

(3) The boundary condition φ(0) = 0 implies c1 = 0. The boundary condition φ(π) = 0 implies√
λπ = nπ with n ∈ N \ {0}. This means

√
λ = n, n = 1, 2, . . ..

(4) From class we know that g(r) is of the form rα, α ≥ 0. The equality r d
dr (r d

dr r
α) = λrα

gives α2 = λ. The condition α ≥ 0 implies n = α. The boundary condition at r = 1 gives
2 sin(5θ) = c21n sin(nθ) for all θ ∈ [0, π]. This implies n = 5 and c2 = 2.

(5) Finally, the solution to the problem is

u(r, θ) = 2r5 sin(5θ).

1.2 Variable coefficients

Question 10: Let k : [−1,+1] −→ R be such that k(x) = 1, if x ∈ [−1, 0] and k(x) = 2 if
x ∈ (0, 1]. Solve the boundary value problem −∂x(k(x)∂xT (x)) = 0 with ∂xT (−1) = T (−1)
and ∂xT (1) = 1.
(i) What should be the interface conditions at x = 0 for this problem to make sense?

Solution: The function T and the flux k(x)∂xT (x) must be continuous at x = 0. Let T− denote
the solution on [−1, 0] and T+ the solution on [0,+1]. One should have T−(0) = T+(0) and
k−(0)∂xT

−(0) = k+(0)∂xT
+(0), where k−(0) = 1 and k+(0) = 2.

(ii) Solve the problem, i.e., find T (x), x ∈ [−1,+1].

Solution: On [−1, 0] we have k−(x) = 1, which implies ∂xxT
−(x) = 0. This in turn implies

T−(x) = a+ bx. The Robin boundary condition at x = −1 implies ∂xT
−1(−1)− T−(−1) = 0 =

2b− a. This gives a = 2b and T−(x) = b(2 + x).

We proceed similarly on [0,+1] and we obtain T+(x) = c+ dx. The Neumann boundary condition
at x = +1 gives ∂xT

+(+1) = 1 = d and T+(x) = c+ x.

The interface conditions T−(0) = T+(0) and k−(0)∂xT
−(0) = k+(0)∂xT

+(0) give

2b = c, and b = 2.

In conclusion

T (x) =

{
2(2 + x) if x ∈ [−1, 0],

4 + x if x ∈ [0,+1].
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Question 11: Let k : [−1,+1] −→ R be such that k(x) = 6, if x ∈ [−1, 0] and k(x) = 3 if x ∈
(0, 1]. Solve the boundary value problem −∂x(k(x)∂xT (x)) = 0 with 6∂xT (−1) = T (−1) + 13
and T (1) = 5.
(i) What should be the interface conditions at x = 0 for this problem to make sense?

Solution: The function T and the flux k(x)∂xT (x) must be continuous at x = 0. Let T− denote
the solution on [−1, 0] and T+ the solution on [0,+1]. One should have T−(0) = T+(0) and
k−(0)∂xT

−(0) = k+(0)∂xT
+(0), where k−(0) = 6 and k+(0) = 3.

(ii) Solve the problem, i.e., find T (x), x ∈ [−1,+1].

Solution: On [−1, 0] we have k−(x) = 1, which implies ∂xxT
−(x) = 0. This in turn implies

T−(x) = a+ bx. The Robin boundary condition at x = −1 implies 6∂xT
−(−1)− T−(−1) = 13 =

6b− (a− b). This gives a = 7b− 13 and T−(x) = 7b− 13 + bx.

We proceed similarly on [0,+1] and we obtain T+(x) = c+ dx. The Dirichlet boundary condition
at x = +1 gives T+(1) = 5 = d+ c. This implies c = 5− d and T+(x) = 5− d+ dx.

The interface conditions T−(0) = T+(0) and k−(0)∂xT
−(0) = k+(0)∂xT

+(0) give

7b− 13 = 5− d, and 6b = 3d.

This implies d = 4 and b = 2. In conclusion

T (x) =

{
2x+ 1 if x ∈ [−1, 0],

4x+ 1 if x ∈ [0,+1].

Question 12: Let k : [−1,+1] −→ R be such that k(x) = 2, if x ∈ [−1, 0] and k(x) = 3 if
x ∈ (0, 1]. Solve the boundary value problem −∂x(k(x)∂xT (x)) = 0 with ∂xT (−1) = T (−1) + 3
and −∂xT (1) = T (1)− 7.
(i) What should be the interface conditions at x = 0 for this problem to make sense?

Solution: The function T and the flux k(x)∂xT (x) must be continuous at x = 0. Let T− denote
the solution on [−1, 0] and T+ the solution on [0,+1]. One should have T−(0) = T+(0) and
k−(0)∂xT

−(0) = k+(0)∂xT
+(0), where k−(0) = 2 and k+(0) = 3.

(ii) Solve the problem, i.e., find T (x), x ∈ [−1,+1].

Solution: On [−1, 0] we have k−(x) = 1, which implies ∂xxT
−(x) = 0. This in turn implies

T−(x) = a + bx. The Robin boundary condition at x = −1 implies ∂xT
−(−1) − T−(−1) = 3 =

2b− a. This gives a = 2b− 3 and T−(x) = 2b− 3 + bx.

We proceed similarly on [0,+1] and we obtain T+(x) = c+ dx. The Robin boundary condition at
x = +1 gives −∂xT+(+1) − T+(1) = −7 = −2d − c. This implies c = −2d + 7 and T+(x) =
−2d+ 7 + dx.

The interface conditions T−(0) = T+(0) and k−(0)∂xT
−(0) = k+(0)∂xT

+(0) give

2b− 3 = −2d+ 7, and 2b = 3d.

This implies d = 2 and b = 3. In conclusion

T (x) =

{
3x+ 3 if x ∈ [−1, 0],

2x+ 3 if x ∈ [0,+1].

1.3 Maximum principle

Question 13: Consider the square D = (−1,+1)×(−1,+1). Let f(x, y) = x2 − y2 − 3. Let
u ∈ C2(D) ∩ C0(D) solve −∆u = 0 in D and u|∂D = f . Compute min(x,y)∈D u(x, y) and

max(x,y)∈D u(x, y).
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Solution: We use the maximum principle (u is harmonic and has the required regularity). Then

min
(x,y)∈D

u(x, y) = min
(x,y)∈∂D

f(x, y), and max
(x,y)∈D

u(x, y) = max
(x,y)∈∂D

f(x, y).

A point (x, y) is at the boundary of D if and only if x2 = 1 and y ∈ (−1, 1) or y2 = 1 and
x ∈ (−1, 1). In the first case, x2 = 1 and y ∈ (−1, 1), we have

f(x, y) = 1− y2 − 3, y ∈ (−1, 1).

The maximum is −2 and the minimum is −3. In the second case, y2 = 1 and x ∈ (−1, 1), we have

f(x, y) = x2 − 1− 3, x ∈ (−1, 1).

The maximum is −3 and the minimum is −4. We finally can conclude

min
(x,y)∈∂D

f(x, y) = min
−1≤x≤1

x2 − 4,= −4, max
(x,y)∈∂D

f(x, y) = max
−1≤y≤1

−2− y2 = −2.

In conclusion

min
(x,y)∈D

u(x, y) = −4, max
(x,y)∈D

u(x, y) = −2

Question 14: (i) Let Ω be an open connected set in R2. Let u be a real-valued nonconstant
function continuous on Ω and harmonic on Ω. Assume that there exists x0 in Ω such∇u(x0) = 0.
Do we have a minimum, a maximum, or a saddle point at x0? (explain)

Solution: The Maximum principle implies that u cannot be either minimum or maximum at x0.
This point is a saddle point.

(ii) Let Ω = (0, 1) (note that Ω = [0, 1]), and let u : Ω −→ R be such that u(x) = 1 for all
x ∈ Ω, u(0) = 0, and u(1) = −1. Is u harmonic on Ω? Find a point in Ω where u reaches its
maximum? Does this example contradict the Maximum Principle? (explain)

Solution: Yes u is harmonic on Ω since u′′(x) = 0 for all x in Ω. Note however that u is not
continuous on Ω; as a consequence, the hypotheses for the Maximum principle are not satisfied. In
other words, the above example does not contradict the Maximum principle .

Question 15: Let u be a continuous function on D where D is some open, connected set in
R2. Explain why, if u is harmonic, it is generally a waste of time to locate a point where u
achieves its maximum by solving ∂xu = 0 and ∂yu = 0 simultaneously.

Solution: From the Maximum Principle, we know that if u is not constant, the maximum of u is
achieved at the boundary of D. The zero gradient condition does not apply for maximums at the
boundary.

Question 16: Let D be the open disk of radius
√

2 centered at (1, 2). Let u ∈ C2(D) ∩ C0(D)
be a harmonic function in the disk D. Assume that u(x, y) = (x+ y)2 on the boundary of disk.
Compute min(x,y)∈D u(x, y) and max(x,y)∈D u(x, y). You can give a geometric answer.

Solution: Since u is in C2(D) ∩ C0(D) and is harmonic, we can apply the maximum principle
(Theorem). This theorem says that the maximum and minimum of u are attained at the boundary
of the disk. The problem then amounts to finding the maximum and minimum of (x + y)2 over
the circle of radius

√
2 centered at (1, 2). The iso-values of the function (x + y)2 are parallel

lines of slope −1. These iso-line are perpendicular to the gradient of (x + y)2 which is the vector
(2(x + y), 2(x + y)) = 2(x + y)(1, 1). We must find the two tangent lines to the circle that are
perpendicular to the vector (1, 1). One easily verify that (0, 1) and (2, 3) are the tangent points
(verify that the segment connecting these two points is parallel to the vector (1, 1) and passes
through the center of the circle). As a result

min
(x,y)∈D

u(x, y) = 1 and max
(x,y)∈D

u(x, y) = 25.
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The dashed lines are iso-lines of (x+ y)2.

Question 17: Consider the disk D centered at (0, 0) of radius 1. Let f(x, y) = x2−y2 +4y−3.
Let u ∈ C2(D) ∩ C0(D) solve −∆u = 0 in D and u|∂D = f . Compute min(x,y)∈D u(x, y) and

max(x,y)∈D u(x, y).

Solution: We use the maximum principle (u is harmonic and has the required regularity). Then

min
(x,y)∈D

u(x, y) = min
(x,y)∈∂D

f(x, y), and max
(x,y)∈D

u(x, y) = max
(x,y)∈∂D

f(x, y).

A point (x, y) is at the boundary of D if and only if x2 + y2 = 1; as a result, the following holds
for all (x, y) ∈ ∂D:

f(x, y) = x2 − y2 + 4y − 3 = 1− y2 − y2 + 4y − 3 = −2(1− y)2.

We obtain

min
(x,y)∈∂D

f(x, y) = min
−1≤y≤1

−2(1− y)2 = −8, max
(x,y)∈∂D

f(x, y) = max
−1≤y≤1

−2(1− y)2 = 0.

In conclusion
min

(x,y)∈D
u(x, y) = −8, max

(x,y)∈D
u(x, y) = 0

Question 18: Consider the square D = (−1,+1)×(−1,+1). Let f(x, y) = x2 − y2 − 3. Let
u ∈ C2(D) ∩ C0(D) solve −∆u = 0 in D and u|∂D = f . Compute min(x,y)∈D u(x, y) and

max(x,y)∈D u(x, y).

Solution: We use the maximum principle (u is harmonic and has the required regularity). Then

min
(x,y)∈D

u(x, y) = min
(x,y)∈∂D

f(x, y), and max
(x,y)∈D

u(x, y) = max
(x,y)∈∂D

f(x, y).

A point (x, y) is at the boundary of D if and only if x2 = 1 and y ∈ (−1, 1) or y2 = 1 and
x ∈ (−1, 1). In the first case, x2 = 1 and y ∈ (−1, 1), we have

f(x, y) = 1− y2 − 3, y ∈ (−1, 1).
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The maximum is −2 and the minimum is −3. In the second case, y2 = 1 and x ∈ (−1, 1), we have

f(x, y) = x2 − 1− 3, x ∈ (−1, 1).

The maximum is −3 and the minimum is −4. We finally can conclude

min
(x,y)∈∂D

f(x, y) = min
−1≤x≤1

x2 − 4,= −4, max
(x,y)∈∂D

f(x, y) = max
−1≤y≤1

−2− y2 = −2.

In conclusion
min

(x,y)∈D
u(x, y) = −4, max

(x,y)∈D
u(x, y) = −2
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2 Eigenvalue problems

Question 19: Consider the differential equation d2φ
dt2 + λφ = 0, t ∈ (0, π), supplemented with

the boundary conditions φ(0) = 0, φ(π) = 0.
(a) What is the sign of λ? Prove your answer.

Solution:

(b) Compute all the possible eigenvalues λ for this problem.

Solution:

Question 20: Let Ω = (0, L) and let (λ, u) be an eigenpair of the Laplace equation over Ω with
zero Dirichlet condition. Assume that λ ∈ C and that the function u(x) is complex-valued.
(i) Write the PDE solved by u.

Solution: u and λ are such

−∂xxu(x) = λu(x), u(0) = 0, u(L) = 0.

(ii) Let ū be the complex conjugate of u. Write the PDE solved by ū (Hint: take the conjugate
of (i)).

Solution: Taking the complex conjugate of (i) we obtain

−∂xxū(x) = −∂xxu(x) = λu(x) = λ̄ū(x), ū(0) = 0, ū(L) = 0,

which gives
−∂xxū(x) = λ̄ū(x), ū(0) = 0, ū(L) = 0.

Note that we used the fact that ∂xu = ∂xū.

(iii) Prove that λ ∈ R (Hint: Use an energy argument with ū in (i) and an energy argument
with u (ii) and conclude that λ = λ̄. Recall u 6= 0 and |z|2 = zz̄ for all z ∈ C).

Solution: Multiply (i) by ū and integrate over Ω∫
Ω

−∂xxu(x)ū(x)dx =

∫
Ω

λu(x)ū(x)dx∫
Ω

∂xu(x)∂xū(x)dx− [∂xu(x)ū(x)]L0 = λ

∫
Ω

|u(x)|2dx∫
Ω

∂xu(x)∂xu(x)dx = λ

∫
Ω

|u(x)|2dx∫
Ω

|∂xu(x)|2dx = λ

∫
Ω

|u(x)|2dx.

Multiply (ii) by u and integrate over Ω∫
Ω

−∂xxū(x)u(x)dx =

∫
Ω

λ̄ū(x)u(x)dx∫
Ω

∂xū(x)∂xu(x)dx− [∂xū(x)u(x)]L0 = λ̄

∫
Ω

|u(x)|2dx∫
Ω

∂xu(x)∂xu(x)dx = λ̄

∫
Ω

|u(x)|2dx∫
Ω

|∂xu(x)|2dx = λ̄

∫
Ω

|u(x)|2dx.

In conclusion

λ

∫
Ω

|u(x)|2dx = λ̄

∫
Ω

|u(x)|2dx,

which means

(λ− λ̄)

∫
Ω

|u(x)|2dx.
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This in turn implies that λ = λ̄ since
∫

Ω
|u(x)|2dx is not zero (recall u 6= 0). In conclusion λ is

real. Note in passing that this also prove that λ ≥ 0.

Question 21: Consider the eigenvalue problem − d
dt (t

1
2
d
dtφ(t)) = λt−

1
2φ(t), t ∈ (0, 1), supple-

mented with the boundary condition φ(0) = 0, ∂tφ(1) = 0.
(a) Prove that it is necessary that λ be positive for a non-zero smooth solution to exist.

Solution: (i) Let φ be a non-zero smooth solution to the problem. Multiply the equation by φ and
integrate over the domain. Use the Fundamental Theorem of calculus (i.e., integration by parts) to
obtain ∫ 1

0

t
1
2 (φ′(t))2dt− [t

1
2φ′(t)φ(t)]10 = λ

∫ 1

0

t−
1
2φ2(t)dt.

Using the boundary conditions, we infer∫ 1

0

t
1
2 (φ′(t))2dt = λ

∫ 1

0

t−
1
2φ2(t)dt,

which means that λ is non-negative since φ is non-zero.

(ii) If λ = 0, then
∫ 1

0
t

1
2 (φ′(t))2dt = 0, which implies that φ′(t) = 0 for all t ∈ (0, 1]. This implies

that φ(t) is constant, and this constant is zero since φ(0) = 0. Hence, φ is zero if λ = 0. Since we
want a nonzero solution, this implies that λ cannot be zero.

(iii) In conclusion, it is necessary that λ be positive for a nonzero smooth solution to exist.

(b) The general solution to − d
dt (t

1
2
d
dtφ(t)) = λt−

1
2φ(t) is φ(t) = c1 cos(2

√
t
√
λ) + c2 sin(2

√
t
√
λ)

for λ ≥ 0. Find all the eigenvalues λ > 0 and the associated nonzero eigenfunctions.

Solution: Since λ ≥ 0 by hypothesis, φ is of the following form

φ(t) = φ(t) = c1 cos(2
√
t
√
λ) + c2 sin(2

√
t
√
λ).

The boundary condition φ(0) = 0 implies c1 = 0. The other boundary condition implies ∂xφ(1) =
0 = c2

√
λ cos(2

√
λ). The constant c2 cannot be zero since we want φ to be nonzero; as a result,

2
√
λ = (n+ 1

2 )π, n = 0, 2, . . .. In conclusion

λ = ((2n+ 1)π)2/16, n = 1, 2, . . . , φ(t) = c sin((n+
1

2
)π
√
t).

Question 22: Let Ω = (0, L) and let (λ, u) be an eigenpair of the Laplace equation over Ω with
zero Dirichlet condition. Assume that λ ∈ C and that the function u(x) is complex-valued.
(i) Write the PDE solved by u.

Solution: u and λ are such

−∂xxu(x) = λu(x), u(0) = 0, u(L) = 0.

(ii) Let ū be the complex conjugate of u. Write the PDE solved by ū (Hint: take the conjugate
of (i)).

Solution: Take the complex conjugate of (i) we obtain

−∂xxū(x) = −∂xxu(x) = λu(x) = λ̄ū(x), ū(0) = 0, ū(L) = 0

which gives
−∂xxū(x) = λ̄ū(x), ū(0) = 0, ū(L) = 0.

Note that we used the fact that ∂xu = ∂xū.

(iii) Prove that λ ∈ R (Hint: Use an energy argument with ū in (i) and an energy argument
with u (ii) and conclude that λ = λ̄. Recall u 6= 0 and |z|2 = zz̄ for all z ∈ C).
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Solution: Multiply (i) by ū and integrate over Ω∫
Ω

−∂xxu(x)ū(x)dx =

∫
Ω

λu(x)ū(x)dx∫
Ω

∂xu(x)∂xū(x)dx− [∂xu(x)ū(x)]L0 = λ

∫
Ω

|u(x)|2dx∫
Ω

∂xu(x)∂xu(x)dx = λ

∫
Ω

|u(x)|2dx∫
Ω

|∂xu(x)|2dx = λ

∫
Ω

|u(x)|2dx.

Multiply (ii) by u and integrate over Ω∫
Ω

−∂xxū(x)u(x)dx =

∫
Ω

λ̄ū(x)u(x)dx∫
Ω

∂xū(x)∂xu(x)dx− [∂xū(x)u(x)]L0 = λ̄

∫
Ω

|u(x)|2dx∫
Ω

∂xu(x)∂xu(x)dx = λ̄

∫
Ω

|u(x)|2dx∫
Ω

|∂xu(x)|2dx = λ̄

∫
Ω

|u(x)|2dx.

In conclusion

λ

∫
Ω

|u(x)|2dx = λ̄

∫
Ω

|u(x)|2dx,

which means

(λ− λ̄)

∫
Ω

|u(x)|2dx.

This in turn implies that λ = λ̄ since
∫

Ω
|u(x)|2dx is not zero (recall u 6= 0). In conclusion λ is

real. Note in passing that this also prove that λ ≥ 0.

Question 23: Consider the eigenvalue problem − d
dt (t

1
2
d
dtφ(t)) = λt−

1
2φ(t), t ∈ (0, 1), supple-

mented with the boundary condition φ(0) = 0, φ(1) = 0.
(a) Prove that it is necessary that λ be positive for a non-zero smooth solution to exist.

Solution: (i) Let φ be a non-zero smooth solution to the problem. Multiply the equation by φ and
integrate over the domain. Use the fundamental Theorem of calculus (i.e., integration by parts) to
obtain ∫ 1

0

t
1
2 (φ′(t))2dt− [t

1
2φ′(t)φ(t)]10 = λ

∫ 1

0

t−
1
2φ2(t)dt.

Using the boundary conditions, we infer∫ 1

0

t
1
2 (φ′(t))2dt = λ

∫ 1

0

t−
1
2φ2(t)dt,

which means that λ is non-negative since φ is non-zero.

(ii) If λ = 0, then
∫ 1

0
t

1
2 (φ′(t))2dt = 0, which implies that φ′(t) = 0 for all t ∈ (0, 1]. The

fundamental theorem of calculus applied between t and 1 implies φ(t) = φ(1) +
∫ t

1
φ′(τ)dτ = 0

since φ(1) = 0 and φ′(τ) = 0 for all τ ∈ (t, 1]. Hence, φ is zero if λ = 0. Since we want a nonzero
solution, this implies that λ cannot be zero.

(iii) In conclusion, it is necessary that λ be positive for a nonzero smooth solution to exist.

(b) The general solution to − d
dt (t

1
2
d
dtφ(t)) = λt−

1
2φ(t) is φ(t) = c1 cos(2

√
t
√
λ) + c2 sin(2

√
t
√
λ)

for λ ≥ 0. Find all the eigenvalues λ ≥ 0 and the associated nonzero eigenfunctions.

Solution: Since λ ≥ 0 by hypothesis, φ is of the following form

φ(t) = φ(t) = c1 cos(2
√
t
√
λ) + c2 sin(2

√
t
√
λ).
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The boundary condition φ(0) = 0 implies c1 = 0. The other boundary condition implies φ(1) =
0 = c2 sin(2

√
λ). The constant c2 cannot be zero since we want φ to be nonzero; as a result,

2
√
λ = nπ, n = 1, 2, . . .. In conclusion

λ = (nπ)2/4, n = 1, 2, . . . , φ(t) = c sin(nπ
√
t).

Question 24: Consider the differential equation d2φ
dt2 + λφ = 0, t ∈ (0, π), supplemented with

the boundary conditions φ(0) = 0, φ′(π) = 0.
(a) What is the sign of λ? Prove your answer.

Solution: Multiply the equation by φ and integrate over the domain.

−
∫ π

0

(φ′(t))2dt+ φ′φ|π0 + λ

∫ π

0

φ2(t)dt = 0.

Using the BCs, we infer

−
∫ π

0

(φ′(t))2dt = λ

∫ π

0

φ2(t)dt,

which means that λ is non-negative.

(b) Compute all the possible eigenvalues λ for this problem and compute φ.

Solution: There are two cases: Either λ > 0 or λ = 0. Assume first λ > 0, then

φ(t) = c1 cos(
√
λt) + c2 sin(

√
λt).

The boundary condition φ(0) = 0 implies imply c1 = 0. The other BC implies c2 cos(
√
λπ) = 0.

c2 = 0 gives φ = 0, which is not a proper eigenfunction. The other possibility is
√
λπ = (n+ 1

2 )π,
n ∈ N. In conclusion

φ(t) = c2 sin((n+ 1
2 )t), n ∈ N.

The case λ = 0 gives φ(t) = c1 + c2t. The BCs imply c1 = c2 = 0, i.e. φ = 0, which is not a
proper eigenfunction.

Question 25: Consider the eigenvalue problem − d2

dt2φ(t) + 2 d
dtφ(t) = λφ(t), t ∈ (0, π), supple-

mented with the boundary condition φ(0) = 0, φ(π) = 0. (Hint: 2φ(t) ddtφ(t) = d
dtφ

2(t).)
(a) Prove that it is necessary that λ be positive for a non-zero solution to exist.

Solution: (i) Let φ be a non-zero solution to the problem. Multiply the equation by φ and integrate
over the domain. Use the fundamental Theorem of calculus and use the hint to obtain∫ π

0

(φ′(t))2dt− φ′(π)φ(π) + φ′(0)φ(0) +

∫ π

0

d

dt
(φ2(t))dt = λ

∫ π

0

φ2(t)dt∫ π

0

(φ′(t))2dt− φ′(π)φ(π) + φ′(0)φ(0) + φ2(π)− φ2(0) = λ

∫ π

0

φ2(t)dt

Using the boundary conditions, we infer∫ π

0

(φ′(t))2dt = λ

∫ π

0

φ2(t)dt,

which means that λ is non-negative since φ is non-zero.

(ii) If λ = 0, then
∫ π

0
(φ′(t))2dt = 0 and φ(π)2 = 0, which implies that φ′(t) = 0. The fundamental

theorem of calculus implies φ(t) = φ(0) +
∫ t

0
φ′(τ)dτ = 0. Hence, φ is zero if λ = 0. Since we

want a nonzero solution, this implies that λ cannot be zero.

(iii) In conclusion, it is necessary that λ be positive for a nonzero solution to exist.

(b) The general solution to −φ′′ + 2φ′ = λφ is φ(t) = et(c1 cos(t
√
λ− 1) + c2 sin(t

√
λ− 1)) for

λ ≥ 1. Find all the eigenvalues λ ≥ 1 and the associated nonzero eigenfunctions.
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Solution: Since λ ≥ 1 by hypothesis, φ is of the following form

φ(t) = et(c1 cos(
√
λ− 1t) + c2 sin(

√
λ− 1t)).

The boundary condition φ(0) = 0 implies c1 = 0. The other boundary condition implies φ(π) =
0 = eπc2 sin(

√
λ− 1π). The constant c2 cannot be zero since we want φ to be nonzero; as a result,√

λ− 1 = n, n = 1, 2, . . .. In conclusion

λ = n2 + 1, n = 1, 2, . . . , φ(t) = cet sin(nt)

Question 26: Consider the eigenvalue problem − d
dt (t

1
2
d
dtφ(t)) = λt−

1
2φ(t), t ∈ (0, 1), supple-

mented with the boundary condition φ(0) = 0, φ(1) = 0.
(a) Prove that it is necessary that λ be positive for a non-zero smooth solution to exist.

Solution: (i) Let φ be a non-zero smooth solution to the problem. Multiply the equation by φ and
integrate over the domain. Use the fundamental Theorem of calculus (i.e., integration by parts) to
obtain ∫ 1

0

t
1
2 (φ′(t))2dt− [t

1
2φ′(t)φ(t)]10 = λ

∫ 1

0

t−
1
2φ2(t)dt.

Using the boundary conditions, we infer∫ 1

0

t
1
2 (φ′(t))2dt = λ

∫ 1

0

t−
1
2φ2(t)dt,

which means that λ is non-negative since φ is non-zero.

(ii) If λ = 0, then
∫ 1

0
t

1
2 (φ′(t))2dt = 0, which implies that φ′(t) = 0 for all t ∈ (0, 1]. The

fundamental theorem of calculus applied between t and 1 implies φ(t) = φ(1) +
∫ t

1
φ′(τ)dτ = 0

since φ(1) = 0 and φ′(τ) = 0 for all τ ∈ (t, 1]. Hence, φ is zero if λ = 0. Since we want a nonzero
solution, this implies that λ cannot be zero.

(iii) In conclusion, it is necessary that λ be positive for a nonzero smooth solution to exist.

(b) The general solution to − d
dt (t

1
2
d
dtφ(t)) = λt−

1
2φ(t) is φ(t) = c1 cos(2

√
t
√
λ) + c2 sin(2

√
t
√
λ)

for λ ≥ 0. Find all the eigenvalues λ ≥ 0 and the associated nonzero eigenfunctions.

Solution: Since λ ≥ 0 by hypothesis, φ is of the following form

φ(t) = φ(t) = c1 cos(2
√
t
√
λ) + c2 sin(2

√
t
√
λ).

The boundary condition φ(0) = 0 implies c1 = 0. The other boundary condition implies φ(1) =
0 = c2 sin(2

√
λ). The constant c2 cannot be zero since we want φ to be nonzero; as a result,

2
√
λ = nπ, n = 1, 2, . . .. In conclusion

λ = (nπ)2/4, n = 1, 2, . . . , φ(t) = c sin(nπ
√
t).

Question 27: Consider the differential equation −d
2φ
dt2 = λφ, t ∈ (0, π), supplemented with the

boundary conditions 2φ(0) = φ′(0), φ(π) = 0.
(a) What should be the sign of λ for a non-zero solution to exist? Prove your answer.

Solution: Let φ be a non-zero solution to the problem. Multiply the equation by φ and integrate
over the domain. ∫ π

0

(φ′(t))2dt− φ′(π)φ(π) + φ′(0)φ(0) = λ

∫ π

0

φ2(t)dt.

Using the BCs, we infer ∫ π

0

(φ′(t))2dt+ 2φ(0)2 = λ

∫ π

0

φ2(t)dt,
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which means that λ is non-negative since φ is non-zero.

(b) Assume that 2 sin(
√
λπ)+

√
λ cos(

√
λπ) 6= 0. Prove that φ = 0 is the only possible solution.

Solution: Observe first that λ cannot be zero, otherwise we would have 2 sin(
√
λπ)+

√
λ cos(

√
λπ) =

0. As a result, (a) implies that λ is positive. Then φ is of the following form

φ(t) = c1 cos(
√
λt) + c2 sin(

√
λt).

The boundary condition φ′(0) = 2φ(0) implies 2c1−
√
λc2 = 0. The other BC implies c1 cos(

√
λπ)+

c2 sin(
√
λπ) = 0. The constants c1 and c2 solve the following linear system{

2c1 −
√
λc2 = 0

c1 cos(
√
λπ) + c2 sin(

√
λπ) = 0

The determinant is equal to 2 sin(
√
λπ) +

√
λ cos(

√
λπ) and is non-zero by hypothesis. Then the

only solution is c1 = c2 = 0, which again gives φ = 0.

In conclusion, the only possible solution to the problem is φ = 0 if 2 sin(
√
λπ)+

√
λ cos(

√
λπ) 6= 0.
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3 Fourier Series

Here are some formulae that you may want to use:

FS(f)(x) =

+∞∑
n=0

an cos(nπx/L) +

+∞∑
n=1

bn sin(nπx/L), (1)

a0 =
1

2L

∫ L

−L
f(x)dx, an =

1

L

∫ L

−L
f(x) cos(nπ

x

L
)dx, bn =

1

L

∫ L

−L
f(x) sin(nπ

x

L
)dx (2)

Question 28: Compute the complex Fourier series of the function f(x) = x defined on [−π, π].

Solution: By definition FS(f)(x) =
∑+∞
−∞ cne

−inπx/L where L is half the size of the interval on
which f is defined. Here L = π. Hence, by integrating by parts once we obtain

cn =
1

2π

∫ π

−π
xe−inx = − 1

2π

1

−in

∫ π

−π
e−inx +

1

2π

1

−in
(πe−inπ + πeinπ)

=
1

2π

1

−in
2π(−1)n.

That is cn = (−1)n−1

in and

FS(f)(x) =

+∞∑
−∞

(−1)n−1

in
e−inx

Question 29: Let f(x) = x, x ∈ [−L,L].
(a) Sketch the graph of the Fourier series of f for x ∈ (−∞,∞).

Solution: The Fourier series is equal to the periodic extension of f , except at the points nL, n ∈ Z
where it is equal to 0 = 1

2 (1− 1).

(b) Compute the Fourier series of f .

Solution: f is odd, hence the cosine coefficients are zero. The sign coefficients bn are given by

bn =
1

L

∫ L

−L
x sin(

nπx

L
)dx =

L

nπ

1

L

∫ L

−L
cos(

nπx

L
)dx− 2

L

nπ
cos(nπ).

As a result bn = 2(−1)n+1 L
nπ and

FS(f)(x) =

∞∑
1

2(−1)n
L

nπ
sin(

nπx

L
).

Question 30: Let N be a positive integer and let PN be the set of trigonometric polynomials
of degree at most N ; that is, PN = span{1, cos(x), sin(x), . . . , cos(Nx), sin(Nx)}.

(i) Consider the function f : R −→ R defined by

f(x) =

∞∑
n=0

1

n5
sin(7n) cos(2nx).

Compute the best L2-approximation of f in P7 over (0, 2π).

Solution: The best L2-approximation of f in P7 over (0, 2π) is the truncated Fourier series FS7(f).
Clearly

FS7(f)(x) =

3∑
n=0

1

n5
sin(7n) cos(2nx)
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(ii) Consider the function f : R −→ R defined by

f(x) =

11∑
n=0

1

n3 + 1
cos(35n2) sin(3nx).

Compute the best L2-approximation of f in P35 over (0, 2π).

Solution: The best L2-approximation of f in P35 over (0, 2π) is the truncated Fourier series
FS35(f). Observing that f ∈ P33 ⊂ P35 it is clear that FS35(f) = f .

Question 31: Let f(x) = x, x ∈ [−L,L].
(a) Sketch the graph of the Fourier series of f for x ∈ (−∞,∞).

Solution: The Fourier series is equal to the periodic extension of f , except at the points (2n+1)L,
n ∈ Z where it is equal to 0 = 1

2 (1− 1).

(b) Compute the Fourier series of f .

Solution: f is odd, hence the cosine coefficients are zero. The sign coefficients bn are given by

bn =
1

L

∫ L

−L
x sin(

nπx

L
)dx =

L

nπ

1

L

∫ L

−L
cos(

nπx

L
)dx− 2

L

nπ
cos(nπ).

As a result bn = −2 cos(nπ) Lnπ = 2(−1)n+1 L
nπ and

FS(f)(x) =

∞∑
1

2(−1)n
L

nπ
sin(

nπx

L
).

Question 32: Let L be a positive real number.
(a) Compute the Fourier series of the function (−L,L) 3 x 7−→ x2.

Solution: The Function is even; as a result its sine coefficients are zero. We compute the cosine
coefficients as follows: ∫ +L

−L
x2 cos(mπx/L)dx = am

∫ +L

−L
cos(mπx/L)2dx,

If m = 0, c0 = 1
2L

∫ +L

−L x2dx = 1
3L. Otherwise,

am =
1

L

∫ +L

−L
x2 cos(mπx/L)dx.

Integration by parts two times gives

am = − 1

L

L

mπ

∫ +L

−L
2x sin(mπx/L)dx

= 2
L

m2π2
x cos(mπx/L)|L−L = 4

L2

m2π2
(−1)m.

(b) For which values of x is the Fourier series equal to x2?

Solution: The periodic extension of x2 over R is piecewise smooth and globally continuous. This
means that the Fourier series is equal to x2 over the entire interval [−L,+L].

(c) Using (a) and (b) give the Fourier series of x over [−L,+L] and say where it is equal to x.

Solution: Since we can differentiate cosine series, the Fourier series of x over [−L,+L] is obtained
by differentiating that of x2,

FS(x)(x) =
d

dx
FS(

1

2
x2)(x) =

∞∑
1

2(−1)n+1 L

nπ
sin(

nπx

L
).
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We have equality x = FS(x)(x) only on (−L,+L). At −L and +L the Fourier series is zero.

Question 33: Let f : [−1,+1] −→ R be such that f(x) = x, if x ∈ [0, 1] and f(x) = 0 if
x ∈ [−1, 0].
(a) Sketch the graph of the Fourier series of f on (−∞,∞).

Solution: The Fourier series is equal to the periodic extension of f , except at the points (2n+1)L,
n ∈ Z, where it is equal to 1

2 = 1
2 (1− 0).

(b) Compute the Fourier coefficients of f (recall a0 = 1
2

∫ 1

−1
f(x)dx, and for n ≥ 1, an =∫ 1

−1
f(x) cos(nπx)dx, bn =

∫ 1

−1
f(x) sin(nπx)dx. Hint: integrate by parts).

Solution: Clearly a0 = 1
4 . For n ≥ 1 we have

an =

∫ 1

0

x cos(nπx)dx = − 1

nπ

∫ 1

0

sin(nπx) +
1

nπ
x sin(nπx)|10 =

1

(nπ)2
cos(nπx)|10 =

(−1)n − 1

(nπ)2

and

bn =

∫ 1

0

x sin(nπx)dx =
1

nπ

∫ 1

0

cos(nπx)− 1

nπ
x cos(nπx)|10 =

(−1)n+1

nπ
.

Question 34: Consider f : [−L,L] −→ R, f(x) = x2. (a) Sketch the graph of the Fourier
series of f .

Solution: FS(f) is equal to the periodic extension of f(x) over R.

(b) For which values of x is FS(f) equal to x2?

Solution: The periodic extension of f(x) = x2 over R is piecewise smooth and globally continuous.
This means that the Fourier series is equal to x2 over the entire interval [−L,+L].

(c) Is it possible to obtain FS(x) by differentiating 1
2FS(f) term by term?

Solution: Yes it is possible since the periodic extension of f(x) = x2 over R is continuous and
piecewise smooth.

Question 35: Let f(x) = x, x ∈ [−L,L]. (a) Sketch the graph of the Fourier series of f .

Solution: The Fourier series is equal to the periodic extension of f , except at the points (2n+1)L,
n ∈ Z where it is equal to 0 = 1

2 (1− 1).

(b) Compute the coefficients of the Fourier series of f . (Hint:
∫ b
a
tg(t)dt = [t

∫
g]ba−

∫ b
a

(
∫
g)(t)dt).

Solution: f is odd, hence the cosine coefficients are zero. The sine coefficients bn are obtained by
integration by parts

bn =
1

L

∫ L

−L
x sin(

nπx

L
)dx = − 1

L

L

nπ
[x cos(nπ

x

L
)]+L−L +

L

nπ

1

L

∫ L

−L
cos(

nπx

L
)dx.

As a result bn = −2 cos(nπ) Lnπ = 2(−1)n+1 L
nπ and

FS(f)(x) =
2L

π

∞∑
1

(−1)n+1

n
sin(

nπx

L
).

Question 36: Let L be a positive real number. Let V = span{1, cos(πt/L), sin(πt/L)} and

consider the norm ‖f‖L2 =
(∫ L
−L f(t)2dt

) 1
2

. (a) Compute the best approximation of 1 + t in V

with respect to the above norm.

Solution: We know from class that the truncated Fourier series

FS1(t) = a0 + a1 cos(πt/L) + b1 sin(πt/L)
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is the best approximation. Now we compute a0, a1, a2

a0 =
1

2L

∫ L

−L
(1 + t)dt = 1,

a1 =
1

L

∫ L

−L
(1 + t) cos(πt/L)dt = 0

b1 =
1

L

∫ L

−L
(1 + t) sin(πt/L)dt =

1

L

∫ L

−L
t sin(πt/L)dt = −2 cos(π)

L

π
=

2L

π
.

As a result

FS1(t) = 1 +
2L

π
sin(πt/L)

(b) Compute the best approximation of 3 + 2 cos(πt/L)− 5 sin(πt/L) in V .

Solution: The function 3 + 2 cos(πt/L) − 5 sin(πt/L) is a member of V ; as a result, The best
approximation is the function itself.

Question 37: Consider f : [−L,L] −→ R, f(x) = x4. (a) Sketch the graph of the Fourier
series of f .

Solution: FS(f) is equal to the periodic extension of f(x) over R.

(b) For which values of x ∈ R is FS(f) equal to x4? (Explain)

Solution: The periodic extension of f(x) = x4 over R is piecewise smooth and globally continuous
since f(L) = f(−L). This means that the Fourier series is equal to x4 over the entire interval
[−L,+L].

(c) Is it possible to obtain FS(x3) by differentiating 1
4FS(x4) term by term? Which values this

legitimate? (Explain)

Solution: Yes it is possible since the periodic extension of f(x) = x4 over R is continuous and piece-
wise smooth. This operation is legitimate everywhere the function FS(x3) is smooth, i.e., for all the
points in R\{2k−1, k ∈ Z} (i.e., one needs to exclude the points . . . ,−7,−5,−3,−1,+1,+3,+5+
7, . . .

Question 38: Let L be a positive real number. Let P1 = span{1, cos(πt/L), sin(πt/L)} and

consider the norm ‖f‖L2 =
(∫ L
−L f(t)2dt

) 1
2

. (a) Compute the best approximation of 2− 3t in

P1 with respect to the above norm. (Hint:
∫ L
−L t sin(πt/L)dt = 2L2/π.)

Solution: We know from class that the truncated Fourier series

FS1(t) = a0 + a1 cos(πt/L) + b1 sin(πt/L)

is the best approximation. Now we compute a0, a1, a2

a0 =
1

2L

∫ L

−L
(2− 3t)dt = 2,

a1 =
1

L

∫ L

−L
(2− 3t) cos(πt/L)dt = 0

b1 =
1

L

∫ L

−L
(2− 3t) sin(πt/L)dt =

1

L

∫ L

−L
−3t sin(πt/L)dt = −6 cos(π)

L

π
= −6L

π
.

As a result

FS1(t) = 2− 6L

π
sin(πt/L)

(b) Compute the best approximation of h(t) = 2 cos(πt/L) + 7 sin(3πt/L) in P1.

Solution: The function h(t)− 2 cos(πt/L) = 7 sin(3πt/L) is orthogonal to all the members of P1

since the functions cos(mπt/L) and sin(mπt/L) are orthogonal to both cos(nπt/L) and sin(nπt/L)
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for all m 6= m; as a result, the best approximation of h in P1 is 2 cos(πt/L). (Recall that the best

approximation of h in P1 is such that
∫ L
−L(h(t)− FS1(h))p(t)dt = 0 for all p ∈ P1.) In conclusion

FS1(h) = 2 cos(πt/L).

Question 39: Consider f : [−L,L] −→ R, f(x) = x4. (a) Sketch the graph of the Fourier
series of f .

Solution: FS(f) is equal to the periodic extension of f(x) over R.

(b) For which values of x ∈ R is FS(f) equal to x4? (Explain)

Solution: The periodic extension of f(x) = x4 over R is piecewise smooth and globally continuous
since f(L) = f(−L). This means that the Fourier series is equal to x4 over the entire interval
[−L,+L].

(c) Is it possible to obtain FS(x3) by differentiating 1
4FS(x4) term by term? (Explain)

Solution: Yes it is possible since the periodic extension of f(x) = x4 over R is continuous and
piecewise smooth.

Question 40: Let L be a positive real number. Let P1 = span{1, cos(πt/L), sin(πt/L)} and

consider the norm ‖f‖L2 =
(∫ L
−L f(t)2dt

) 1
2

. (a) Compute the best approximation of 1 + t in V

with respect to the above norm. (Hint:
∫ L
−L t sin(πt/L)dt = 2L2/π.)

Solution: We know from class that the truncated Fourier series

FS1(t) = a0 + a1 cos(πt/L) + b1 sin(πt/L)

is the best approximation. Now we compute a0, a1, a2

a0 =
1

2L

∫ L

−L
(1 + t)dt = 1,

a1 =
1

L

∫ L

−L
(1 + t) cos(πt/L)dt = 0

b1 =
1

L

∫ L

−L
(1 + t) sin(πt/L)dt =

1

L

∫ L

−L
t sin(πt/L)dt = −2 cos(π)

L

π
=

2L

π
.

As a result

FS1(t) = 1 +
2L

π
sin(πt/L)

(b) Compute the best approximation of h(t) = 2 cos(2πt/L)− 5 sin(3πt/L) in P1.

Solution: The function h(t)2 cos(2πt/L) − 5 sin(3πt/L) is orthogonal to all the members of P1

since the functions cos(mπt/L) and sin(mπt/L) are orthogonal to both cos(nπt/L) and sin(nπt/L)
for all m 6= m; as a result, the best approximation of h in P1 is zero

FS1(h) = 0.
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4 Fourier transform

Here are some formulae that you may want to use:

F(f)(ω)
def
=

1

2π

∫ +∞

−∞
f(x)eiωxdx, F−1(f)(x) =

∫ +∞

−∞
f(ω)e−iωxdω, (3)

F(f ∗ g) = 2πF(f)F(g), (4)

F(e−α|x|) =
1

π

α

ω2 + α2
, F(

2α

x2 + α2
)(ω) = e−α|ω|, (5)

F(f(x− β))(ω) = eiβωF(f)(ω), (6)

F(e−αx
2

) =
1√
4πα

e−
ω2

4α (7)

F(H(x)e−ax)(ω) =
1

2π

1

a− iω
, H is the Heaviside function (8)

F(pv(
1

x
))(ω) =

i

2
sign(ω) =

i

2
(H(ω)−H(−ω)) (9)

F(sech(ax)) =
1

2a
sech(

π

2a
ω), sech(ax)

def
=

1

ch(x)
=

2

ex + e−x
(10)

cos(a)− cos(b) = −2 sin(1
2 (a+ b)) sin( 1

2 (a− b)) (11)

Question 41: (i) Let f be an integrable function on (−∞,+∞). Prove that for all a, b ∈ R,
and for all ξ ∈ R, F([eibxf(ax)])(ξ) = 1

aF(f)( ξ+ba ).

Solution: The definition of the Fourier transform together with the change of variable ax 7−→ x′

implies

F [eibxf(ax)])(ξ) =
1

2π

∫ +∞

−∞
f(ax)eibxeiξxdx

=
1

2π

∫ +∞

−∞
f(ax)ei(b+ξ)xdx

=
1

2π

∫ +∞

−∞

1

a
f(x′)ei

(ξ+b)
a x′dx′

= 1
aF(f)( ξ+ba ).

(ii) Let c be a positive real number. Compute the Fourier transform of f(x) = e−cx
2

sin(bx).

Solution: Using the fact that sin(bx) = −i 1
2 (eibx − e−ibx), and setting a =

√
c we infer that

f(x) = 1
2ie
−(ax)2

(eibx − e−ibx)

= 1
2ie
−(ax)2

eibx − 1
2ie
−(ax)2

ei(−b)x)

and using (i) and (7) we deduce

f̂(ξ) = 1
2i

1
a

1√
4π

(e−( ξ+ba )2

− e−( ξ−ba )2

).

In conclusion

f̂(ξ) = 1
2i

1√
4πc

(e−
1
c (ξ+b)2

− e− 1
c (ξ−b)2

).

Question 42: (a) Compute the Fourier transform of the function f(x) defined by

f(x) =

{
1 if |x| ≤ 1

0 otherwise
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Solution: By definition

F(f)(ω) =
1

2π

∫ 1

−1

eiξω = =
1

2π

1

iω
(eiω − e−iω)

=
1

2π

2 sin(ω)

ω
.

Hence

F(f)(ω) =
1

π

sin(ω)

ω
.

(b) Find the inverse Fourier transform of g(ω) = sin(ω)
ω .

Solution: Using (a) we deduce that g(ω) = πF(f)(ω), that is to say, F−1(g)(x) = πF−1(F(f))(x).
Now, using the inverse Fourier transform, we deduce that F−1(g)(x) = πf(x) at every point x where
f(x) is of class C1 and F−1(g)(x) = π

2 (f(x−) + f(x+)) at discontinuity points of f . As a result:

F−1(g)(x) =


π if |x| < 1
π
2 at |x| = 1

0 otherwise

Question 43: Use the Fourier transform technique to solve the following PDE:

∂tu(x, t) + c∂xu(x, t) + γu(x, t) = 0,

for all x ∈ (−∞,+∞), t > 0, with u(x, 0) = u0(x) for all x ∈ (−∞,+∞).

Solution: By taking the Fourier transform of the PDE, one obtains

∂tF(u)− iωcF(y) + γF(y) = 0.

The solution is
F(u)(ω, t) = c(ω)eiωct−γt.

The initial condition implies that c(ω) = F(u0)(ω):

F(u)(ω, t) = F(u0)(ω)eiωcte−γt.

The shift lemma in turn implies that

F(u)(ω, t) = F(u0(x− ct))(ω)e−γt = F(u0(x− ct)e−γt)(ω).

Applying the inverse Fourier transform gives:

u(x, t) = u0(x− ct)e−γt.

Question 44: Solve by the Fourier transform technique the following equation: ∂xxφ(x) −
2∂xφ(x) + φ(x) = H(x)e−x, x ∈ (−∞,+∞), where H(x) is the Heaviside function. (Hint:
use the factorization iω3 + ω2 + iω + 1 = (1 + ω2)(1 + iω) and recall that F(f(x))(−ω) =
F(f(−x))(ω)).

Solution: Applying the Fourier transform with respect to x gives

(−ω2 + 2iω + 1)F(φ)(ω) = F(H(x)e−x)(ω) =
1

2π

1

1− iω
.

where we used (8). Then, using the hint gives

F(φ)(ω) =
1

2π

1

(1− iω)(−ω2 + 2iω + 1)
=

1

2π

1

iω3 + ω2 + iω + 1

=
1

2π

1

1 + ω2

1

1 + iω
.
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We now use again (8) and (5) to obtain

F(φ)(ω) = π
1

π

1

1 + ω2

1

2π

1

1− i(−ω)
= πF(e−|x|)(ω)F(H(x)e−x)(−ω).

Now we use F(H(x)e−x)(−ω) = F(H(−x)ex)(ω) and we finally have

F(φ)(ω) = πF(e−|x|)(ω)F(H(−x)ex)(ω).

The Convolution Theorem (4) gives

F(φ)(ω) = π
1

2π
F(e−|x| ∗ (H(−x)ex))(ω).

We obtain φ by using the inverse Fourier transform

φ(x) =
1

2
e−|x| ∗ (H(−x)ex),

i.e.,

φ(x) =

∫ +∞

−∞

1

2
e−|x−y|H(−y)eydy

and recalling that H is the Heaviside function we finally have

φ(x) =
1

2

∫ 0

−∞
ey−|x−y|dy =

{
1
4e
−x if x ≥ 0

( 1
4 − x)ex if x ≤ 0.

Question 45: Use the Fourier transform technique to solve the following ODE y′′(x)− y(x) =
f(x) for x ∈ (−∞,+∞), with y(±∞) = 0, where f is a function such that |f | is integrable over
R.

Solution: By taking the Fourier transform of the ODE, one obtains

−ω2F(y)−F(y) = F(f).

That is

F(y) = −F(f)
1

1 + ω2
.

and the convolution Theorem, see (4), together with (5) gives

F(y) = −πF(f)F(e−|x|) = −1

2
F(f ∗ e−|x|).

Applying F−1 on both sides we obtain

y(x) = −1

2
f ∗ e−|x| = −1

2

∫ ∞
−∞

e−|x−z|f(z)dz

That is

y(x) = −1

2

∫ ∞
−∞

e−|x−z|f(z)dz.

Question 46: Use the Fourier transform method to compute the solution of utt − a2uxx = 0,
where x ∈ R and t ∈ (0,+∞), with u(0, x) = f(x) := sin2(x) and ut(0, x) = 0 for all x ∈ R.

Solution: Take the Fourier transform in the x direction:

F(u)tt + ω2a2F(u) = 0.

This is an ODE. The solution is

F(u)(t, ω) = c1(ω) cos(ωat) + c2(ω) sin(ωat).
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The initial boundary conditions give

F(u)(0, ξ) = F(f)(ω) = c1(ω)

and c2(ω) = 0. Hence

F(t, ω) = F(f)(ω) cos(ωat) =
1

2
F(f)(ω)(eiaωt + e−iaωt).

Using the shift lemma, we infer that

F(t, ω) =
1

2
(F(f(x− at))(ω) + F(f(x+ at))(ω)).

Usin the inverse Fourier transform, we finaly conclude that

u(t, x) =
1

2
(f(x− at) + f(x+ at)) =

1

2
(sin2(x+ at) + sin2(x− at)).

Note that this is the D’Alembert formula.

Question 47: Use the Fourier transform method to compute the solution of utt − a2uxx = 0,
where x ∈ R and t ∈ (0,+∞), with u(0, x) = f(x) := cos2(x) and ut(0, x) = 0 for all x ∈ R.

Solution: Take the Fourier transform in the x direction:

F(u)tt + ω2a2F(u) = 0.

This is an ODE. The solution is

F(u)(t, ω) = c1(ω) cos(ωat) + c2(ω) sin(ωat).

The initial boundary conditions give

F(u)(0, ξ) = F(f)(ω) = c1(ω)

and c2(ω) = 0. Hence

F(t, ω) = F(f)(ω) cos(ωat) =
1

2
F(f)(ω)(eiaωt + e−iaωt).

Using the shift lemma (i.e., formula (6)) we obtain

u(t, x) =
1

2
(f(x− at) + f(x+ at)) =

1

2
(cos2(x+ at) + cos2(x− at)).

Note that this is the D’Alembert formula.

Question 48: Solve the integral equation: f(x) + 1
2π

∫ +∞
−∞

f(y)
(x−y)2+1dy = 1

x2+4 + 1
x2+1 , for all

x ∈ (−∞,+∞).

Solution: The equation can be re-written

f(x) +
1

2π
f ∗ 1

x2 + 1
=

1

x2 + 4
+

1

x2 + 1
.

We take the Fourier transform of the equation and we apply the Convolution Theorem (see (4))

F(f) +
1

2π
2πF(

1

x2 + 1
)F(f) = F(

1

x2 + 4
) + F(

1

x2 + 1
).

Using (5), we obtain

F(f) +
1

2
e−|ω|F(f) =

1

4
e−2|ω| +

1

2
e−|ω|,

which gives

F(f)(1 +
1

2
e−|ω|) =

1

2
e−|ω|(

1

2
e−|ω| + 1).
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We then deduce

F(f) =
1

2
e−|ω|.

Taking the inverse Fourier transform, we finally obtain f(x) = 1
x2+1 .

Question 49: Solve the following integral equation (Hint: solution is short):∫ +∞

−∞
f(y)f(x− y)dy − 2

√
2

∫ +∞

−∞
e−

y2

2π f(x− y)dy = −2πe−
x2

4π . ∀x ∈ R.

Solution: This equation can be re-written using the convolution operator:

f ∗ f − 2
√

2e−
x2

2π ∗ f = −2πe−
x2

4π .

We take the Fourier transform and use the convolution theorem (4) together with (7) to obtain

2πF(f)2 − 2π2
√

2F(f)
1√

4π 1
2π

e
−ω2 1

4 1
2π = −2π

1√
4π 1

4π

e
−ω2 1

4 1
4π

F(f)2 − 2F(f)e−ω
2 π

2 + e−ω
2π = 0

(F(f)− e−ω
2 π

2 )2 = 0.

This implies

F(f) = e−ω
2 π

2 .

Taking the inverse Fourier transform, we obtain

f(x) =
√

2e−
x2

2π .

Question 50: Solve the following integral equation (Hint: x2 − 3xa+ 2a2 = (x− a)(x− 2a)):∫ +∞

−∞
f(y)f(x− y)dy − 3

√
2

∫ +∞

−∞
e−

y2

2π f(x− y)dy = −4πe−
x2

4π . ∀x ∈ R.

Solution: This equation can be re-written using the convolution operator:

f ∗ f − 3
√

2e−
x2

2π ∗ f = −4πe−
x2

4π .

We take the Fourier transform and use (7) to obtain

2πF(f)2 − 2π3
√

2F(f)
1√

4π 1
2π

e
−ω2 1

4 1
2π = −4π

1√
4π 1

4π

e
−ω2 1

4 1
4π

F(f)2 − 3F(f)e−ω
2 π

2 + 2e−ω
2π = 0

(F(f)− e−ω
2 π

2 )(F(f)− 2e−ω
2 π

2 ) = 0.

This implies

either F(f) = e−ω
2 π

2 , or F(f) = 2e−ω
2 π

2 .

Taking the inverse Fourier transform, we obtain

either f(x) =
√

2e−
x2

2π , or f(x) = 2
√

2e−
x2

2π .

Question 51: Solve the integral equation: f(x) + 3
2

∫ +∞
−∞ e−|x−y|f(y)dy = e−|x|, for all x ∈

(−∞,+∞).



Math 602 25

Solution: The equation can be re-written

f(x) +
3

2
e−|x| ∗ f = e−|x|.

We take the Fourier transform of the equation and apply the Convolution Theorem (see (4))

F(f) +
3

2
2πF(e−|x|)F(f) = F(e−|x|).

Using (5), we obtain

F(f) + 3π
1

π

1

1 + ω2
F(f) =

1

π

1

1 + ω2
,

which gives

F(f)
ω2 + 4

1 + ω2
=

1

π

1

1 + ω2
.

We then deduce

F(f) =
1

π

1

4 + ω2
=

1

2
F(e−2|x|).

Taking the inverse Fourier transform, we finally obtain f(x) = 1
2e
−2|x|.

Question 52: Solve the following integral equation
∫ +∞
−∞ e−(x−y)2

g(y)dy = e−
1
2x

2

for all x ∈
(−∞,+∞), i.e., find the function g that solves the above equation.

Solution: The left-hand side of the equation is a convolution; hence,

e−x
2

∗ g(x) = e−
1
2x

2

.

By taking the Fourier transform, we obtain

2π
1√
4π
e−

1
4ω

2

Fg(ω) =
1√
2π
e−

1
2ω

2

.

That gives

F(g)(ω) =
1√
2π
e−

1
4ω

2

.

By taking the inverse Fourier transform, we deduce

g(x) =

√
4π√
2π
e−x

2

=

√
2

π
e−x

2

.

Question 53: Solve the integral equation:
∫ +∞
−∞ f(y)f(x−y)dy = 4

x2+4 , for all x ∈ (−∞,+∞).
How many solutions did you find?

Solution: The equation can be re-written

f ∗ f =
4

x2 + 4
.

We take the Fourier transform of the equation and apply the Convolution Theorem (see (4))

2πF(f)2 = F(
4

x2 + 4
)

Using (5), we obtain

2πF(f)2 = e−2|ω|.

which gives

F(f) = ± 1√
2π
e−|ω|.
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Taking the inverse Fourier transform, we finally obtain

f(x) = ± 1√
2π

2

x2 + 1
.

We found two solutions: a positive one and a negative one.

Question 54: Use the Fourier transform method to solve the equation ∂tu + 2t
1+t2 ∂xu = 0,

u(x, 0) = u0(x), in the domain x ∈ (−∞,+∞) and t > 0.

Solution: We take the Fourier transform of the equation with respect to x

0 = ∂tF(u) + F(
2t

1 + t2
∂xu)

= ∂tF(u) +
2t

1 + t2
F(∂xu)

= ∂tF(u)− iω 2t

1 + t2
F(u).

This is a first-order linear ODE:

∂tF(u)

F(u)
= iω

2t

1 + t2
= iω

d

dt
(log(1 + t2))

The solution is
F(u)(ω, t) = K(ω)eiω log(1+t2).

Using the initial condition, we obtain

F(u0)(ω) = F(u)(ω, 0) = K(ω).

The shift lemma (see formula (6)) implies

F(u)(ω, t) = F(u0)(ω)eiω log(1+t2) = F(u0(x− log(1 + t2))),

Applying the inverse Fourier transform finally gives

u(x, t) = u0(x− log(1 + t2)).

Question 55: Solve the integral equation:∫ +∞

−∞

(
f(y)−

√
2e−

y2

2π − 1

1 + y2

)
f(x−y)dy = −

∫ +∞

−∞

√
2

1 + y2
e−

(x−y)2

2π dy, ∀x ∈ (−∞,+∞).

(Hint: there is an easy factorization after applying the Fourier transform.)

Solution: The equation can be re-written

f ∗ (f −
√

2e−
x2

2π − 1

1 + x2
) = − 1

1 + x2
∗
√

2e−
x2

2π .

We take the Fourier transform of the equation and apply the Convolution Theorem (see (4))

2πF(f)

(
F(f)−

√
2F(e−

x2

2π )−F(
1

1 + x2
)

)
= −2πF(

1

1 + x2
)
√

2F(e−
x2

2π )

Using (5), (7) we obtain

√
2F(e−

x2

2π ) =
√

2
1√

4π 1
2π

e
− ω2

4 1
2π = e−

πω2

2

F(
1

1 + x2
) =

1

2
e−|ω|,
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which gives

F(f)

(
F(f)− e−πω

2

2 − 1

2
e−|ω|

)
= −1

2
e−|ω|e−

πω2

2 .

This equation can also be re-written as follows

F(f)2 −F(f)e−
πω2

2 −F(f)
1

2
e−|ω| +

1

2
e−|ω|e−

πω2

2 = 0,

and can be factorized as follows:

(F(f)− e−πω
2

2 )(F(f)− 1

2
e−|ω|) = 0.

This means that either F(f) = e−
πω2

2 or F(f) = 1
2e
−|ω|. Taking the inverse Fourier transform, we

finally obtain two solutions

f(x) =
√

2e−
x2

2π , or f(x) =
1

1 + x2
.

Another solution consists of observing that the equation can also be re-written

F(f)2 −
√

2F(e−
x2

2π )F(f)−F(
1

1 + x2
)F(f) + F(

1

1 + x2
)
√

2F(e−
x2

2π ) = 0
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5 Wave equation

Question 56: Consider the following wave equation

∂ttw − c2∂xxw = 0, x > 0, t > 0

w(x, 0) = f(x), x > 0, ∂tw(x, 0) = 0, x > 0, and w(0, t) = 0, t > 0.

(a) Solve the equation (Hint: recall that the solution can always be put in the form F (x− ct) +
G(x+ ct))

Solution: If x− ct > 0, we can apply D’Alembert’s formula u(x, t) = F (x− ct) +G(x+ ct)

F (z) =
1

2
f(z) +

1

2c

∫ 0

z

g(τ)dτ, G(z) =
1

2
f(z) +

1

2c

∫ z

0

g(τ)dτ,

where g(x) = ∂tw(x, 0) = 0. In other words

w(x, t) =
1

2
(f(x− ct) + f(x+ ct)), if x ≥ ct.

If x− ct < 0 we apply the boundary condition at x = 0

w(0, t) = 0 = F (−ct) +G(ct), ∀t ≥ 0.

This means f(−z) = −G(z) = − 1
2f(z) for all z ≥ 0. In other words we have obtained

w(x, t) =
1

2
(−f(−x+ ct) + f(x+ ct)), if x ≤ ct.

(b) We now set c = 1, f(x) = x, if x ∈ [0, 1], f(x) = 2− x, if x ∈ [1, 2], and f(x) = 0 otherwise.
Draw the graph of the solution at t = 0, t = 1, and t = 2 (draw three different graphs).

Solution:

0 1 2 0 1 2 3 1 2 3 4 5

Question 57: Let u solve the wave equation ∂ttu − c2∂xxu = 0, x ∈ [0, L], t ≥ 0, with
u(x, 0) = f(x), ut(x, 0) = 0. Let F (x), x ∈ (−∞,+∞) be the odd periodic extension of f .
Prove that u(x, t) = 1

2 (F (x+ct)+F (x−ct)) is the solution (do not spend to much time proving
u(L, t) = 0 if you do not remember how to do it).

Solution: Clearly u(x, t) solve the PDE ∂ttu − c2∂xxu = 0, x ∈ [0, L], t ≥ 0. Moreover
u(x, 0) = 1

2 (F (x) +F (x)) = f(x), for all x ∈ [0, L]. Moreover ∂tu(x, 0) = 1
2 (cF (x)− cF (x)) = 0,

for all x ∈ [0, L]. Moreover u(0, t) = 1
2 (F (ct) + F (−ct)) = 0 since F is odd. Let us compute

u(L, t) = 1
2 (F (L+ ct) + F (L− ct)). Observe −(L+ ct) = −L− ct = L− ct− 2L, that is to say

F (−(L+ ct)) = F (L− ct− 2L) = F (L− ct), since F is 2L-periodic. But since F is odd, we have
−F (L+ ct) = F (−(L+ ct)) = F (L− ct), i.e., u(L, t) = 0.

Question 58: Let u be a solution of the wave equation ∂ttu − c2∂xxu = 0, x ∈ [0, L], t ≥ 0.

Let E = 1
2

∫ L
0

(∂tu)2dx+ c2

2

∫ L
0

(∂xu)2dx.
(a) Compute the time derivative of E.

Solution: Multiply the equation by ∂tu and integrate over the domain. It is clear that

dE

dt
= ∂xu(x, t)∂tu(x, t)|L0 .
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(b) In addition to being a solution of the wave equation, assume that u(0, t) = 0, ∂xu(L, t) = 0,
and u(x, 0) = f(x), ∂tu(x, 0) = g(x), where f and g are two given functions. Prove that if a
solution to this problem exists, then it is unique.

Solution: Let u1, u2 be two solutions and let φ = u1 − u2. Then φ solves the homogeneous
problem. From (a) we infer E(t) = E(0) = 0 where E is the energy for φ. Hence ∂xφ = 0, which
means φ(x, t) = ψ(t). But φ(0, t) = ψ(t) = 0. In conclusion φ = 0, i.e., u1 = u2.

Question 59: Solve the PDE

utt − a2uxx = 0, −∞ < x < +∞, 0 ≤ t,
u(x, 0) = sin(x), ut(x, 0) = a cos(x), −∞ < x < +∞.

Solution: Apply D’Alembert’s Formula. u(x, t) = sin(x+ at).

Question 60: Solve the PDE

utt − a2uxx = 0, −∞ < x < +∞, 0 ≤ t,
u(0, t) = 0, 0 ≤ t,
u(x, 0) = x3, ut(x, 0) = 0, −∞ < x < +∞.

Solution: Use the odd extension of x3, that is, x3. Than, apply D’Alembert’s Formula. u(x, t) =
1
2 [(x+ at)3 + (x− at)3].

Question 61: Solve the PDE

utt − a2uxx = 0, −∞ < x < +∞, 0 ≤ t,
u(x, 0) = cos(x), ut(x, 0) = −a sin(x), −∞ < x < +∞.

Solution: Apply D’Alembert’s Formula.

u(x, t) = 1
2 (cos(x− at) + cos(x+ at))− 1

2a

∫ x+at

x−at
a sin(ξ)dξ

= 1
2 (cos(x− at) + cos(x+ at)) + 1

2 (cos(x+ at)− cos(x− at))
= cos(x+ at).

Hence u(x, t) = cos(x+ at).

Question 62: Solve the PDE

utt − uxx = 0, 0 < x < +∞, 0 < t,

u(0, t) = 0, u(1, t) = 0 0 < t,

u(x, 0) = sin(πx), ut(x, 0) = 0, 0 < x < +∞.

Solution: We have to define the odd extension of sin(πx) on (−1,+1). Clearly sin(πx) is the
odd extension. Now we define the periodic extension of sin(πx) over the entire real line. Clearly
sin(πx) is the extension in question. The D’Alembert formula, which is valid on the entire real line,
gives

u(x, t) = 1
2 (sin(π(x− t)) + sin(π(x+ t))

= 1
2 ((cos(πt) sin(πx)− sin(πt) cos(πx)) + 1

2 ((cos(πt) sin(πx) + sin(πt) cos(πx))

= cos(πt) sin(πx).

Hence u(x, t) = cos(πt) sin(πx) for all x ∈ (0, 1), t > 0.

Question 63: Consider the PDE

utt − uxx = 0, 0 ≤ x ≤ 2, 0 < t,

u(0, t) = 0, u(2, t) = 0 0 < t,

ut(x, 0) = 0, u(x, 0) = f(x) :=

{
x 0 ≤ x ≤ 1,

2− x 1 ≤ x ≤ 2.
0 < x < +2.
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(a) Give u(x,t) for all x ∈ [0,+2], t > 0. (Hint use an extension technique).

Solution: We notice first that the wave speed is 1. We define fo to be the odd extension of f
over (−2,+2), the we define fop to be the periodic extension of fo over (−∞,+∞) with period 4.
From class we know that the solution to the above problem is given by the D’Alembert formula

u(x, t) =
1

2
(fop(x− t) + fop(x+ t)).

(b) Using (a), compute u(x, 1
2 ), for all x ∈ [0,+2].

Solution: We have to compute fop(x− 1
2 ) and fop(x+ 1

2 ).

Case 1: 0 ≤ x ≤ 1
2 . Then − 1

2 ≤ x− 1
2 ≤ 0 and by definition of fop, fop(x− 1

2 ) = −f(−x+ 1
2 ) =

x − 1
2 . We also have 1

2 ≤ x + 1
2 ≤ 1, which means fop(x + 1

2 ) = f(x + 1
2 ) = x + 1

2 . Finally
u(x, 1

2 ) = 1
2 (x− 1

2 + x+ 1
2 ) = x for all x ∈ [0, 1

2 ].

Case 2: 1
2 ≤ x ≤ 3

2 . Then 0 ≤ x − 1
2 ≤ 1 and fop(x − 1

2 ) = f(x − 1
2 ) = x − 1

2 . We also
have 1 ≤ x + 1

2 ≤ 2, which means fop(x + 1
2 ) = f(x + 1

2 ) = 2 − (x + 1
2 ) = −x + 3

2 . Finally
u(x, 1

2 ) = 1
2 (x− 1

2 − x+ 3
2 ) = 1

2 for all x ∈ [ 1
2 ,

3
2 ].

Case 3: 3
2 ≤ x ≤ 2. Then 1 ≤ x− 1

2 ≤
3
2 and fop(x− 1

2 ) = f(x− 1
2 ) = 2− (x− 1

2 ) = 5
2 − x. We

also have 2 ≤ x+ 1
2 ≤

5
2 , which means by periodicity that fop(x+ 1

2 ) = fop(x+ 1
2−4) = fop(x− 7

2 ).
Now we observe that −2 ≤ x − 7

2 ≤ −
3
2 , which means fop(x + 1

2 ) = fop(x − 7
2 ) = −f( 7

2 − x) =
−(2− ( 7

2 − x)) = −(− 3
2 + x) = 3

2 − x. In conclusion u(x, 1
2 ) = 1

2 ( 5
2 − x+ 3

2 − x) = 2− x for all
x ∈ [ 3

2 , 2].

Conclusion: We now put everything together

u(x,
1

2
) =


x, x ∈ [0, 1

2 ],
1
2 , x ∈ [ 1

2 ,
3
2 ],

2− x, x ∈ [ 3
2 , 2].

.

Question 64: Consider the equation u′′(x) = f(x) for x ∈ (0, 1) with u(0) = 1 and u′(1) = 1.
Let G(x, x0) be the associated Green’s function.
(a) Give an expression of u(x) in terms of G, f and the boundary data.

Solution: The Green’s function is defined by

G′′(x, x0) = δ(x− x0), G(0, x0) = 0, G′(1, x0) = 0.

We multiply the equation by u and we integrate (in the distribution sense),∫ 1

0

G′′(x, x0)u(x)dx = u(x0).

We integrates by parts twice and we obtain,

u(x0) = −
∫ 1

0

G′(x, x0)u′(x)dx+G′(1, x0)u(1)−G′(0, x0)u(0)

=

∫ 1

0

G(x, x0)u′′(x)dx−G(1, x0)u′(1) +G(0, x0)u′(0) +G′(1, x0)u(1)−G′(0, x0)u(0).

Then, using the boundary conditions for G and u, we obtain

u(x0) =

∫ 1

0

G(x, x0)f(x)dx−G′(0, x0)−G(1, x0), ∀x0 ∈ (0, 1).
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(b) Compute G(x, x0).

Solution: For x < x0 we have

G(x, x0) = ax+ b.

The boundary condition G(0, x0) = 0 implies b = 0. For x0 < x we have

G(x, x0) = cx+ d.

The boundary condition G′(1, x0) = 0 implies c = 0. Moreover we have

1 = lim
ε→0

∫ ε

−ε
G′′(x, x0)dx = G′(x+

0 , x0)−G′(x−0 , x0) = −a,

meaning a = −1. The continuity of G at x0 implies

ax0 = d,

implying d = −x0. As a result,

G(x, x0) =

{
−x, if 0 ≤ x ≤ x0,

−x0, if x0 ≤ x ≤ 1.

Question 65: Solve the wave equation on the semi-infinite domain (0,+∞),

∂ttw − 4∂xxw = 0, x ∈ (0,+∞), t > 0

w(x, 0) = (1 + x2)−1, x ∈ (0,+∞); ∂tw(x, 0) = 0, x ∈ (0,+∞); and ∂xw(0, t) = 0, t > 0.

(Hint: Consider a particular extension of w over R)

Solution: We define f(x) = (1 + x2)−1 and its even extension fe(x) on −∞,+∞. Let we be the
solution to the wave equation over the entire real line with fe as initial data:

∂ttwe − 4∂xxwe = 0, x ∈ R, t > 0

we(x, 0) = fe(x), x > 0, ∂twe(x, 0) = 0, x ∈ R.

The solution to this problem is given by the D’Alembert formula

we(x, t) =
1

2
(fe(x− 2t) + fe(x+ 2t)), for all x ∈ R and t ≥ 0.

Let x be positive. Then w(x, t) = we(x, t) for all x ∈ (0,+∞), since by construction ∂xwe(0, t) = 0
for all times.

Case 1: If x− 2t > 0, fe(x− 2t) = f(x− 2t); as a result

w(x, t) =
1

2
(f(x− 2t) + f(x+ 2t), If x− 2t > 0.

Case 2: If x− 2t < 0, fe(x− 2t) = f(−x+ 2t); as a result

w(x, t) =
1

2
(f(−x+ 2t) + f(x+ 2t)), If x− 2t < 0.

Note that actually fe(x) = (1 + x2)−1; as a result, the solution can also be re-written as follows:

w(x, t) =
1

2

(
1

1 + (x− 2t)2
+

1

1 + (x+ 2t)2

)
.
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Question 66: Solve the PDE

utt − uxx = 0, 0 ≤ x ≤ 1, 0 < t,

∂xu(0, t) = 0, ∂xu(1, t) = 0 0 < t,

u(x, 0) = cos(πx), ut(x, 0) = 0, 0 < x < +1.

(Hint: Consider the periodic extension over R of a particular extension of u over [−1 + 1]).

Solution: The even extension of u over [−1+1], say ue, satisfies the PDE and the initial conditions,
and always satisfies ∂xue(0, t) = 0, ∂xue(1, t) = 0. Since ∂ue(1, t), we deduce ∂ue(−1, t) = 0.
This means that the periodic extension of ue, says up, is smooth and also satisfies the PDE plus the
initial conditions. By construction ∂xup(0, t) = 0 and ∂xue(1, t) = 0. As a result, we can obtain
u by computing the solution of the wave equation on R using the periodic extension over R of the
even extension of the initial data over [−1 + 1], i.e., u = up|[0,1]

We have to define the even extension of cos(πx) on (−1,+1). Clearly cos(πx) is the even extension.
Now we define the periodic extension of cos(πx) over the entire real line. Clearly cos(πx) is the
extension in question. The D’Alembert formula, which is valid on the entire real line, gives

u(x, t) = 1
2 (cos(π(x− t)) + cos(π(x+ t))

= 1
2 ((cos(πt) cos(πx) + sin(πt) sin(πx)) + 1

2 ((cos(πt) cos(πx)− sin(πt) sin(πx))

= cos(πt) cos(πx).

Hence u(x, t) = cos(πt) cos(πx) for all x ∈ (0, 1), t > 0.

Question 67: Consider the following wave equation

∂ttw − 4∂xxw = 0, x > 0, t > 0

w(x, 0) = x(1 + x2)−1, x > 0, ∂tw(x, 0) = 0, x > 0, and w(0, t) = 0, t > 0.

(a) Solve the equation.

Solution: We define f(x) = x(1 + x2)−1 and its odd extension fo(x). Let w0 be the solution to
the wave equation over the entire real line with fo as initial data:

∂ttwo − 4∂xxwo = 0, x ∈ R, t > 0

wo(x, 0) = fo(x), x > 0, ∂two(x, 0) = 0, x ∈ R.

The solution to this problem is given by the D’Alembert formula

wo(x, t) =
1

2
(fo(x− 2t) + fo(x+ 2t)), for all x ∈ R and t ≥ 0.

Let x be positive. Then w(x, t) = wo(x, t) (since by construction wo(0, t) = 0 for all times).

Case 1: If x− 2t > 0, fo(x− 2t) = f(x− 2t); as a result

w(x, t) =
1

2
(f(x− 2t) + f(x+ 2t).

Case 2: If x− 2t < 0, fo(x− 2t) = −f(−x+ 2t); as a result

w(x, t) =
1

2
(−f(−x+ 2t) + f(x+ 2t)).

Note that actually f0(x) = x(1 + x2)−1; as a result, the solution can also be re-written as follows:

w(x, t) =
1

2
((x− 2t)(1 + (x− 2t)2)−1 + (x+ 2t)(1 + (x+ 2t)2)−1).
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Question 68: Consider the wave equation

∂ttw − ∂xxw = 0, x < 0, t > 0

w(x, 0) = f(x), x < 0, ∂tw(x, 0) = 0, x < 0, and w(0, t) = 0, t > 0.

where f(x) = −x, if x ∈ [−1, 0], f(x) = 2 + x, if x ∈ [−2,−1], and f(x) = 0 otherwise. Give a
graphical solution to the problem at t = 0, t = 1, and t = 2 (draw three different graphs and
explain what you do)

Solution:

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

1

1/2

1/2

1/2

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

Initial data + odd extension Solution

Question 69: Solve the PDE

utt − a2uxx = 0, −∞ < x < +∞, 0 ≤ t,
u(x, 0) = sin(x), ut(x, 0) = a cos(x), −∞ < x < +∞.

Solution: Apply D’Alembert’s Formula.

u(x, t) =
1

2
(sin(x+ at) + sin(x− at)) +

1

2a

∫ x+at

x−at
a cos(ξ)ξ

=
1

2
(sin(x+ at) + sin(x− at)) +

1

2
(sin(x+ at)− sin(x− at))

= sin(x+ at).

Question 70: Solve the PDE

utt − uxx = 0, 0 ≤ x ≤ 1, 0 < t,

u(0, t) = 0, u(1, t) = 0 0 < t,

u(x, 0) = sin(πx), ut(x, 0) = 0, 0 < x < +∞.

(Hint: Consider the periodic extension over R of the odd extension of u over [−1 + 1]).

Solution: The odd extension of u over [−1+1], say uo, satisfies the PDE and the initial conditions,
and always satisfies uo(0, t) = 0, uo(1, t) = 0, uo(−1, t) = 0. Since uo(1, t) = uo(−1, t) = 0, the
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periodic extension, says up, is smooth and also satisfies the PDE plus the initial conditions. As a
result, we can obtain u by computing the solution of the wave equation on R using the periodic
extension over R of the odd extension of the initial data over [−1 + 1], i.e., u = up|[0,1]

We have to define the odd extension of sin(πx) on (−1,+1). Clearly sin(πx) is the odd extension.
Now we define the periodic extension of sin(πx) over the entire real line. Clearly sin(πx) is the
extension in question. The D’Alembert formula, which is valid on the entire real line, gives

u(x, t) = 1
2 (sin(π(x− t)) + sin(π(x+ t))

= 1
2 ((cos(πt) sin(πx)− sin(πt) cos(πx)) + 1

2 ((cos(πt) sin(πx) + sin(πt) cos(πx))

= cos(πt) sin(πx).

Hence u(x, t) = cos(πt) sin(πx) for all x ∈ (0, 1), t > 0.

Question 71: Solve utt − 4uxx = 0, x ∈ (−∞,+∞) and t ≥ 0, with u(x, 0) = sin2(x),
∂tu(x, 0) = − 2x

(1+x2)2 .

Solution: The speed is 2. We apply the D’Alembert formula.

u(x, t) =
1

2

(
sin2(x− 2t) + sin2(x+ 2t)

)
+

1

4

∫ x+2t

x−2t

− 2ξ

(1 + ξ2)2
dξ,

=
1

2

(
sin2(x− 2t) + sin2(x+ 2t)

)
+

1

4

(
1

1 + ξ2

∣∣∣∣x+2t

x−2t

=
1

2

(
sin2(x− 2t) + sin2(x+ 2t)

)
+

1

4

(
1

1 + (x+ 2t)2
− 1

1 + (x− 2t)2

)
.

Question 72: Consider the wave equation ∂ttw − ∂xxw = 0, x ∈ (0, 4), t > 0, with

w(x, 0) = f(x), x ∈ (0, 4), ∂tw(x, 0) = 0, x ∈ (0, 4), and w(0, t) = 0, w(4, t) = 0, t > 0.

where f(x) = x − 1, if x ∈ [1, 2], f(x) = 3 − x, if x ∈ [2, 3], and f(x) = 0 otherwise. Give a
simple expression of the solution in terms of an extension of f . Give a graphical solution to the
problem at t = 0, t = 1, t = 2, and t = 3 (draw four different graphs and explain).

Solution: We know from class that with Dirichlet boundary conditions, the solution to this problem
is given by the D’Alembert formula where f must be replaced by the periodic extension (of period
8) of its odd extension, say fo,p, where

fo,p(x+ 8) = fo,p(x), ∀x ∈ R

fo,p(x) =

{
f(x) if x ∈ [0, 4]

−f(−x) if x ∈ [−4, 0)

The solution is

u(x, t) =
1

2
(fo,p(x− t) + fo,p(x+ t)).

I draw on the left of the figure the graph of fo,p. Half the graph moves to the right with speed 1,
the other half moves to the left with speed 1.

Question 73: Solve utt− 4uxx = 0, x ∈ (0, 1) and t ≥ 0, with u(0, t) = u(1, t) = 0, u(x, 0) = 0,
∂tu(x, 0) = g(x) := 2π sin(πx). (Hint: use an extension technique).

Solution: We notice first that the wave speed is 2. We define go to be the odd extension of g
over (−1,+1). Clearly go(x) = 2π sin(πx) since sin(πx) is odd. We define gop to be the periodic
extension of go over (∞,+∞) with period 2. Clearly, gop(x) = 2π sin(πx) since 2 is a period for
sin(πx). From class we know that the solution to the above problem is given by the restriction of



Math 602 35

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4
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0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

Initial data + periodic extension of the odd extension at
t = 0, 1, 2, 3.

Solution in domain [0, 4]
at t = 0, 1, 2, 3

the D’Alembert formula to the interval [0, 1]:

u(x, t) =
1

4

∫ x+2t

x−2t

gop(ξ)dξ =
1

4

∫ x+2t

x−2t

2π sin(πξ)dξ,

= −1

2
(cos(π(x+ 2t))− cos(π(x− 2t)))

= sin(
π

2
(2x)) sin(

π

2
(4t))

= sin(πx) sin(2πt), ∀x ∈ [0, 1],∀t ≥ 0.

Question 74: Solve utt − 4uxx = 0, x ∈ (0, 1) and t ≥ 0, with u(0, t) = 0, ∂xu(1, t) = 0,
u(x, 0) = 0, ∂tu(x, 0) = g(x) := 2π sin(π2x). (Hint: Pay attention to the boundary conditions.
Use three extensions.)

Solution: To be able to apply the d’Alembert formula, we need to extend the above problem
to the (−∞,+∞). the Dirichlet condition a x = 0 requires an odd extension and the Neumann
condition requires an even extension.

We define go to be the odd extension of g over (−1,+1) to account for the Dirichlet boundary
condition at x = 0.

go(x) =

{
g(x) for all x ∈ (0, 1),

−g(−x) for all x ∈ (−1, 0)

Clearly go(x) = 2π sin(π2x) since sin(π2x) is odd. More precisely,

go(x) =

{
g(x) = 2π sin(π2x) for all x ∈ (0, 1),

−g(−x) = −2π sin(π2 (−x)) = 2π sin(π2x) for all x ∈ (−1, 0).

Now we need to consider the even extension of go about the point x = 1 to account for the Neumann
boundary condition at x = 1. Let us denote goe(x) this extension. The function goe(x) is such that

goe(x) =

{
goe(x) = go(x) for all x ∈ (−1, 1),

goe(x) = go(2− x) for all x ∈ (1, 3)
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Now we observe that sin(π2 (2 − x)) = sin(π − π
2x) = sin(π2x), which means that goe(x) =

2π sin(π2x). More precisely,

goe(x) =

{
goe(x) = go(x) = 2π sin(π2x) for all x ∈ (−1, 1),

goe(x) = go(2− x) = 2π sin(π2 (2− x)) = 2π sin(π2x) for all x ∈ (1, 3).

Now we consider the periodic extension of goe of period 4, say goep. Clearly goep = 2π sin(π2x),
since 42π sin(π2x) is periodic of period 4. See Figure

We notice finally that the wave speed is 2. From class we know that the solution to the above
problem is given by the restriction of the D’Alembert formula to the interval [0, 1]:

u(x, t) =
1

4

∫ x+2t

x−2t

goep(ξ)dξ =
1

4

∫ x+2t

x−2t

2π sin(
π

2
ξ)dξ,

= −
(

cos(
π

2
(x+ 2t))− cos(

π

2
(x− 2t))

)
= 2 sin(

π

2
(x)) sin(

π

2
(2t))

= 2 sin(
π

2
x) sin(πt), ∀x ∈ [0, 1],∀t ≥ 0.

Question 75: Consider the wave equation ∂ttw−∂xxw = 0, x ∈ (−∞,+∞), t > 0, with initial
data u(x, 0) = 1

1+x2 , ∂tu(x, 0) = 2x
(1+x2)2 . Compute the solution w(x, t).

Solution: The wave speed is 2. The solution is given by the D’Alembert formula,

w(x, t) =
1

2

(
1

1 + (x− t)2
+

1

1 + (x+ t)2

)
+

1

2

∫ x+t

x−t

2τ

(1 + τ2)2
dτ

After integration, we obtain

=
1

2

(
1

1 + (x− t)2
+

1

1 + (x+ t)2

)
− 1

2

[
1

(1 + τ2)

]x+t

x−t
,

which finally gives

w(x, t) =
1

1 + (x− t)2
.

Question 76: Consider the wave equation ∂ttw − ∂xxw = 0, x ∈ (0, 4), t > 0, with

w(x, 0) = f(x), x ∈ (0, 4), ∂tw(x, 0) = 0, x ∈ (0, 4), and ∂xw(0, t) = 0, ∂xw(4, t) = 0, t > 0.

where f(x) = x − 1, if x ∈ [1, 2], f(x) = 3 − x, if x ∈ [2, 3], and f(x) = 0 otherwise. Give a
simple expression of the solution in terms of an extension of f . Give a graphical solution to the
problem at t = 0, t = 1, t = 2, and t = 3 (draw four different graphs and explain).

Solution: We know from class that with homogeneous Neumann boundary conditions, the solution
to this problem is given by the D’Alembert formula where f must be replaced by the periodic
extension (of period 8) of its even extension, say fe,p, where

fe,p(x+ 8) = fe,p(x), ∀x ∈ R

fe,p(x) =

{
f(x) if x ∈ [0, 4]

f(−x) if x ∈ [−4, 0)
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The solution is

u(x, t) =
1

2
(fe,p(x− t) + fe,p(x+ t)).

I draw on the left of the figure the graph of fo,p. Half the graph moves to the right with speed 1,
the other half moves to the left with speed 1.
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(a) Initial data + periodic extension of the even extension at t =
0, 1, 2, 3. Solid line waves move to the right, dotted line waves
move to the left
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(b) Solution in domain (0, 4) at t = 0, 1, 2, 3

Question 77: Solve utt − 4uxx = 0, x ∈ (0, 1) and t ≥ 0, with u(0, t) = 0, ∂xu(1, t) = 0,
u(x, 0) = 0, ∂tu(x, 0) = g(x) := 2π sin(π2x). (Hint: Pay attention to the boundary conditions.
Use three extensions.)

Solution: To be able to apply the d’Alembert formula, we need to extend the above problem
to the (−∞,+∞). the Dirichlet condition a x = 0 requires an odd extension and the Neumann
condition requires an even extension.

We define go to be the odd extension of g over (−1,+1) to account for the Dirichlet boundary
condition at x = 0.

go(x) =

{
g(x) for all x ∈ (0, 1),

−g(−x) for all x ∈ (−1, 0)

Clearly go(x) = 2π sin(π2x) since sin(π2x) is odd. More precisely,

go(x) =

{
g(x) = 2π sin(π2x) for all x ∈ (0, 1),

−g(−x) = −2π sin(π2 (−x)) = 2π sin(π2x) for all x ∈ (−1, 0).

Now we need to consider the even extension of go about the point x = 1 to account for the Neumann
boundary condition at x = 1. Let us denote goe(x) this extension. The function goe(x) is such that

goe(x) =

{
goe(x) = go(x) for all x ∈ (−1, 1),

goe(x) = go(2− x) for all x ∈ (1, 3)
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Now we observe that sin(π2 (2 − x)) = sin(π − π
2x) = sin(π2x), which means that goe(x) =

2π sin(π2x). More precisely,

goe(x) =

{
goe(x) = go(x) = 2π sin(π2x) for all x ∈ (−1, 1),

goe(x) = go(2− x) = 2π sin(π2 (2− x)) = 2π sin(π2x) for all x ∈ (1, 3).

Now we consider the periodic extension of goe of period 4, say goep. Clearly goep = 2π sin(π2x),
since 42π sin(π2x) is periodic of period 4. See Figure

We notice finally that the wave speed is 2. From class we know that the solution to the above
problem is given by the restriction of the D’Alembert formula to the interval [0, 1]:

u(x, t) =
1

4

∫ x+2t

x−2t

goep(ξ)dξ =
1

4

∫ x+2t

x−2t

2π sin(
π

2
ξ)dξ,

= −
(

cos(
π

2
(x+ 2t))− cos(

π

2
(x− 2t))

)
= 2 sin(

π

2
(x)) sin(

π

2
(2t))

= 2 sin(
π

2
x) sin(πt), ∀x ∈ [0, 1],∀t ≥ 0.

Question 78: Consider the wave equation ∂ttw − 4∂xxw = 0, x ∈ (−∞,+∞), t > 0, with
initial data u(x, 0) = 1

1+x2 , ∂tu(x, 0) = − 4x
(1+x2)2 . Compute the solution w(x, t).

Solution: The wave speed is 2. The solution is given by the D’Alembert formula,

w(x, t) =
1

2

(
1

1 + (x− 2t)2
+

1

1 + (x+ 2t)2

)
+

1

4

∫ x+2t

x−2t

− 4τ

(1 + τ2)2
dτ

After integration, we obtain

=
1

2

(
1

1 + (x− 2t)2
+

1

1 + (x+ 2t)2

)
+

1

4

[
2

(1 + τ2)

]x+2t

x−2t

,

which finally gives

w(x, t) =
1

1 + (x+ 2t)2
.

Question 79: Consider the wave equation ∂ttw − ∂xxw = 0, x ∈ (0, 4), t > 0, with

w(x, 0) = f(x), x ∈ (0, 4), ∂tw(x, 0) = 0, x ∈ (0, 4), and ∂xw(0, t) = 0, ∂xw(4, t) = 0, t > 0.

where f(x) = x − 1, if x ∈ [1, 2], f(x) = 3 − x, if x ∈ [2, 3], and f(x) = 0 otherwise. Give a
simple expression of the solution in terms of an extension of f . Give a graphical solution to the
problem at t = 0, t = 1, t = 2, and t = 3 (draw four different graphs and explain).

Solution: We know from class that with homogeneous Neumann boundary conditions, the solution
to this problem is given by the D’Alembert formula where f must be replaced by the periodic
extension (of period 8) of its even extension, say fe,p, where

fe,p(x+ 8) = fe,p(x), ∀x ∈ R

fe,p(x) =

{
f(x) if x ∈ [0, 4]

f(−x) if x ∈ [−4, 0)
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The solution is

u(x, t) =
1

2
(fe,p(x− t) + fe,p(x+ t)).

I draw on the left of the figure the graph of fo,p. Half the graph moves to the right with speed 1,
the other half moves to the left with speed 1.
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(c) Initial data + periodic extension of the even extension at t =
0, 1, 2, 3. Solid line waves move to the right, dotted line waves
move to the left
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(d) Solution in domain (0, 4) at t = 0, 1, 2, 3



40 Math 602

6 Method of characteristics

Question 80: (a) Show that the PDE uy = 0 in the half plane {x > 0} has no solution which
is C1 and satisfies the boundary condition u(y2, y) = y.

Solution: The PDE implies that u(x, y) = φ(x) where φ is any C1 function. The boundary condition
implies φ(1) = u(1,−1) = −1 and φ(1) = u(1, 1) = 1, which is impossible. The reason for this
happening is that the characteristics lines (x = c) cross the boundary curve (the parabola of equation
x = y2) twice.

(b) Find the C1 function that solves the above PDE in the quadrant {x > 0, 0 > y} (beware
the sign of y).

Solution: The PDE implies u(x, y) = φ(x) and the boundary condition implies φ(y2) = u(y2, y) =
y = −|y| since y is negative. Then u(x, y) = φ(x) = −

√
x.

Question 81: Let Ω = {x > 0, y > 0} be the first quadrant of the plane. Let Γ be the line
defined by the following parameterization Γ = {x = s, y = 1/s, s > 0}. Solve the following
PDE:

xux + 2yuy = 0, in Ω,

u(x, y) = x on Γ.

Solution: The characteristics areX(τ, s) = seτ , Y (τ, s) = s−1e2τ . Upon setting u(X(τ, s), Y (τ, s)) =
w(τ, s), we obtain w(τ, s) = w(0, s). Then the boundary condition implies w(0, s) = u(s, 1

s ) = s.

In other words u(x, y) = (x2y−1)1/3.

Question 82: (a) Solve the quasi-linear PDE 3u2ux + 3u2uy = 1 in the plane by using the
method of Lagrange (that is, show that u solves the nonlinear equation c(a(x, y, u), b(x, y, u)) =
0 where c is an arbitrary function and a, b are polynomials of degree 3 that you must find.)

Solution: The auxiliary equation is 3z2φx + 3z2φy + φz = 0. Define the plane Γ = {x = s, y =
s′, z = 0} and enforce φ(x, y, z) = φ0(s, s′) on Γ, where φ0 is an arbitrary C1 function. The
characteristics are X(τ, s, s′) = τ3 + s Y (τ, s, s′) = τ3 + s′, Z(τ, s, s′) = τ . Then φ(x, y, z) =
φ0(s, s′) where s = x− z3 and s′ = y − z3. Then φ(x, y, z) = φ0(x− z3, y − z3). Hence, u solves
φ0(x− u3, y − u3) = 0.

(b) Find a solution to the above PDE that satisfies the boundary condition u(x, 2x) = 1.

Solution: We want φ0(x−1, 2x−1) = 0. Take φ0(α, β) = 2α−β+1. Then 2(x−u3)−(y−u3)+1 =
0, that is u(x, y) = (1 + 2x− y)1/3.
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Question 83: We want to solve the following PDE:

∂tw + 3∂xw = 0, x > −t, t > 0

w(x, t) = wΓ(x, t), for all (x, t) ∈ Γ where

Γ = {(x, t) ∈ R2 s.t. x = −t, x < 0} ∪ {(x, t) ∈ R2 s.t. t = 0, x ≥ 0}
and wΓ is a given function.

(a) Draw a picture of the domain Ω where the PDE must be solved, of the boundary Γ, and of
the characteristics.

Solution:

(b) Define a one-to-one parametric representation of the boundary Γ.

Solution: For negative s we set xΓ(s) = s and tΓ(s) = −s; clearly we have xΓ(s) = −tΓ(s) for all
s < 0. For positive s we set xΓ(s) = s and tΓ(s) = 0. The map R ∈ s 7→ (xΓ(s), tΓ(s)) ∈ Γ is
one-t-one.

(c) Give a parametric representation of the characteristics associated with the PDE.

Solution: (i) We use t and s to parameterize the characteristics. The characteristics are defined
by

∂tX(t, s) = 3, with x(t)Γ(s), s) = xΓ(s).

This yields the following parametric representation of the characteristics

X(t, s) = 3(t− tΓ(s)) + xΓ(s),

where t ≥ 0 and s ∈ (−∞,+∞).

(d) Give an implicit parametric representation of the solution to the PDE.

Solution: (i) Now we set φ(t, s) = w(X(t, s), t(t, s)) and we insert this ansatz in the equation.
This gives dφ

dt (t, s) = 0, i.e., φ(t, s) does not depend on t. In other words

w(X(t, s), t(t, s)) = φ(t, s) = φ(0, s) = w(x(0, s), t(0, s)) = wΓ(xΓ(s), tΓ(s))

A parametric representation of the solution is given by

X(t, s) = 3(t− tΓ(s)) + xΓ(s),

w(X(t, s), t(t, s)) = wΓ(xΓ(s), tΓ(s)).

(e) Give an explicit representation of the solution.

Solution: (i) We have to find the inverse map (x, t) 7→ (t, s). Clearly x − 3t = xΓ(s) − 3tΓ(s).
Then, there are two cases depending on the sign of s.
case 1: If s < 0, then xΓ(s) = s and tΓ(s) = −s. That means x− 3t = 4s, which in turns implies
s = 1

4 (x− 3t). Then

w(x, t) = wΓ( 1
4 (x− 3t),− 1

4 (x− 3t)), if x− 3t < 0.

case 2: If s ≥ 0, then xΓ(s) = s and tΓ(s) = 0. That means x− 3t = s. Then

w(x, t) = wΓ(x− 3t, 0), if x− 3t ≥ 0.

Note that the explicit representation of the solution does not depend on the choice of the parame-
terization.

Question 84: Solve the following PDE by the method of characteristics:

∂tw + 3∂xw = 0, x > 0, t > 0

w(x, 0) = f(x), x > 0, and w(0, t) = h(t), t > 0.
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Solution: First we parameterize the boundary of Ω by setting Γ = {x = xΓ(s), t = tΓ(s); s ∈ R}
with

xΓ(s) =

{
0 if s < 0,

s, if s ≥ 0.
and tΓ(s) =

{
−s if s < 0,

0, if s ≥ 0.

The we define the characteristics by

∂tX(s, t) = 3, with X(s, tΓ(s)) = xΓ(s).

The general solution is X(s, t) = 3(t − tΓ(s)) + xΓ(s). Now we make the change of variable
φ(s, t) = w(X(s, t), t) and we compute ∂tφ(s, t),

∂tφ(s, t) = ∂tw(X(s, t), t) + ∂xw(X(s, t), t)∂tX(s, t) = ∂tw(X(s, t), t) + 3∂xw(X(s, t), t) = 0.

This means that φ(s, t) = φ(s, tΓ(s)). In other words

w(X(s, t), t) = w(X(s, tΓ(s)), tΓ(s)) = w(xΓ(s), tΓ(s)).

Case 1: If s < 0, then X(s, t) = 3(t− tΓ(s)). This implies tΓ(s) = t−X/3. The condition s < 0
and the definition tΓ(s) = −s imply t−X/3 ≥ 0. Moreover we have

w(X, t) = w(0, tΓ(s)) = h(tΓ(s)).

In conlusion
w(X, t) = h(t−X/3), if 3t > X.

Case 2: If s ≥ 0, then X(s, t) = 3t + xΓ(s). This implies xΓ(s) = X − 3t. The condition s ≥ 0
and the definition xΓ(s) = s imply X − 3t ≥ 0. Moreover we have

w(X, t) = w(xΓ(s), 0) = f(xΓ(s)).

In conlusion
w(X, t) = f(X − 3t), if X ≥ 3t.

Question 85: Let Ω = {(x, t) ∈ R2; x + 2t ≥ 0}. Solve the following PDE in explicit form
with the method of characteristics:

∂tu(x, t) + 3∂xu(x, t) = u(x, t), in Ω, and u(x, t) = 1 + sin(x), if x+ 2t = 0.

Solution: (i) First we parameterize the boundary of Ω by setting Γ = {x = xΓ(s), t = tΓ(s); s ∈
R} with xΓ(s) = −2s and tΓ(s) = s . This choice implies

u(xΓ(s), tΓ(s)) := uΓ(s) := 1 + sin(−2s).

(ii) We compute the characteristics

∂tX(t, s) = 3, X(tΓ(s), s) = xΓ(s).

The solution is X(t, s) = 3(t− tΓ(s)) + xΓ(s).

(iii) Set Φ(t, s) := u(X(t, s), t) and compute ∂tΦ(t, s). This gives

∂tΦ(t, s) = ∂tu(X(t, s), t) + ∂xu(X(t, s), t)∂tX(t, s)

= ∂tu(X(t, s), t) + 3∂xu(X(t, s), t) = u(X(t, s), t) = Φ(t, s).

The solution is Φ(t, s) = Φ(tΓ(s), s)et−tΓ(s).

(iv) The implicit representation of the solution is

X(t, s) = 3(t− tΓ(s)) + xΓ(s) u(X(t, s)) = uΓ(s)et−tΓ(s).



Math 602 43

(v) The explicit representation is obtained by using the definitions of −tΓ(s), xΓ(s) and uΓ(s).

X(s, t) = 3(t− s)− 2s = 3t− 5s,

which gives

s =
1

5
(3t−X).

The solution is

u(x, t) = (1 + sin( 2
5 (x− 3t)))et−

1
5 (3t−x)

= (1 + sin( 2(x−3t)
5 ))e

x+2t
5 .

Question 86: Let Ω = {(x, t) ∈ R2; x ≥ 0, t ≥ 0}. Solve the following PDE in explicit form

∂tu(x, t) + t∂xu(x, t) = 2u(x, t), in Ω, and u(0, t) = t, u(x, 0) = x.

Solution: (i) First we parameterize the boundary of Ω by setting Γ = {x = xΓ(s), t = tΓ(s); s ∈
R} with xΓ(s) = s and tΓ(s) = 0 if s > 0 and xΓ(s) = 0 and tΓ(s) = −s if s ≤ 0. This choice
implies

u(xΓ(s), tΓ(s)) := uΓ(s) :=

{
s if s > 0

−s if s ≤ 0
.

(ii) We compute the characteristics

∂tX(t, s) = t, X(tΓ(s), s) = xΓ(s).

The solution is X(t, s) = 1
2 t

2 − 1
2 t

2
Γ(s) + xΓ(s).

(iii) Set Φ(t, s) := u(X(t, s), t) and compute ∂tΦ(t, s). This gives

∂tΦ(t, s) = ∂tu(X(t, s), t) + ∂xu(X(t, s), t)∂tX(t, s)

= ∂tu(X(t, s), t) + t∂xu(X(t, s), t) = 2u(X(t, s), t) = 2Φ(t, s).

The solution is Φ(t, s) = Φ(tΓ(s), s)e2(t−tΓ(s)).

(iv) The implicit representation of the solution is

X(t, s) =
1

2
t2 − 1

2
t2Γ(s) + xΓ(s), u(X(t, s)) = uΓ(s)e2(t−tΓ(s)), uΓ(s) =

{
s if s > 0

−s if s ≤ 0
.

(v) We distinguish two cases to get the explicit form of the solution:
Case 1: Assume s > 0, then tΓ(s) = 0 and xΓ(s) = s. This implies X(t, s) = 1

2 t
2 + s, meaning

s = X − 1
2 t

2. The solution is

u(x, t) = (x− 1

2
t2)e2t, if x >

1

2
t2.

Case 2: Assume s ≤ 0, then tΓ(s) = −s and xΓ(s) = 0. This implies X(t, s) = 1
2 t

2− 1
2s

2, meaning

s = −
√
t2 − 2X. The solution is

u(x, t) =
√
t2 − 2x e2(t−

√
t2−2x), if x ≤ 1

2
t2.

Question 87: Let Ω = {(t, x) ∈ R2 : t > 0, x ≥ t}. Let Γ be defined by the following
parameterization Γ = {x = xΓ(s), t = tΓ(s), s ∈ R}, with xΓ(s) = −s and tΓ(s) = −s if s ≤ 0,
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xΓ(s) = s and tΓ(s) = 0 if s ≥ 0. Solve the following PDE (give the implicit and explicit
representations):

ut + 3ux + 2u = 0, in Ω, u(x, t) = uΓ(x, t) :=

{
1 if t = 0

2 if x = t
for all (x, t) in Γ.

Solution: We define the characteristics by

dx(t, s)

dt
= 3, x(tΓ(s), s) = xΓ(s).

This gives x(t, s) = xΓ(s) + 3(t − tΓ(s)). Upon setting φ(t, s) = u(x(t, s), t), we observe that
∂tφ(t, s) + 2φ(t, s) = 0, which means

φ(t, s) = ce−2t.

The initial condition implies φ(tΓ(s), s) = uΓ(xΓ(s), tΓ(s)); as a result c = uΓ(xΓ(s), tΓ(s))e2tΓ(s).

φ(t, s) = uΓ(xΓ(s), tΓ(s))e2(tΓ(s)−t).

The implicit representation of the solution is

u(x(t, s), t) = uΓ(xΓ(s), tΓ(s))e2(tΓ(s)−t), x(t, s) = xΓ(s) + 3(t− tΓ(s)).

Now we give the explicit representation.
Case 1: If s ≤ 0, xΓ(s) = −s, tΓ(s) = −s, and uΓ(xΓ(s), tΓ(s)) = 2. This means x(t, s) =
−s+ 3(t+ s) and we obtain s = 1

2 (x− 3t), which means

u(x, t) = 2e−2( 1
2 (x−3t)−t) = 2et−x, if x− 3t < 0.

Case 2: If s ≥ 0, xΓ(s) = s, tΓ(s) = 0, and uΓ(xΓ(s), tΓ(s)) = 1. This means x(t, s) = s+ 3t and
we obtain s = x− 3t, which means

u(x, t) = e−2t, if x− 3t > 0.

Question 88: Let Ω = {(t, x) ∈ R2 : t > 0, x ≥ −
√
t}. Let Γ be defined by the following

parameterization Γ = {x = xΓ(s), t = tΓ(s), s ∈ R}, with xΓ(s) = s and tΓ(s) = s2 if s ≤ 0,
xΓ(s) = s and tΓ(s) = 0 if s ≥ 0. Solve the following PDE (give the implicit and explicit
representations):

ut + 2ux + 3u = 0, in Ω, and u(xΓ(s), tΓ(s)) := e−tΓ(s)−xΓ(s), ∀s ∈ (−∞,+∞).

Solution: We define the characteristics by

dX(t, s)

dt
= 2, X(tΓ(s), s) = xΓ(s).

This gives X(t, s) = xΓ(s) + 2(t − tΓ(s)). Upon setting φ(t, s) = u(X(t, s), t), we observe that
∂tφ(t, s) + 3φ(t, s) = 0, which means

φ(t, s) = ce−3t.

The initial condition implies φ(tΓ(s), s) = u(xΓ(s), tΓ(s)) = e−tΓ(s)−xΓ(s) = ce−3tΓ(s); as a result
c = e2tΓ(s)−xΓ(s) and

φ(t, s) = e2tΓ(s)−xΓ(s)−3t.

The implicit representation of the solution is

u(X(t, s), t) = e2tΓ(s)−xΓ(s)−3t, X(t, s) = xΓ(s) + 2(t− tΓ(s)).
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Now we give the explicit representation.
We observe the following:

2tΓ(s)− xΓ(s) = 2t−X(t, s),

which gives
u(X(t, s), t) = e2t−X(t,s)−3t = e−X(t,s)−t.

In conclusion, the explicit representation of the solution to the problem is the following:

u(x, t) = e−x−t.

Question 89: Let Ω = {(t, x) ∈ R2 : t > 0, x ≥ −t}. Let Γ be defined by the following
parameterization Γ = {x = xΓ(s), t = tΓ(s), s ∈ R}, with xΓ(s) = s and tΓ(s) = −s if s ≤ 0,
xΓ(s) = s and tΓ(s) = 0 if s ≥ 0. Solve the following PDE (give the implicit and explicit
representations):

ut + 2ux + u = 0, in Ω, u(x, t) = uΓ(x, t) :=

{
1 if x > 0

2 if x < 0
for all (x, t) in Γ.

Solution: We define the characteristics by

dx(t, s)

dt
= 2, x(tΓ(s), s) = xΓ(s).

This gives x(t, s) = xΓ(s) + 2(t − tΓ(s)). Upon setting φ(t, s) = u(x(t, s), t), we observe that
∂tφ(t, s) + φ(t, s) = 0, which means

φ(t, s) = ce−t.

The initial condition implies φ(tΓ(s), s) = uΓ(xγ(s), tΓ(s)); as a result c = uΓ(xΓ(s), tΓ(s))etΓ(s).

φ(t, s) = uΓ(xΓ(s), tΓ(s))etΓ(s)−t.

The implicit representation of the solution is

u(x(t, s), t) = uΓ(xΓ(s), tΓ(s))etΓ(s)−t, x(t, s) = xΓ(s) + 2(t− tΓ(s)).

Now we give the explicit representation.
Case 1: If s ≤ 0, xΓ(s) = s, tΓ(s) = −s, and uΓ(xΓ(s), tΓ(s)) = 2. This means x(t, s) = s+2(t+s)
and we obtain s = 1

3 (x− 2t), which means

u(x, t) = 2e−
1
3 (x−2t)−t, if x− 2t < 0.

Case 2: If s ≥ 0, xΓ(s) = s, tΓ(s) = 0, and uΓ(xΓ(s), tΓ(s)) = 1. This means x(t, s) = s+ 2t and
we obtain s = x− 2t, which means

u(x, t) = e−t, if x− 2t > 0.

Question 90: Let Ω = {(x, t) ∈ R2 | t > 0, x ≥ 1
t }. Solve the following PDE in explicit form

with the method of characteristics: (Solution: u(x, t) = (2 + cos(s))e
1
s−t with s = 1

2 [(x− 2t) +√
(x− 2t)2 + 8])

∂tu(x, t) + 2∂xu(x, t) = −u(x, t), in Ω, and u(x, t) = 2 + cos(x), if x = 1/t.

Solution: (i) First we parameterize the boundary of Ω by setting Γ = {x = xΓ(s), t = tΓ(s); s ∈
R} with xΓ(s) = s and tΓ(s) = 1

s . This choice implies

u(xΓ(s), tΓ(s)) := uΓ(s) := 2 + cos(s).
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(ii) We compute the characteristics

∂tX(t, s) = 2, X(tΓ(s), s) = xΓ(s).

The solution is X(t, s) = 2(t− tΓ(s)) + xΓ(s).

(iii) Set Φ(t, s) := u(X(t, s), t) and compute ∂tΦ(t, s). This gives

∂tΦ(t, s) = ∂tu(X(t, s), t) + ∂xu(X(t, s), t)∂tX(t, s)

= ∂tu(X(t, s), t) + 2∂xu(X(t, s), t) = u(X(t, s), t) = −Φ(t, s).

The solution is Φ(t, s) = Φ(tΓ(s), s)e−t+tΓ(s).

(iv) The implicit representation of the solution is

X(t, s) = 2(t− tΓ(s)) + xΓ(s), u(X(t, s)) = uΓ(s)e−t+tΓ(s).

(v) The explicit representation is obtained by using the definitions of −tΓ(s), xΓ(s) and uΓ(s).

X(s, t) = 2(t− 1

s
) + s = 2t− 2

s
+ s

which gives the equation
s2 − s(X − 2t)− 2 = 0

The solutions are s± = 1
2

(
(X − 2t)±

√
(X − 2t)2 + 8

)
. The only legitimate solution is the

positive one:

s =
1

2

(
(X − 2t) +

√
(X − 2t)2 + 8

)
The solution is

u(x, t) = (2 + cos(s))e
1
s−t

with s =
1

2
((x− 2t) +

√
(x− 2t)2 + 8)
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7 Conservation equations

The implicit representation of the solution to the equation ∂tv+ ∂xq(v) = 0, v(x, 0) = v0(x), is

X(s, t) = q′(v0(s))t+ s; v(X(s, t), t) = v0(s). (12)

Question 91: Consider the following conservation equation

∂tρ+ ∂x(q(ρ)) = 0, x ∈ (−∞,+∞), t > 0, ρ(x, 0) = ρ0(x) :=

{
1
6 if x < 0,
1
3 if x > 0,

where q(ρ) = ρ(2 − 3ρ) (and ρ(x, t) is the conserved quantity). Solve this problem using the
method of characteristics. Do we have a shock or an expansion wave here?

Solution: The characteristics are defined by

dX(s, t)

dt
= q′(ρ) = 2(1− 3ρ(X(s, t), t)), X(s, t) = s.

Set φ(s, t) = ρ(X(s, t), t), then we obtain that φ is constant, i.e., ρ is constant along the charac-
teristics: ρ(X(s, t), t) = ρ(s, 0) = ρ0(s). As a result we can integrate the equation defining the
characteristics and we obtain X(t) = 2(1−3ρ0(s))t+s. We then have two cases depending whether
s is positive or negative.

1. s < 0, then ρ0(s) = 1
6 and X(s, t) = t+ s. This means

ρ(x, t) =
1

6
if x < t.

2. s > 0, then ρ0(s) = 1
3 and X(s, t) = s. This means

ρ(x, t) =
1

3
if x > 0.

We see that the characteristics cross in the region {t > x > 0}. This implies that there is a shock.
The Rankin-Hugoniot relation gives the speed of this shock:

s =
q+ − q−

ρ+ − ρ−
=

1
6

3
2 −

1
3

1
6 −

1
3

=
1

12
6 =

1

2
.

In conclusion

ρ =
1

6
, x <

t

2
,

ρ =
1

3
, x >

t

2
.

Question 92: Consider the following conservation equation

∂tρ+ ∂x(q(ρ)) = 0, x ∈ (−∞,+∞), t > 0, ρ(x, 0) = ρ0(x) :=

{
3 if x < 0,

1 if x > 0,

where q(ρ) = ρ(2 + ρ) (and ρ(x, t) is the conserved quantity). Solve this problem using the
method of characteristics. Do we have a shock or an expansion wave here?

Solution: The characteristics are defined by

dX(t)

dt
= q′(ρ) = 2(1 + ρ(x(t), t)), X(0) = X0.

Set φ(t) = ρ(X(t), t), then we obtain that φ is constant, i.e., ρ is constant along the characteristics:
ρ(X(t), t) = ρ(X0, 0) = ρ0(X0). As a result we can integrate the equation defining the character-
istics and we obtain X(t) = 2(1 + ρ0(X0))t+X0. We then have two cases depending whether X0

is positive or negative.
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1. X0 < 0, then ρ0(X0) = 3 and X(t) = 2(1 + 3)t+X0 = 8t+X0. This means

ρ(x, t) = 3 if x < 8t.

2. X0 > 0, then ρ0(X0) = 1 and X(t) = 2(1 + 1)t+X0 = 4t+X0. This means

ρ(x, t) = 1 if x > 4t.

We see that the characteristics cross in the region {8t > x > 4t}. This implies that there is a shock.
The Rankin-Hugoniot relation gives the speed of this shock:

dxs(t)

dt
=
q+ − q−

ρ+ − ρ−
=

15− 3

3− 1
= 6, xs(0) = 0.

In conclusion, xs(t) = 6t and

ρ = 3, x < xs(t) = 6t,

ρ = 1, x > xs(t) = 6t.

Question 93: Solve the conservation equation ∂tρ+ ∂xq(ρ) = 0, x ∈ (∞,+∞), t > 0 with flux
q(ρ) = ρ2 + ρ, and with the initial condition ρ(x, 0) = −1, if x < 0, ρ(x, 0) = 1, if x > 0. Do we
have a shock or an expansion wave here?

Solution: The solution is given by the implicit representation

ρ(X(s, t), t) = ρ0(s), X(s, t) = s+ (2ρ0(s) + 1)t.

Case 1: s < 0. Then ρ0(s) = −1 and X(s, t) = s+(−2+1)t. This means s = X+ t. The solution
is

ρ(x, t) = −1, if x < t.

Case 2: s < 0. Then ρ0(s) = 1 and X(s, t) = s+ (2 + 1)t. This means s = X− 3t. The solution is

ρ(x, t) = 1, if 3t < x.

We have a expansion wave. We need to consider the case ρ0 ∈ [−1, 1] at s = 0.
Case 3: s = 0 and ρ0 ∈ [−1, 1]. Then X(s, t) = s + (2ρ0 + 1)t = (2ρ0 + 1)t. This means
ρ0 = (X/t− 1)2. In conclusion

ρ(x, t) =
1

2

(x
t
− 1
)
, if − t < x < 3t.

Question 94: Solve the conservation equation ∂tρ+ ∂xq(ρ) = 0, x ∈ (∞,+∞), t > 0 with flux
q(ρ) = ρ4 + 2ρ, and with the initial condition ρ(x, 0) = 1, if x < 0, ρ(x, 0) = −1, if x > 0. Do
we have a shock or an expansion wave here?

Solution: The solution is given by the implicit representation

ρ(X(s, t), t) = ρ0(s), X(s, t) = s+ (4ρ0(s)3 + 2)t.

We then have two cases depending whether s is positive or negative.
Case 1: s < 0, then ρ0(s) = 1 and X(s, t) = (4 + 2)t+ s = 6t+ s. This means

ρ(x, t) = 1 if x < 6t.

Case 2: s > 0, then ρ0(s) = −1 and X(s, t) = (−4 + 2)t+ s = −2t+ s. This means

ρ(x, t) = −1 if x > −2t.
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We see that the characteristics cross in the region {6t > x > −2t}. This implies that there is a
shock. The Rankin-Hugoniot relation gives the speed of this shock with ρ− = 1 and ρ+ = −1:

dxs(t)

dt
=
q+ − q−

ρ+ − ρ−
=
−1− 3

−1− 1
= 2, xs(0) = 0.

In conclusion the location of the shock is xs(t) = 2t and the solution is as follows:

ρ = 1, x < xs(t) = 2t,

ρ = −1, x > xs(t) = 2t.

Question 95: Consider the following conservation equation

∂tρ+ ∂x(q(ρ)) = 0, x ∈ (−∞,+∞), t > 0, ρ(x, 0) = ρ0(x) :=

{
1
2 if x < 0,

1 if x > 0,

where q(ρ) = ρ(2 − ρ) (and ρ(x, t) is the conserved quantity). Solve this problem using the
method of characteristics. Do we have a shock or an expansion wave here?

Solution: The characteristics are defined by

dX(t)

dt
= q′(ρ) = 2(1− ρ(x(t), t)), X(0) = X0.

Set φ(t) = ρ(X(t), t), then we obtain that φ is constant, i.e., ρ is constant along the characteristics:
ρ(X(t), t) = ρ(X0, 0) = ρ0(X0). As a result we can integrate the equation defining the character-
istics and we obtain X(t) = 2(1− ρ0(X0))t+X0. We then have two cases depending whether X0

is positive or negative.

1. X0 < 0, then ρ0(X0) = 1
2 and X(t) = t+X0. This means

ρ(x, t) =
1

2
if x < t.

2. X0 > 0, then ρ0(X0) = 1 and X(t) = X0. This means

ρ(x, t) = 1 if x > 0.

We see that the characteristics cross in the region {t > x > 0}. This implies that there is a shock.
The Rankin-Hugoniot relation gives the speed of this shock:

s =
q+ − q−

ρ+ − ρ−
=

3
4 − 1
1
2 − 1

=
1

2
.

In conclusion

ρ =
1

2
, x <

t

2
,

ρ = 1, x >
t

2
.

Question 96: Consider the following conservation equation

∂tρ+ ∂x(q(ρ)) = 0, x ∈ (−∞,+∞), t > 0, ρ(x, 0) = ρ0(x) :=

{
2 if x < 0,

1 if x > 0,

where q(ρ) = ρ(2 − ρ) (and ρ(x, t) is the conserved quantity). Solve this problem using the
method of characteristics. Do we have a shock or an expansion wave here?
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Solution: The characteristics are defined by

dX(t, x0)

dt
= q′(ρ) = 2(1− ρ(X(t, x0), t)), X(0, x0) = x0.

Set φ(t) = ρ(X(t, x0), t) and insert in the equation. We obtain that ∂tφ(t, x0) = 0; meaning that
φ(t, x0) = φ(0, x0), i.e., ρ is constant along the characteristics: ρ(X(t, x0), t) = ρ(x0, 0) = ρ0(x0).
As a result we can integrate the equation defining the characteristics and we obtain X(t, x0) =
2(1− ρ0(x0))t+ x0. The implicit representation of the solution is

X(t, x0) = 2(1− ρ0(x0))t+ x0; ρ(X(t, x0), t) = ρ0(x0)

We then have two cases depending whether x0 is positive or negative.
Case 1: x0 < 0, then ρ0(x0) = 2 and X(t, x0) = 2(1 − 2)t + x0 = −2t + x0. This means
x0 = X(t, x0) + 2t and

ρ(x, t) = 2 if x < −2t.

Case 2: x0 > 0, then ρ0(x0) = 1 and X(t, x0) = 2(1− 1)t+ x0 = x0. This means x0 = X(t, x0)
and

ρ(x, t) = 1 if 0 < x.

We see that there is a gap in the region {−2t < x < 0}. This implies that there is an expansion
wave. We have to consider a third case x0 = 0 and ρ0 ∈ (1, 2).

Case 3: x0 = 0, then X(t, x0) = 2(1− ρ0)t, i.e., ρ0 = 1− X(t,x0)
2t . This means that

ρ(x, t) = 1− x

2t
, if − 2t < x < 0.
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Question 97: Assume u1 > u2 ≥ u3 ≥ 0 and consider the following conservation equation

∂tu+ u∂xu = 0, x ∈ (−∞,+∞), t > 0, u(x, 0) = u0(x) :=



0 if x ≤ 0,

u1x if 0 < x ≤ 1,

u1 if 1 < x ≤ 2,

u2 if 2 < x ≤ 3,

u3 if 3 ≤ x.

(i) Assume u2 = u3. Solve until the expansion catches up the shock. When does it happen?

Solution: The characteristics are defined by

dX(t, s)

dt
= u(X(t, s), t), X(0, s) = s.

From class we know that u(X(t, s), t) does not depend on time, that is to say

X(t, s) = u(X(0, s), 0)t+ s = u(s, 0)t+ x0 = u0(s)t+ s.

Case 1: If s ≤ 0, we have u0(s) = 0 and X(t, s) = s; as a result, s = X(t, s), and

u(x, t) = 0, if x ≤ 0.

Case 2: If 0 < s ≤ 1, we have u0(s) = u1s and X(t, x0) = u1st+ s; as a result s = X/(1 + u1t),
and

u(x, t) = u1x/(1 + u1t), if 0 < x ≤ 1 + u1t.

case 3: If 1 < s ≤ 2, we have u0(s) = u1 and X(t, x0) = u1t + s; as a result s = X(t, s) − u1t,
which implies

u(x, t) = u1, if 1 + u1t < x ≤ 2 + u1t.

Case 4: If 2 < s, we have u0(s) = 0 and X(t, s) = u2t+ s; as a result s = X(t, s), which implies

u(x, t) = 0 if 2 < x.

We have a shock at x = 2 and t = 0. The speed of the shock is given by the Rankin-Hugoniot
formula

dx1

dt
=

1
2u

2
1 − 1

2u
2
2

u1 − u2
=

1

2
(u1 + u2).

As a result x1(t) = 2 + 1
2 (u1 + u2)t. This implies that the solution is

u(x, t) =


0, if x ≤ 0,

u1x/(1 + u1t), if 0 < x ≤ 1 + u1t,

u1, if 1 + u1t < x ≤ 2 + 1
2 (u1 + u2)t,

u2, if 2 + 1
2 (u1 + u2)t < x.

The time T when the expansion wave catches up the shock is defined by

2 +
1

2
(u1 + u2)T = 1 + u1T,

that is to say

T =
2

u1 − u2
.

(ii) Draw the characteristics corresponding to the situation (i) with u1 = 2 and u2 = 1.

Solution:
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t=1

x=1 x=2x=0

t

x=3 x=4

x

(iii) Assume now that u1 > u2 > u3 = 0. When does the first shock catches the second one?

Solution: The speed of the first shock (starting at x = 2 when t = 0) is given by the Rankin-
Hugoniot formula

dx1

dt
=

1
2u

2
1 − 1

2u
2
2

u1 − u2
=

1

2
(u1 + u2).

As a result x1(t) = 2 + 1
2 (u1 +u2)t. The speed of the second shock (starting at x = 3 when t = 0)

is given by the Rankin-Hugoniot formula

dx2

dt
=

1
2u

2
2

u2
=

1

2
u2.

As a result x2(t) = 3 + 1
2u2t.

The time T ′ when the two shocks are at the same location is such that x1(T ′) = x2(T ′); that is to
say,

2 +
1

2
(u1 + u2)T ′ = 3 +

1

2
u2T

′,

which gives

T ′ =
2

u1
.

Note that T > T ′ for all u2 > 0. This means that the first shock catches up the second one before
the fans catches the first shock.

Question 98: Consider the following conservation equation

∂tu+ u∂xu = 0, x ∈ (−∞,+∞), t > 0, u(x, 0) = u0(x) :=


0 if x ≤ 0,

x if 0 ≤ x ≤ 1,

2− x if 1 ≤ x ≤ 2

0 if 2 ≤ x

(i) Solve this problem using the method of characteristics for 0 ≤ t < 1.

Solution: The characteristics are defined by

dX(t, x0)

dt
= u(X(t, x0), t), X(0, x0) = x0.

From class we know that u(X(t, x0), t) does not depend on time, that is to say

X(t, x0) = u(X(0, x0), 0)t+ x0 = u(x0, 0)t+ x0 = u0(x0)t+ x0.
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Case 1: If x0 ≤ 0, we have u0(x0) = 0 and X(t, x0) = x0; as a result, x0 = X(t, x0), and

u(x, t) = 0, if x ≤ 0.

Case 2: If 0 ≤ x0 ≤ 1, we have u0(x0) = x0 and X(t, x0) = tx0 + x0; as a result x0 = X/(1 + t),
and

u(x, t) = x/(1 + t), if 0 ≤ x ≤ 1 + t.

case 3: If 1 ≤ x0 ≤ 2, we have u0(x0) = 2 − x0 and X(t, x0) = t(2 − x0) + x0; as a result
x0 = (X(t, x0)− 2t)/(1− t), which implies

u(x, t) = 2− (x− 2t)/(1− t) = (2− x)/(1− t), if 1 + t ≤ x ≤ 2.

Case 4: If 2 ≤ x0, we have u0(x0) = 0 and X(t, x0) = x0; as a result x0 = X(t, x0), which implies

u(x, t) = 0 if 2 ≤ x.

(ii) Draw the characteristics for all t > 0 and all x ∈ R.

Solution:

t=1

x=1 x=2x=0

t

x

(iii) There is a shock forming at t = 1 and x = 2. Let xs(t) be the location of the shock as a
function of t. Compute xs(t) for t > 1.

Solution: Let u−(t) be the value of u at the left of the shock. Conservation of mass implies

1

2
u−(t)xs(t) =

∫ +∞

−∞
u0(x)dx = 1.

The Rankin-Hugoniot formula gives

ẋs(t) =
1
2 (u−(t))2

u−(t)
=

1

2
u−(t) =

1

xs(t)
.

This implies

xs(t)ẋs(t) =
1

2

d

dt
(xs(t)

2) = 1, with xs(1) = 2.

The Fundamental Theorem of Calculus implies

xs(t)
2 − 22 = 2(t− 1),
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which in turn implies xs(t) =
√

2t+ 2, for all t ≥ 1.

(iv) Write the solution for t > 1.

Solution: In conclusion

u(x, t) =


0 if x < 0,
x

1+t if 0 ≤ x < xs(t) =
√

2t+ 2,

0 if
√

2t+ 2 = xs(t) ≤ x.

Question 99: Consider the following conservation equation

∂tu+ u∂xu = 0, x ∈ (−∞,+∞), t > 0, u(x, 0) = u0(x) :=


1 if x ≤ 0,

1− x if 0 ≤ x ≤ 1,

0 if 1 ≤ x.

(i) Solve this problem using the method of characteristics for 0 ≤ t ≤ 1.

Solution: The characteristics are defined by

dX(t, x0)

dt
= u(X(t, x0), t), X(0, x0) = x0.

From class we know that u(X(t, x0), t) does not depend on time, that is to say

X(t, x0) = u(X(0, x0), 0)t+ x0 = u(x0, 0)t+ x0 = u0(x0)t+ x0.

Case 1: If x0 ≤ 0, we have u0(x0) = 1 and X(t, x0) = t+ x0; as a result, x0 = X − t, and

u(x, t) = 1, if x ≤ t.

Case 2: If 0 ≤ x0 ≤ 1, we have u0(x0) = 1 − x0 and X(t, x0) = t(1 − x0) + x0; as a result
x0 = (X − t)/(1− t), and

u(x, t) = 1− (t− x)/(t− 1), if 0 ≤ x− t ≤ 1− t,

which can also be re-written

u(x, t) =
x− 1

t− 1
, if t ≤ x ≤ 1.

case 3: If 1 ≤ x0, we have u0(x0) = 0 and X(t, x0) = x0; as a result

u(x, t) = 0, if 1 ≤ x.
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(ii) Draw the characteristics for all t > 0 and all x ∈ R.

Solution:

t=1

x=1x=0

(iii) At t = 1 we have u(x, 1) = 1 if x < 1 and u(x, 1) = 0 if x > 1. Solve the problem for t > 1.

Solution: Denote by u1(x) the solution at t = 1. The characteristics are X(t, x0) = u1(x0)(t −
1) + x0.
Case 1: If x0 < 1, u1(x0) = 1 and X(t, x0) = t− 1 + x0; as a result,

u(x, t) = 1, If x < t.

Case 2: If 1 < x0, u1(x0) = 0 and X(t, x0) = x0; as a result,

u(x, t) = 0, If 1 < x.

The characteristics cross in the domain {1 < x < t}; as a result we have a shock. The speed of the
shock is given by the Rankin-Hugoniot relation (recall that q(u) = u2/2):

dxs(t)

dt
=
q+ − q−

u+ − u−
=

1/2− 0

1− 0
=

1

2
, xs(1) = 1,

Which gives xs(t) = 1
2 (t+ 1). In conclusion,

u(x, t) =

{
1 If t > 1 and x < 1

2 (t+ 1),

0 If t > 1 and 1
2 (t+ 1) < x.

Question 100: Give an explicit solution to the equation ∂tu + ∂x(u4) = 0, where x ∈
(−∞,+∞), t > 0, with initial data u0(x) = 0 if x < 0, u0(x) = x

1
3 if 0 < x < 1, and

u0(x) = 0 if 1 < x.

Solution: The implicit representation of the solution is

u(X(s, t), t) = u0(s), X(s, t) = s+ 4u0(s)3t.

Case 1: s < 0, then u0(s) = 0 and X(s, t) = s. This means

u(x, t) = 0 if x < 0.

Case 2: 0 < s < 1, then u0(s) = s
1
3 and X(s, t) = s+ 4st. This means s = X/(1 + 4t)

u(x, t) =

(
x

1 + 4t

) 1
3

if 0 < x < 1 + 4t.
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Case 3: 1 < s, then u0(s) = 0 and X(s, t) = s. This means

u(x, t) = 0 if 1 < x.

There is a shock starting at x = 1 (this is visible when one draws the characteristics).

Solution 1: The speed of the shock is given by the Rankin-Hugoniot formula

dxs(t)

dt
=
u4

+ − u4
−

u+ − u−
, and xs(0) = 1,

where u+(t) = 0 and u−(t) =
(
xs(t)
1+4t

) 1
3

. This gives

dxs(t)

dt
= u−(t)3 =

xs(t)

1 + 4t
,

which we re-write as follows:

d log(xs(t))

dt
=

1

1 + 4t
=

1

4

d log(1 + 4t)

dt
.

Applying the fundamental of calculus between 0 and t gives

log(xs(t))− log(1) =
1

4
(log(1 + 4t)− log(1)).

This give
xs(t) = (1 + 4t)

1
4 .

Solution 2: Another (equivalent) way of solving this problem, that does not require to solve the
Rankin-Hugoniot relation, consists of writing that the value of u− is such that the total mass is
conserved: ∫ xs(t)

0

u(x, t)dx =

∫ xs(0)

0

u0(x)dx =

∫ 1

0

x
1
3 dx =

3

4

i.e., using the fact that u(x, t) = (x/(1 + 4t))
1
3 for all 0 ≤ x ≤ xs(t), we have

3

4
= (1 + 4t)−

1
3

∫ xs(t)

0

x
1
3 dx = (1 + 4t)−

1
3

3

4
xs(t)

4
3 .

This again gives
xs(t) = (1 + 4t)

1
4 .

Conclusion: The solution is finally expressed as follows:

u(x, t) =


0 if x < 0(

x
1+4t

) 1
3

if 0 < x < (1 + 4t)
1
4

0 if (1 + 4t)
1
4 < x
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8 Green’s function

Question 101: Let Ω be a three-dimensional domain and consider the PDE

∇2u = f(x), x ∈ Ω, with u(x) = h(x) on the boundary of Ω, say Γ.

Let G(x, x0) be the Green’s function of this problem (the exact expression of G does not matter;
just assume that G is known). Give a representation1 of u(x) in terms of G, f and h.

Solution: By definition

∇2
xG(x, x0) = δ(x− x0), x ∈ Ω, with G(x, x0) = 0 x ∈ Γ.

Then using the integration by parts formula, we obtain∫
Ω

u(x)∇2
x(G(x, x0))dx =

∫
Ω

∇2
x(u(x))G(x, x0)dx+

∫
Γ

u(x)∂n(G(x, x0))dx−
∫

Γ

∂n(u(x))G(x, x0)dx.

which can also be rewritten

u(x0) =

∫
Ω

f(x)G(x, x0)dx+

∫
Γ

h(x)∂n(G(x, x0))dx.

Question 102: Let f be a smooth function in [0, 1]. Consider the PDE

u− ∂xxu = f(x), x ∈ (0, 1), ∂xu(1) + u(1) = 2, −∂xu(0) + u(0) = 1.

What PDE and which boundary conditions must satisfy the Green function, G(x, x0), (DO
NOT compute the Green function)? Give the integral representation of u assuming G(x, x0) is
known. Fully justify your answer.

Solution: Multiply the equation by G(x, x0) and integrate over (0, 1):∫ 1

0

f(x)G(x, x0)dx =

∫ 1

0

(u(x)− ∂xxu(x))G(x, x0)dx

=

∫ 1

0

u(x)G(x, x0) + ∂xu(x)∂xG(x, x0)dx− ∂xu(1)G(1, x0) + ∂xu(0)G(0, x0)

=

∫ 1

0

u(x)(G(x, x0)− ∂xxG(x, x0))dx+ u(1)∂xG(1, x0)− u(0)∂xG(0, x0)

− ∂xu(1)G(1, x0) + ∂xu(0)G(0, x0)

=

∫ 1

0

u(x)(G(x, x0)− ∂xxG(x, x0))dx+ u(1)∂xG(1, x0)− u(0)∂xG(0, x0)

(u(1)− 2)G(1, x0) + (u(0)− 1)G(0, x0)

=

∫ 1

0

u(x)(G(x, x0)− ∂xxG(x, x0))dx

+ u(1)(G(1, x0) + ∂xG(1, x0)) + u(0)(G(0, x0)− ∂xG(0, x0))− 2G(1, x0)−G(0, x0)

If we define G(x, x0) so that

G(x, x0)− ∂xxG(x, x0) = δ(x− x0), G(1, x0) + ∂xG(1, x0) = 0, G(0, x0)− ∂xG(0, x0) = 0,

then u(x0), x0 ∈ (0, 1), has the following representation

u(x0) =

∫ 1

0

f(x)G(x, x0)dx+ 2G(1, x0) +G(0, x0), ∀x0 ∈ (0, 1).

1Hint: use
∫
Ω ψ∇

2(φ) =
∫
Ω∇

2(ψ)φ+
∫
Γ ψ∂n(φ)−

∫
Γ ∂n(ψ)φ
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Question 103: Consider the equation u′(x) + u = f(x) for x ∈ (0, 1) with u(0) = a. Let
G(x, x0) be the associated Green’s function. (Pay attention to the number of derivatives).
(a) Give the equation and boundary condition defining G and give an integral representation
of u(x0) in terms of G, f and the boundary data a. (Do not compute G.)

Solution: The Green’s function is defined by

−G′(x, x0) +G(x, x0) = δ(x− x0), G(1, x0) = 0.

We multiply the equation by u and we integrate over (0, 1) (in the distribution sense),∫ 1

0

−G′(x, x0)u(x)dx+

∫ 1

0

G(x, x0)u(x)dx = u(x0).

We integrates by parts and we obtain,

u(x0) =

∫ 1

0

G(x, x0)(u′(x) + u(x))dx−G(1, x0)u(1) +G(0, x0)u(0)

Then, using the fact that u′ + u = f and using the boundary conditions for G and u, we obtain

u(x0) =

∫ 1

0

G(x, x0)f(x)dx+ 2G(0, x0). ∀x0 ∈ (0, 1).
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(b) Compute G(x, x0).

Solution: For x < x0 and x0 > x we have

−G′(x, x0) +G(x, x0) = 0.

The solution is

G(x, x0) =

{
αex for x < x0

βex for x > x0.

The boundary condition G(1, x0) = 0 implies β = 0.

For every ε > 0 we have

1 =

∫ x0+ε

x0−ε
(−G′(x, x0) +G(x, x0))dx

= G(x0 − ε, x0)−G(x0 + ε, x0) +

∫ x0+ε

x0−ε
G(x, x0)dx

The term Rε =
∫ x0+ε

x0−ε G(x, x0)dx can be bounded as follows:

|Rε| ≤ 2ε max
x∈[0,1]

|G(x, x0)| = 2εαex0 .

Clearly Rε goes to 0 with ε. As a result we obtain the jump condition

1 = G(x−0 , x0)−G(x+
0 , x0) = αex0 .

This implies
α = e−x0 .

Finally

G(x, x0) =

{
ex−x0 for x < x0

0 for x > x0.

Question 104: Consider the equation −∂x(x∂xu(x)) = f(x) for all x ∈ (1, 2) with u(1) = a
and u(2) = b. Let G(x, x0) be the associated Green’s function.
(i) Give the equation and boundary conditions satisfied byG and give the integral representation
of u(x0) for all x0 ∈ (1, 2) in terms of G, f , and the boundary data. (Do not compute G in this
question).

Solution: We have a second-order PDE and the operator is clearly self-adjoint. The Green’s function
solves the equation

−∂x(x∂xG(x, x0)) = δ(x− x0), G(1, x0) = 0, G(2, x0) = 0.

We multiply the equation by u and integrate over the domain (1, 2) (in the distribution sense).

〈δ(x− x0), u〉 = u(x0) = −
∫ 2

1

∂x(x∂xG(x, x0))u(x)dx.

We integrate by parts and we obtain,

u(x0) =

∫ 2

1

x∂xG(x, x0)∂xu(x)dx− [x∂xG(x, x0)u(x)]21

= −
∫ 2

1

G(x, x0)∂x(x∂xu(x))dx− 2∂xG(2, x0)u(2) + ∂xG(1, x0)u(1).

Now, using the boundary conditions and the fact that −∂x(x∂xu(x)) = f(x), we finally have

u(x0) =

∫ 2

1

G(x, x0)f(x)dx− 2∂xG(2, x0)b+ ∂xG(1, x0)a.
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(ii) Compute G(x, x0) for all x, x0 ∈ (1, 2).

Solution: For all x 6= x0 we have

−∂x(x∂xG(x, x0)) = 0.

The solution is

G(x, x0) =

{
a log(x) + b if 1 < x < x0

c log(x) + d if x0 < x < 2

The boundary conditions give b = 0 and d = −c log(2); as a result,

G(x, x0) =

{
a log(x) if 1 < x < x0

c log(x/2) if x0 < x < 2

G must be continuous at x0,

a log(x0) = c log(x0)− c log(2)

and must satisfy the gap condition

−
∫ x0+ε

x0−ε
∂x(x∂xG(x, x0))dx = 1, ∀ε > 0.

This gives

−x0

(
∂xG(x+

0 , x0)−G(x−0 , x0)
)

= 1

−x0(
c

x0
− a

x0
) = 1

This gives
a− c = 1.

In conclusion log(x0) = −c log 2 and

c = − log(x0)/ log(2), a = 1− log(x0)/ log(2) = log(2/x0)/ log(2).

This means

G(x, x0) =

{
log(2/x0)

log(2) log(x) if 1 < x < x0

log(x0)
log(2) log(2/x) if x0 < x < 2

Question 105: Consider the equation u′(x) + u = f(x) for x ∈ (0, 1) with u(0) = a. Let
G(x, x0) be the associated Green’s function. (Pay attention to the number of derivatives).
(a) Give the equation and boundary condition defining G and give an integral representation
of u(x0) in terms of G, f and the boundary data a. (Do not compute G.)

Solution: The Green’s function is defined by

−G′(x, x0) +G(x, x0) = δ(x− x0), G(1, x0) = 0.

We multiply the equation by u and we integrate over (0, 1) (in the distribution sense),∫ 1

0

−G′(x, x0)u(x)dx+

∫ 1

0

G(x, x0)u(x)dx = u(x0).

We integrates by parts and we obtain,

u(x0) =

∫ 1

0

G(x, x0)(u′(x) + u(x))dx−G(1, x0)u(1) +G(0, x0)u(0)
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Then, using the fact that u′ + u = f and using the boundary conditions for G and u, we obtain

u(x0) =

∫ 1

0

G(x, x0)f(x)dx+ aG(0, x0). ∀x0 ∈ (0, 1).

(b) Compute G(x, x0).

Solution: For x < x0 and x0 > x we have

−G′(x, x0) +G(x, x0) = 0.

The solution is

G(x, x0) =

{
αex for x < x0

βex for x > x0.

The boundary condition G(1, x0) = 0 implies β = 0.

For every ε > 0 we have

1 =

∫ x0+ε

x0−ε
(−G′(x, x0) +G(x, x0))dx

= G(x0 − ε, x0)−G(x0 + ε, x0) +

∫ x0+ε

x0−ε
G(x, x0)dx

The term Rε =
∫ x0+ε

x0−ε G(x, x0)dx can be bounded as follows:

|Rε| ≤ 2ε max
x∈[0,1]

|G(x, x0)| = 2εαex0 .

Clearly Rε goes to 0 with ε. As a result we obtain the jump condition

1 = G(x−0 , x0)−G(x+
0 , x0) = αex0 .

This implies
α = e−x0 .

Finally

G(x, x0) =

{
ex−x0 for x < x0

0 for x > x0.

Question 106: Consider the equation −∂x(x∂xu(x)) = f(x) for all x ∈ (1, 2) with u(1) = a
and u(2) = b. Let G(x, x0) be the associated Green’s function.
(i) Give the equation and boundary conditions satisfied byG and give the integral representation
of u(x0) for all x0 ∈ (1, 2) in terms of G, f , and the boundary data. (Do not compute G in this
question).

Solution: We have a second-order PDE and the operator is clearly self-adjoint. The Green’s function
solves the equation

−∂x(x∂xG(x, x0)) = δ(x− x0), G(1, x0) = 0, G(2, x0) = 0.

We multiply the equation by u and integrate over the domain (1, 2) (in the distribution sense).

〈δ(x− x0), u〉 = u(x0) = −
∫ 2

1

∂x(x∂xG(x, x0))u(x)dx.

We integrate by parts and we obtain,

u(x0) =

∫ 2

1

x∂xG(x, x0)∂xu(x)dx− [x∂xG(x, x0)u(x)]21

= −
∫ 2

1

G(x, x0)∂x(x∂xu(x))dx− 2∂xG(2, x0)u(2) + ∂xG(1, x0)u(1).
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Now, using the boundary conditions and the fact that −∂x(x∂xu(x)) = f(x), we finally have

u(x0) =

∫ 2

1

G(x, x0)f(x)dx− 2∂xG(2, x0)b+ ∂xG(1, x0)a.

(ii) Compute G(x, x0) for all x, x0 ∈ (1, 2).

Solution: For all x 6= x0 we have

−∂x(x∂xG(x, x0)) = 0.

The solution is

G(x, x0) =

{
a log(x) + b if 1 < x < x0

c log(x) + d if x0 < x < 2

The boundary conditions give b = 0 and d = −c log(2); as a result,

G(x, x0) =

{
a log(x) if 1 < x < x0

c log(x/2) if x0 < x < 2

G must be continuous at x0,

a log(x0) = c log(x0)− c log(2)

and must satisfy the gap condition

−
∫ x0+ε

x0−ε
∂x(x∂xG(x, x0))dx = 1, ∀ε > 0.

This gives

−x0

(
∂xG(x+

0 , x0)−G(x−0 , x0)
)

= 1

−x0(
c

x0
− a

x0
) = 1

This gives
a− c = 1.

In conclusion log(x0) = −c log 2 and

c = − log(x0)/ log(2), a = 1− log(x0)/ log(2) = log(2/x0)/ log(2).

This means

G(x, x0) =

{
log(2/x0)

log(2) log(x) if 1 < x < x0

log(x0)
log(2) log(2/x) if x0 < x < 2

Question 107: Consider the equation ∂xxu(x) = f(x), x ∈ (0, L), with u(0) = a and ∂xu(L) =
b.
(a) Compute the Green’s function of the problem.

Solution: Let x0 be a point in (0, L). The Green’s function of the problem is such that

∂xxG(x, x0) = δx0
, G(0, x0) = 0, ∂xG(L, x0) = 0.

The following holds for all x ∈ (0, x0):

∂xxG(x, x0) = 0.

This implies that G(x, x0) = ax + b in (0, x0). The boundary condition G(0, x0) = 0 gives b = 0.
Likewise, the following holds for all x ∈ (x0, L):

∂xxG(x, x0) = 0.
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This implies that G(x, x0) = cx + d in (x0, L). The boundary condition ∂xG(L, x0) = 0 gives
c = 0. The continuity of G(x, x0) at x0 implies that ax0 = d. The condition∫ ε

−ε
∂xxG(x, x0)dx = 1, ∀ε > 0,

gives the so-called jump condition: ∂xG(x+
0 , x0) − ∂xG(x−0 , x0) = 1. This means that 0 − a = 1,

i.e., a = −1 and d = −x0. In conclusion

G(x, x0) =

{
−x if ≤ x ≤ x0,

−x0 otherwise.

(b) Give the integral representation of u using the Green’s function.

Solution: Let x0 be a point in (0, L). The definition of the Dirac measure at x0 is such that

u(x0) = 〈δx0
, u〉 = 〈∂xxG(·, x0), u〉

= −
∫ L

0

∂xG(x, x0)∂xu(x)dx+ [∂xG(x, x0)u(x)]
L
0

=

∫ L

0

G(x, x0)∂xxu(x)dx− [G(x, x0)∂xu(x)]
L
0 + [∂xG(x, x0)u(x)]

L
0

=

∫ L

0

G(x, x0)f(x)dx−G(L, x0)∂xu(L) +G(0, x0)∂xu(0) + ∂xG(L, x0)u(L)− ∂xG(0, x0)u(0).

This finally gives the following representation of the solution:

u(x0) =

∫ L

0

G(x, x0)f(x)dx−G(L, x0)b− ∂xG(0, x0)a
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9 Fredholm alternative

Question 108: (a) Compute the solution set of the equation

u′′ + u = 0, x ∈ (0, 2π) with u(0) = u(2π), u′(0) = u′(2π).

Solution: clearly u(x) = a cos(x) + b sin(x) where a and b are arbitrary numbers. The solution set
is a two-dimensional vector space spanned by cos(x) and sin(x).

(b) Do the following equation have solution(s)? (Hint: think of the Fredholm alternative)

u′′(x) + u(x) = sin(2x), ∀x ∈ (0, 2π) with u(0) = u(2π), u′(0) = u′(2π).

Solution: We are in the second case of the Fredholm alternative, i.e., the null space of the operator
is not {0}. We have to verify that sin(2x) is orthogonal to cos(x) and sin(x), which is clearly true.
In conclusion the equation has solutions.

(c) Do the following equation have solution(s)? (Hint: think of the Fredholm alternative)

u′′(x) + u(x) = sin(x), ∀x ∈ (0, 2π) with u(0) = u(2π), u′(0) = u′(2π).

Solution: We are in the second case of the Fredholm alternative, i.e., the null space of the operator
is not {0}. We have to verify that sin(x) is orthogonal to cos(x) and sin(x), which is clearly wrong.
In conclusion the equation has no solution.

Question 109: (i) Use the energy method to compute the null space of the self-adjoint operator
L : {v ∈ C2[0, 1]; v′(0) = v′(1) = 0} −→ C0[0, 1] defined by L(v) := −v′′.
Solution: Let v be a member of the null space. Then L(v) = 0 if and only if

−v′′(x) = 0, ∀x ∈ [0, 1], v′(0) = 0, v′(1) = 0.

Multiply the equation by v and integrate over [0, 1]:

0 = −
∫ 1

0

v′′(x)v(x)dx =

∫ 1

0

v′(x)v′(x)dx− v′(1)v(1) + v′(0)v(0) =

∫ 1

0

(v′(x))2dx.

This implies that v′(x) = 0 for all x ∈ [0, 1], which in turns implies that v(x) = a where a is an
arbitrary constant, i.e., Null(L) ⊂ span(1) . Conversely it is clear that v(x) = a is in the null space
of L, i.e., span(1) ⊂ Null. In conclusion

Null(L) = span(1).

(ii) Apply the Fredholm alternative to deduce whether the following equation has a solution,
and if it does whether it is unique: −u′′(x) = 1

2 − x, where x ∈ [0, 1] and u′(0) = 0, u′(1) = 0.

Solution: The problem consists of finding u in H := {v ∈ C2[0, 1]; v′(0) = v′(1) = 0} so that
Lu = 1

2 − x. From (i) we infer that the null space of L is not reduced to {0}, this means
that we are in the second case of the Fredholm alternative. There exists a solution if and only if∫ 1

0
( 1

2 − x)v(x)dx = 0 for all v in the null space of Lt = L. Let v be in the null space of L. We
have seen in (i) that v(x) = a, where a ∈ R; this implies∫ 1

0

(
1

2
− x)v(x)dx = a

∫ 1

0

(
1

2
− x)dx = a(

1

2
− 1

2
) = 0.

In conclusion the condition
∫ 1

0
( 1

2 − x)v(x)dx = 0 for all v ∈ Null(L) is satisfied. This means that
the problem has a solution but the solution is not unique.
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Question 110: Consider the equation−u′′(x) = f(x) for x ∈ (0, 1) with u′(0) = 2 and u(1) = 1.
Let G(x, x0) be the associated Green’s function. (Pay attention to the minus sign).
(a) Give an expression of u(x) in terms of G, f and the boundary data.

Solution: The Green’s function is defined by

−G′′(x, x0) = δ(x− x0), G′(0, x0) = 0, G(1, x0) = 0.

We multiply the equation by u and we integrate over (0, 1) (in the distribution sense),

∫ 1

0

−G′′(x, x0)u(x)dx = u(x0).

We integrates by parts twice and we obtain,

u(x0) =

∫ 1

0

G′(x, x0)u′(x)dx−G′(1, x0)u(1) +G′(0, x0)u(0)

= −
∫ 1

0

G(x, x0)u′′(x)dx+G(1, x0)u′(1)−G(0, x0)u′(0)−G′(1, x0)u(1) +G′(0, x0)u(0).

Then, using the boundary conditions for G and u, we obtain

u(x0) =

∫ 1

0

G(x, x0)f(x)dx− 2G(0, x0)−G′(1, x0), ∀x0 ∈ (0, 1).

(b) Compute G(x, x0).

Solution: For x < x0 we have

G(x, x0) = ax+ b.

The boundary condition G′(0, x0) = 0 implies a = 0; hence, G(x, x0) = b. For x0 < x we have

G(x, x0) = c(x− 1) + d.

The boundary condition G(1, x0) = 0 implies d = 0; hence, G(x, x0) = c(x−1). Moreover we have

1 = −
∫ 1

0

G′′(x, x0)dx = −G′(1, x0) +G′(0, x0) = −c,

meaning c = −1. The continuity of G at x0 implies

b = 1− x0.

As a result,

G(x, x0) =

{
1− x0, if 0 ≤ x ≤ x0,

1− x, if x0 ≤ x ≤ 1.
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10 Classification of PDEs

Question 111: Consider the following PDE’s:

∂yu(x, y) + 3∂xxu(x, y) = f(x, y), y > 0, x ∈ (0, L)

u(x, 0) = 1, u(0, y) = 3, ∂xu(L, y) = 2 (13)

∂yu(x, y)− 3∂xxu(x, y) = f(x, y), y > 0, x ∈ (0, L)

u(x, 0) = 1, u(0, y) = 3, ∂xu(0, y) = 2, ∂xu(L, y) = 2 (14)

∂yu(x, y)− 3∂xxu(x, y) = f(x, y), y > 0, x ∈ (0, L)

u(x, 0) = 1, u(0, y) = 3, ∂xu(L, y) = 2 (15)

∂yyu(x, y)− 3∂xxu(x, y) = f(x, y), y > 0, x ∈ (0, L)

u(x, 0) = 1, u(0, y) = 3, ∂xu(L, y) = 2 (16)

∂yyu(x, y)− 3∂xxu(x, y) = f(x, y), y > 0, x ∈ (0, L)

u(x, 0) = 1, ∂yu(x, 0) = 1, u(0, y) = 2, ∂xu(L, y) = 3 (17)

∂yyu(x, y) + 3∂xxu(x, y) = f(x, y), y > 0, x ∈ (0, L)

u(x, 0) = 1, ∂yu(x, 0) = 1, u(0, y) = 2, ∂xu(L, y) = 3 (18)

−∂yyu(x, y)− ∂xxu(x, y) = f(x, y), y ∈ (0, H), x ∈ (0, L)

u(x, 0) = 1, u(x,H) = 1, u(0, y) = 2, ∂xu(L, y) = 3 (19)

−∂yyu(x, y)− ∂xxu(x, y) = f(x, y), y ∈ (0, H), x ∈ (0, L)

u(x, 0) = 1, u(x,H) = 1, ∂xu(x,H) = 2, ∂xu(L, y) = 3 (20)

−∂yyu(x, y)− ∂xxu(x, y) = f(x, y), y ∈ (0, H), x ∈ (0, L)

u(x, 0) = 1, u(L, y) = 2, ∂xu(0, y) = 3 (21)

∂yu(x, y) + 3∂xu(x, y) = f(x, y), y ∈ (0, H), x ∈ (0, L)

u(x, 0) = 1, u(x,H) = 1, u(L, y) = 2, ∂xu(0, y) = 3 (22)

∂yu(x, y) + 3∂xu(x, y) = f(x, y), y > 0 x ∈ (0, L)

u(x, 0) = 1, u(0, y) = 2, ∂xu(L, y) = 3 (23)

∂yu(x, y) + 3∂xu(x, y) = f(x, y), y > 0 x ∈ (0, L)

u(x, 0) = 1, u(0, y) = 2 (24)

Which one is the

• Heat equation? 9

• Laplace equation? 13

• Transport equation? 18

• Wave equation? 11


