
MATH 934 – HEAT EQUATION PROJECT

INSTRUCTOR: DR. ADAM LARIOS

Consider the heat equation (also called the diffusion equation) in 1D:
∂u

∂t
= ν

∂2u

∂x2
,

u(x, t0) = u0(x).

(1)

with periodic boundary conditions on an interval of length L. Here, ν > 0 pronounced “nu” is a constant
called the diffusion coefficient or the viscosity. It has units [ν] = (length)

2
/time, as can be seen from

examining the PDE. The function u0 is the initial data, which we will assume to be a square-integrate

function, i.e.,
∫ L

0
|u0(x)|2 dx <∞ (normally, this won’t be a big issue in our computations).

If we formally express the solution via its Fourier series, we have:

u(x, t) =
∑
k

ûk(t)eik
2πx
L

Formally substituting this into equation (1), we obtain the following relationship between the coefficients:

d

dt
ûk = −νk2ûk, for each k.

Thus, for each k, we have an ODE. Let us consider solving it with an explicit time-stepping method, such as
Forward Euler or Runge-Kutta-4. We say in class that in the Euler case, for stability, we must choose a time
step respecting the viscous CFL (the Courant-Friedrichs-Lewy condition in the parabolic case). Namely, for
a space step size of ∆x, we must choose our time step ∆t so that

∆t <
2

π2

(∆x)2

ν
≈ 0.2

(∆x)2

ν
.

In general, any explicit method for solving the heat equation will have a time-step restriction of the form

∆t < K
(∆x)2

ν
,

where the dimensionless constant K comes from the numerical scheme. In many popular schemes, usually
0.1 . K . 1. For example, for the 1D heat equation using a centered finite difference scheme and Euler
time-stepping, K = 1/2, and for the 2D version (with ∆x = ∆y), K = 1/4.

Note: We will see later that the CFL condition for hyperbolic problems such as the transport equation
and the wave equation is ∆t < K∆x/c, where K is a dimensionless constant, and c is the velocity or
wave-speed with units [c] = length/time.

Task 1: Write a MATLAB code to solve the 1D heat equation using spectral (i.e. Fourier) methods for the
spatial component, and Runge-Kutta-4 for the time stepping. Examining the file FFTderivatives.m on the
webpage may be instructive here. Use the following parameters:

• L = 2π
• ν = 0.01
• N = 256 (i.e., 256 points in space)
• Use a ∆t which respects the CFL. (Don’t hard-code it, base it off the other parameters.)
• Initial data that is periodic, and has a highly oscillatory part, and a non-so oscillatory part.

Plot the solution in real-time by putting a plot statement in the loop. You must convert back to physical
space each time to do this. To see time going by, use this following line right after your plot statement:

title(sprintf('u(x,%1.3f)',t)); % t = the current time (scalar value)



Congratulations! You just solved a PDE using a computer!

Task 2: Investigate the following questions:

(a) What happens when ν is too big? Too small?
(b) What happens when you violate the CFL, i.e., choose ∆t too large?
(c) Can you add a forcing function to the right-hand side? That is, can you solve

∂u

∂t
= ν

∂2u

∂x2
+ f(x, t),

u(x, t0) = u0(x).

(Choose f to be a function which is periodic in space.)
(d) Can you modify your program to allow for arbitrary-length intervals?
(e) How many spatial points can your computer handle without taking too much time? Make sure to always

choose N = 2m for some integer m (what happens if you don’t?). To stop a computation in Matlab, on
your keyboard, push:

[CTRL]+C

(Try not to melt your computer.)
(f) What other things can you try with your code?

You don’t need to investigate the task 2 questions exhaustively, I just want to you play around
with your code, try to break it, find its limits, and see what more it can do.

Have fun, and happy coding!


