Math 433/833 Assignment # 7 Assigned: 2016.02.16
Due: 2016.02.23

0. Read sections 14.1, 14.2, 14.3, and 14.5 in the book.

1. Problem 2.2(i) on page 489. Determine the minimizers/maximizers of the fol-
lowing functions subject to the given constraints.

f(z1,m5) = 1123 subject to 2z + 3wy = 4.

Solution. For this problem we will use the x = ¥ + Zv method and minimize
¢(v). So we will need to determine an 7, find Z, and determine values for v.

A= (2 3) ~ (1 §) and thus,

2
T
Z= (-2 1)".
Next, let z = (2 O)T (it is a solution to Az = b). Then

() -r-or )+ ()e- (1)

Note that v is a scalar. Plugging x into f gives
3

- 3 3_ 9,3 4
o(v) = f(T+ Zv) = (2—51))("0) =20 — 35U

Now, we have reduced the constrained optimization problem to an uncon-
strained optimization problem. We simply take the derivative and set it equal
to zero, like in calculus. For a more general problem , we might need to use
an iterative solver like Newton’s method or BFGS, but this problem is nice
enough that we can solve it with algebra.

0L Vo(v) =60 —60° = 60> =60° = v =0o0r v =1.

From here we can see that when v = 0 we will get x1 = 2 and x5 = 0. On the

other hand when v = 1 we will get x; = % and z9 = 1. Next, we’ll use these

values to determine the type of stationary points these values may be.

Vi(w) = ( X 2) and V2f(z) = ( 0 313 )

31123 312 63179

Next, we’ll use Lemma 14.2 to check the stationary point z, = (2 O)T. So we
need to check that Z7V f(x,) = 0 and ZTV?2f(z.)Z is positive definite.

7esi - 9 ()

2V ()7 = (=3 1)
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Thus, the reduced Hessian is only semidefinite, and we cannot conclude that
z, = (2,0) is a local minimizer. (Lemma 14.2 only gives a necessary, but not
sufficient condition.)

Next, we’ll use Lemma 14.3 to check the stationary point x, = (% 1)T. For

Lemma 14.3 we need to check that Az, = b, ZTV f(x,) =0, and ZTV?f(z,)Z
is positive definite.

Az = (2 3) @ — (4) =

Although we can see that ZTV?f(x,)Z is not positive definite, it is negative

1

definite which implies that z, = (—

5 1)T is a strict local maximizer of f.

2. Problem 2.2(vii) on page 490. Determine the minimizers/maximizers of the
following functions subject to the given constraints.

1
f(zy,19) = —2% + x5 subject to 2% + 235 =1

3

Solution. This problem has a nonlinear constraint, so the method used in the
previous problem does not apply. Instead, we will use the Lagrangian function
in its nonlinear form, namely, £(z,\) = f(x) — ATVg(z) (note that since we
only have one constraint in this problem, \ is a scalar, so AT = \).

1 1
L(xy,29,\) = gx:f +ry— Aot ad—1)= gzvi’ + 29 — Az? — Az + )
Our task is to find x, and A, satisfying VL(z., A,) = 0. Thus, we proceed as
follows.

1?2 — 21y 1?2 = 2\1y

0ZVvLe=| 1-2\z = 1=2\1,
—r? — 22+ 1 1=a?+ 23
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Here we can see we have a few choices that we can make. First, assuming x;
is not zero, we can solve for x; and x5 in terms of A to arrive at:

1'1:2)\
1
xQ—ﬁ
1\° 1
(2)\)2+<5) =1 = 4/\2+N:1 = 16A* —4\* +1=0.

Note that in general, solving a 4" degree polynomial equation can be hard.
However, there is a special form to this polynomial. Namely, it is 2°¢ degree
in \2:
0=16A"—4\* +1
=16(\*)* —4(\*) +1

This means we can use the quadratic formula to solve for \2!

4V -4-16-1 4+./16—-64
N 216 N 32 '

)\2

We have a negative under the square root, so there are no real solutions for
A. Moreover, since x1 = 2\ and zo = %, if A is complex, x; and x, will be
complex as well, but they are assumed to be real, so we must choose different

values. Thus, the only possibility is that x; = 0.

Thus, we assume x; = 0 and similarly from above we can solve for A and x5 as

follows.
I = 0
1=(0)%+ (22)> = x5 = %1 (from constraint)
1
1=2\=%1) = A= :|:§
Thus, we can check these two possibilities x1 = 0, x5 = 1, and A = % and
r1 =0, 29 = —1, and \ = —%. We will use Theorem 14.16, so we’ll need to

check that V,L(z.,\.) = 0 and Z(2,)T"V2, L(2, \)Z(2,) is positive definite.
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First, we’ll consider the first stationary point z, = (0 1)T and A\, = %

Vg(z) = (32) and Vg(z.) = (g) s let 7 — (é)
ot (5 )50 )- (5 )
50 vgxz(x*,A*)z(_ol _01)

Z(x.) V2, Lz ) Z () = (1 0) (‘01 _01) ((1)) —

Although Z(z.)TV2, L(x., \)Z(z,) is not positive definite, it is negative def-
inite and thus z, = (0 1)T is a local maximizer of f. Finally, we’ll consider

the other stationary point z, = (0 —l)T and A\, = —%.

ater = () sota 2= ()

v2cn) = (o )
Z(x) ' V2 L(x, N Z(z) = (1 0) (é ?) G)) =1

The stationary point z, = (O —1)T and associated \, = —% satisfies all the

conditions for Theorem 14.16 and thus z, is a strict local minimizer of f.

3. Problem 5.2 on page 509. Solve the problem
minimize f(r) =c'x

subject to Zmz =0
i=1

n

2 _
E ] =1
i=1

Solution. We solve this problem using the Lagrangian method. First, we’ll
make the constraints easier to use in the function by defining them in a different
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way.
Let w=(1 1 .- 1)".

n
Note that: w’z = Z z;, =0
i=1
n
and 27x = Zx% =1
i=1

Next, we write down the Lagrangian function and set its gradient equal to zero
T T w’z T T T
L=cz—\ o1 =cz—Mw T —dx'r+ A

OSgVEZC—)\lw—)\Q:U

1
= T = )\—Q(C—Alw)

We take the dot-product of the last relationship with w, x, and ¢, to obtain:

( 1
w'es = —(w'ec — Mw w)
A2
1
(1) olr = —(2¥c— NzTw)
A2
1
e =—(c"c— \cw)
\ /\2
From the constraints, we know that w’z = 0, and 272 = 1. Also, note
that c’c = ||c[?ww = n, and "w = Y ¢; = nt 3" ¢ = nE, where
c = %Z?:l ¢; denotes the average value of the components of the vector c.

Using these relations, we obtain

, 1
0= )\—Z(nE —nAp)
(2 1= o
=—xc

A2

1
T = = (|el]? = Ano)

\ A2

From the first equation, we see that A\; = ¢. Note that 2’c=z-c=c-2 = 'z,

and that, from the second equation, Ay = z”¢c. Thus, we can combine this with
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the third equation to obtain:

1
Ay = )\—(HCH2 — Ainc)
2
= A2 = ||¢||* — A\ine

? (using \; =¢)

2
1 1
=n|- E e — (— E cl-> (by definitions and algebra)
n n
i=1 i=1

Now, we would like to take a square root to find Ay, but how do we know
the right-hand side is non-negative? Note that the question of whether the
right-hand side is non-negative is the question of whether the average of the
squares is greater than or equal to the square of the average. To prove that it is
(you are not required to for your homework), we can use the Cauchy-Schwarz
inequality:

= [lell* — ne

|- gl = [|Z]|[|71]| cos(O)] < [|Z]}[|7]]
Letting ¥ = ¢ and ¥ = w, we find that
[ne| = |c"w| = |e - w] < [lellllw]l = v/nllc]
Squaring both sides and dividing by n, we find,
e’ < e®

so that [|c[|* — ne® > 0. Thus, we can indeed take a square root, and we find

Ay = £/ ||c]]2 — ne.

Substituting A\; and Ay back into x, we obtain
1 Cc — Cw

r=—(c—\Mw) =t—.
(€= huw) Vel =

A2

Therefore, at these two points, we find

2 =2
@)= o=+ N =0Ty Sl — e
Vlel? = ne®

One point is positive, the other is negative. Therefore, we have found that the
maximum is v/||c||2 — ne® and occurs at ¥ = =22 and the minimum is

Vlel2—ne?’
2 =2 = ___ccw
V |l¢||? — ne® and occurs at x =,



