
Math 433/833 Assignment # 5 Assigned: 2016.03.15
Due: 2016.03.29

Thanks to Gary Wright for writing up some of these solutions.

0. Read sections 3.1, 3.2, 14.1, and 14.2 in the book. (Note: in Assignment #
5, you were asked to read section 12.3. Make sure you heave read that before
beginning this homework.)

1. Page 420, #3.3. Let f be a strictly convex quadratic function of one variable.
Prove that the secant method for minimization will terminate in exactly one
iteration for any initial start points x0 and x1. Solution. Since f is quadratic
and of one variable we can write f(x) = ax2+bx+c for some scalars (numbers)
a, b, c and a 6= 0. Since f is strictly convex we also know that a > 0. Next, since
we have f(x) we can write f ′(x) = 2ax + b. To minimize the function, note
that f ′(x) = 2ax+ b, so if we set 0 = f ′(x∗) = 2ax∗+ b, then x∗ = −b

2a
where x∗

is the minimizer. (Note that it is easy to find the minimizer by basic algebra,
so we are doing this exercise mainly to test if the secant method behaves like
we expect it to behave.) Recall the secant method in one dimension, given by:

xk+1 = xk −
(xk − xk−1)

f ′(xk)− f ′(xk−1)
f ′(xk)

Using this and f(x) = ax2 + bx+ c in the secant method with k = 1, we find:

x2 = x1 −
(x1 − x0)

f ′(x1)− f ′(x0)
f ′(x1)

= x1 −
(x1 − x0)

(2ax1 + b)− (2ax0 + b)
(2ax1 + b)

= x1 −
(x1 − x0)

2ax1 − 2ax0
(2ax1 + b)

= x1 −
(x1 − x0)

2a(x1 − x0)
(2ax1 + b)

= x1 −
1

2a
(2ax1 + b)

= x1 − x1 −
b

2a

=
−b
2a
.

Note that exactly the same result would hold if we looked for x3, x4, etc. Thus,
the sequences is constant after x1. Moreover, since the first iteration finding
x2 is equal to x∗ = −b

2a
where x∗ is the minimizer, x2 is the minimizer and the

secant method terminated after one iteration.
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2. Page 421, #3.7. Let Bk+1 be obtained from Bk using the update formula

Bk+1 = Bk +
(yk −Bksk)vT

vT sk

where v is a vector such that vT sk 6= 0. Prove that Bk+1sk = yk.

Proof.

Bk+1 = Bk +
(yk −Bksk)vT

vT sk

= Bk +
(yk −Bksk)

sk

=
Bksk + yk −Bksk

sk

=
yk
sk

Bk+1sk = yk

3. Page 82, #1.3. Consider the system of inequality constraints Ax ≥ b with

A =

9 4 1 9 −7
6 −7 8 −4 −6
1 6 3 −7 6

 and b =

−15
−30
−20


For the given values of x and p, perform a ratio test to determine the maximum
step length α such that x+ αp remains feasible.

Solution.
We want to find the ais that satisfy aTi p < 0. Then we can use the ratio test
to find the smallest of such ais to determine the value of α. Let

aT1 = (9, 4, 1, 9,−7) and b1 = −15

aT2 = (6,−7, 8,−4,−6) and b2 = −30

aT3 = (1, 6, 3,−7, 6) and b3 = −20

(i) x = (8, 4,−3, 4, 1)T and p = (1, 1, 1, 1, 1)T

aT1 p = 16 ≮ 0 aT2 p = −3 < 0 aT3 p = 9 ≮ 0
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α = min{a
T
2 x− b2
(−aT2 p)

} = min{−26− (−30)

−(−3)
} =

4

3

So the maximum step length will occur when α = 4
3
.

(ii) x = (7,−4,−3,−3, 3)T ) and p = (3, 2, 0, 1,−2)T

aT1 p = 58 ≮ 0 aT2 p = 12 ≮ 0 aT3 p = −4 < 0

α = min{a
T
3 x− b3
(−aT3 p)

} = min{13− (−20)

−(−4)
} =

33

4

So the maximum step length will occur when α = 33
4

.

(iii) x = (5, 0,−6,−8,−3)T ) and p = (5, 0, 5, 1, 3)T

aT1 p = 38 ≮ 0 aT2 p = 48 ≮ 0 aT3 p = 31 ≮ 0

Since aTi p ≥ 0 for all ai, the constraint will remain satisfied for any α ≥ 0.

(iv) x = (9, 1,−1, 6, 3)T ) and p = (−4,−2, 4,−2, 2)T

aT1 p = −72 < 0 aT2 p = 18 ≮ 0 aT3 p = 22 ≮ 0

α = min{a
T
1 x− b1
(−aT1 p)

} = min{117− (−15)

−(−72)
} =

11

6

So the maximum step length will occur when α = 11
6

.

4. Page 84-85, #2.1 (i) and (iii). In each of the following cases, compute a basis
matrix for the null space of the matrix and express the points xi as xi = pi + qi
where pi is in the null space of A and qi is in the range space of AT .

Solution.

(i) A =

1 1 1 1
1 −1 −1 1
0 1 0 1

 , x1 =


1
3
1
2

 , x2 =


0
−2
−3
4


A =

1 1 1 1
1 −1 −1 1
0 1 0 1

 ∼ A =

1 0 0 1
0 1 0 1
0 0 1 −1

 ⇒ basis for Nul(A) = Z =
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
−1
−1
1
1


For this problem we’ll find ~p via the equation ~p = (I − AT (AAT )−1A)~x and
then ~q via ~q = ~x− ~p.

AT =


1 1 0
1 −1 1
1 −1 0
1 1 1


AAT =

4 0 2
0 4 0
2 0 2


(AAT )−1 =

 1
2

0 −1
2

0 1
4

0
−1

2
0 1



AT (AAT )−1 =


1
2

1
4
−1

2

0 −1
4

1
2

1
2
−1

4
−1

2

0 1
4

1
2



AT (AAT )−1A =


3
4
−1

4
1
4

1
4

−1
4

3
4

1
4

1
4

1
4

1
4

3
4
−1

4
1
4

1
4
−1

4
3
4



I − (AT (AAT )−1A) =


1
4

1
4
−1

4
−1

4
1
4

1
4
−1

4
−1

4

−1
4
−1

4
1
4

1
4

−1
4
−1

4
1
4

1
4



~p1 = I − (AT (AAT )−1A)~x1 =


1
4
1
4

−1
4

−1
4

 and thus, ~q1 = ~x1 − ~p1 =


1
3
1
2

−


1
4
1
4

−1
4

−1
4

 =


3
4
11
4
5
4
9
4


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~p2 = I − (AT (AAT )−1A)~x2 =


−3

4

−3
4

3
4
3
4


and thus,

~q2 = ~x2 − ~p2 =


0
−2
−3
4

−

−3

4

−3
4

3
4
3
4

 =


3
4

−5
4

−15
4

13
4



(iii) A =

(
1 1 1 1
1 −1 −1 1

)
, x1 =


4
3
4
0

 , x2 =


−1
1
5
−5


A =

(
1 1 1 1
1 −1 −1 1

)
∼ A =

(
1 0 0 1
0 1 1 0

)
⇒

basis for Nul(A) = Z =


0 −1
−1 0
1 0
0 1


For this method we’l find ~p by orthogonalizing the columns of Z and projecting
the basis. Let ẑi be the ith column vector of Z.

~p1 =
~x1 · ẑ1
‖ẑ1‖2

ẑ1 +
~x1 · ẑ2
‖ẑ2‖2

ẑ2 =
1

2
ẑ1 +−4

2
ẑ2 =


0
−1

2
1
2

0

+


2
0
0
−2

 =


2
−1

2
1
2

−2

 and thus,

~q1 = ~x1 − ~p1 =


4
3
4
0

−


2
−1

2
1
2

−2

 =


2
7
2
7
2

2



~p2 =
~x2 · ẑ1
‖ẑ1‖2

ẑ1 +
~x2 · ẑ2
‖ẑ2‖2

ẑ2 =
4

2
ẑ1 +−4

2
ẑ2 =


0
−2
2
0

+


2
0
0
−2

 =


2
−2
2
−2

 and thus,
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~q2 = ~x2 − ~p2 =


−1
1
5
−5

−


2
−2
2
−2

 = ~q2 =


−3
3
3
−3


5. Page 85, #2.6. Suppose that you are given a matrix A and a vector p and are

told that p is in the null space of A. On a computer, you cannot expect that
Ap will be exactly equal to zero because of rounding errors. How large would
the computed value of ‖Ap‖ have to be before you could conclude that p was
not in the null space of A? If the computed value of ‖Ap‖ is zero, can you
conclude that p is in the null space of A? (Note: This probably is somewhat
more open-ended.)

Solution. Answers may vary widely. The key is to remember that in a com-
puter, when numbers get very small (very close to zero), they are indistinguish-
able from zero. Try some test matrices in Matlab to see if you can come up
with some ideas!


